CS G399: Topics in Theories of Computer Science

Algorithmic Power Tools I

Fall 2007

Mailing list

Please join the class mailing list by following the instructions on the following webpage

https://lists.ccs.neu.edu/bin/listinfo/csg399

Tentative Calendar
 
 
 Week  Topic Handouts
Scribe
Suggested Reading





Sep 7
Administrivia; Review of basics, introduction to approximation algorithms
Warm-up with set cover: Greedy algorithm; applications
LINEAR PROGRAMMING: Introduction and the geometry of LP
ApproxAlgs
Rajmohan Rajaraman
Vazirani, Ch 1, 2

Sep 11, 14
LP-duality: The weak and strong duality theorems
IntroToLP
LPGeometryDuality
Eric Robinson
Vazirani, Ch 12
Goemans notes on LP
Sep 18, 21
Randomized and deterministic rounding
Filtering technique
Case study: Facility Location
Shmoys-Tardos-Aardal algorithm
RandomizedRounding
IntroToFacilityLocation
San Tan
Lin-Vitter
Shmoys-Tardos-Aardal
Sep 25, 28
Case study: Facility Location
Analysis via dual-fitting and local search
Mettu-Plaxton & Arya et al algorithms
Problem Set 1
FacilityLocationFiltering
FacilityLocationDualFitting
Bishal Thapa
Mettu-Plaxton
Archer et al
Arya et al
Korte-Vygen, Ch 22
Oct 2, 5
Wrap up local search analysis
The primal-dual schema
KMedian
PrimalDualIntro
Jian Wen

Goemans-Williamson
Vazirani, Ch 15
Oct 9, 12
Case study: Network design
Goemans-Williamson algorithm for Steiner forest
SteinerForest
SteinerNetworkIntro
Laura Poplawski
Goemans-Williamson
Jain
Vazirani, Ch 22, 23
Korte-Vygen, Ch 20
Oct 16, 19
Case study: Network design, contd
Jain's algorithm for Generalized Steiner Network
SteinerNetwork1
SteinerNetwork2
Hooman Javaheri
Jain
Vazirani, Ch 22, 23
Korte-Vygen, Ch 20
Oct 23, 26
Case study: Multicommodity Flow & Sparsest cut
Leighton-Rao algorithm
UniformMCF1
UniformMCF2
Zhifeng Sun
Leighton-Rao
Vazirani, Ch 21
Oct 30, Nov 2
Primal-dual approximation scheme for multicommodity flow
SEMI-DEFINITE PROGRAMMING (SDP):
Shannon's theory of information
Shannon capacity of a graph
Problem Set 2
MCFApprox

InformationTheory
Emrah Bayraktaroglu
Young
Garg-Konemann
Korte-Vygen, Sec 19.2
Shannon
Nov 6, 9
Semi-definite programs
Case study: Shannon capacity of the Pentagon
Pentagon
Intro to SDP
Jingjing Duan
Lovasz notes
Goemans-Williamson
Nov 13, 16
Rounding SDPs
Case study: Max-Cut
Case study: Sparsest cut
Max Cut
Sparsest Cut
Abhishek Chaubey

Nov 20
Case study: Sparsest cut
Metric Embeddings and applications
Bourgain's Theorem
Sparsest Cut, contd.
Tao Jin

Nov 27, 30
Case study: Sparsest cut, contd
Arora-Rao-Vazirani algorithm
ARV algorithm
ARV contd
Sample Solution to PS1
Problem Set 3
Shahzad Rajput
Stefan Savev

Dec 4, 7
PROBABILISTIC TECHNIQUES
BPP and PH
Lower bound for volume estimation
Case study: HITS algorithm and Google's Pagerank
Probabilitic1
Probabilistic2
Max Bandazian
Xin Dong

Dec 11, 14
Student presentations Sample Solution to PS2
Sample Solution to PS3



 For the scribe notes, here are the latex 2e macros files (and the latex source for the first lecture as a sample)


References

Books

Vijay Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.   

Rajeev Motwani and Prabhakar Raghavan, Randomized algorithms, Cambridge University Press, New York, NY, 1995.

Michael Mitzenmacher and Eli Upfal, Probability and Computing, Cambridge University Press, 2006

Bernard Korte and Jens Vygen, Combinatorial Optimization: Theory and Algorithms, 3rd edition, Springer, 2005.

Facility Location

J.-H.  Lin and J. Vitter, Approximation algorithms for geometric median problems, IPL 1992

D. Shmoys, E. Tardos, and K. Aardal,  Approximation algorithms for facility location problems, STOC 1997

R. Mettu and C.G. Plaxton, The Online Median Problem, SICOMP 2003

K. Jain and V. Vazirani, Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation, JACM 2001

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit,
Local Search Heuristics for k-Median and Facility Location Problems, SICOMP 2004

A. Archer, R. Rajagopalan and D. B. Shmoys, Lagrangian relaxation for the k-median problem: new insights and continuity properties, ESA 2003

Network Design

M. Goemans and G. Williamson,
A General Approximation Technique for Constrained Forest Problems, SIAM Journal on Computing, 24, 296--317, 1995.

M.X. Goemans and D.P. Williamson, The Primal-Dual Method for Approximation Algorithms and its Application to Network Design Problems, in Approximation Algorithms, D. Hochbaum, Ed., 1997.

K. Jain, A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem. Combinatorica 21(1): 39-60 (2001)

Multicommodity Flow and Sparsest Cut

T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms, JACM 1999

N. Young,
Randomized rounding without solving the linear program, SODA 1995

N. Garg and J. Könemann,
Faster and Simpler Algorithms for Multicommodity Flow and Other Fractional Packing Problems, FOCS 1998

Information Theory and Shannon capacity

C. E. Shannon, ``A mathematical theory of communication,'' Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948.
 
C. E. Shannon, ``The Zero Error Capacity of a Noisy Channel,'' Institute of Radio Engineers, Transactions on Information Theory, Vol. IT-2 (September, 1956), pp. S8-S19. Reprinted in D. Slepian, editor, Key Papers in the Development of Information Theory, IEEE Press, NY, 1974. Included in Part A.

S. Arora, S. Rao, and U. Vazirani, Expander Flows, Geometric Embeddings and Graph Partitioning, STOC 2004

Semi-Definite Programming


L. Lovász, Semidefinite programs and combinatorial optimization (Lecture notes) (1995) 

M. Goemans and D. Williamson, Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming, JACM 1995

S. Arora, S. Rao, and U. Vazirani, Expander Flows, Geometric Embeddings and Graph Partitioning, STOC 2004

Geometric Techniques

Probabilistic Techniques