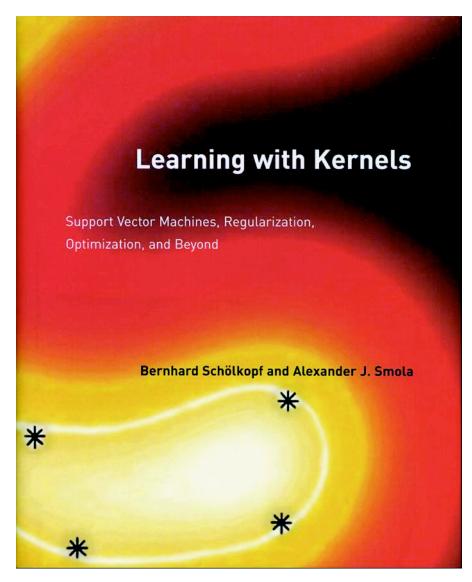
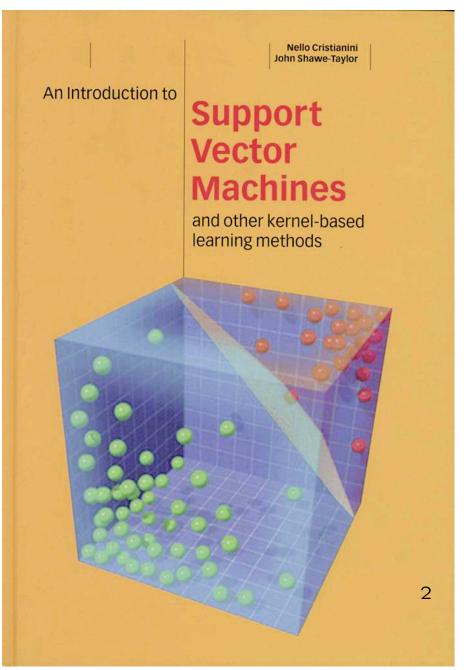
kernels (II)

presented by Virgil Pavlu

based on work by
Bernhard Scholkopf
Alexander Smola
Nello Cristianini
John Shaw-Taylor
Thorsten Joachims

where to read





this lecture

kernels

mercer conditions SVM with kernels designing kernels

feature extraction: kernel PCA

data similarities & dot product

- measurement of data similarities : a fundamental problem in ML
- reflects a priori knowledge of the problem/data
- dot product : a natural measure for similarity $\langle \mathbf{x} \cdot \mathbf{y} \rangle = \sum_i x_i \cdot y_i$
- dot product amounts to being able to carry all geometric constructions formulated in terms of angles, lengths and distances

$$\cos(\mathbf{x}, \mathbf{y}) = \frac{\langle \mathbf{x} \cdot \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \qquad \|\mathbf{x}\| = \sqrt{\langle \mathbf{x} \cdot \mathbf{x} \rangle}$$

feature space

• general measure for similarity

$$k: X \times X \to \mathbf{R}$$
, symetric $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{y}, \mathbf{x})$

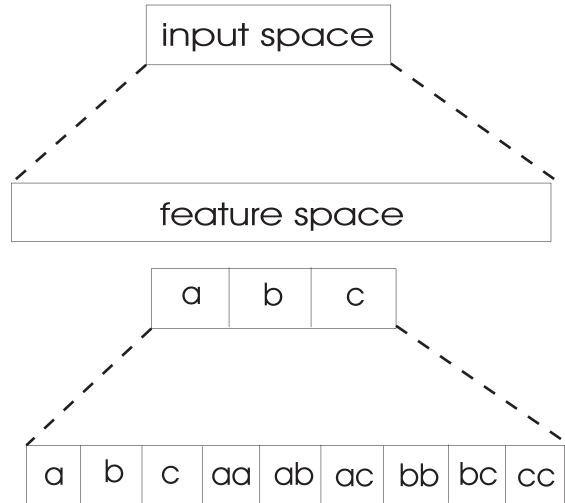
 symmetry is too general, we want something that feels like dot product

 $\exists \Phi: X \to \mathbf{H}$ mapping function

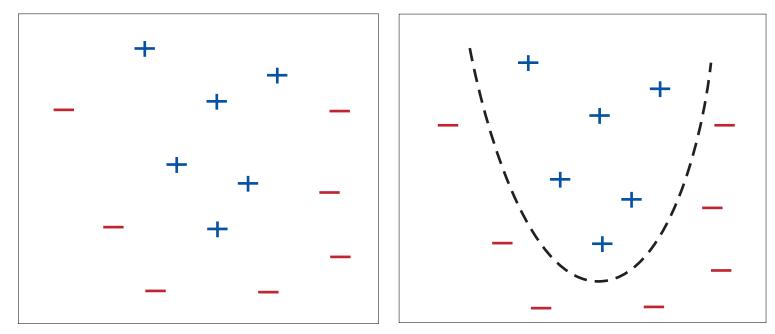
$$k(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$$

where \mathbf{H} =feature space (Hilbert space, supports dot product)

Ф extends the attribute space



non-linear data separation

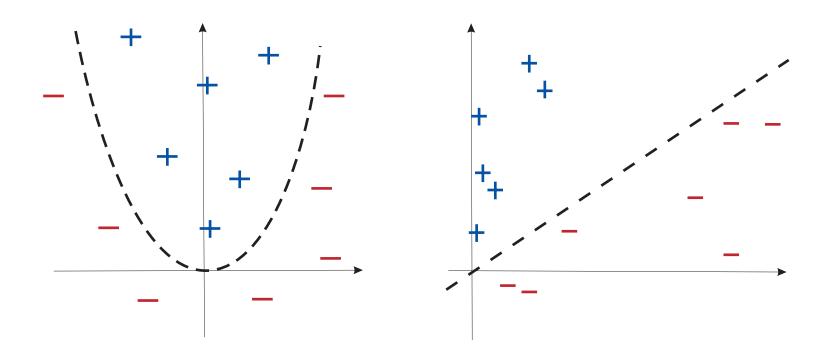


- i.e. when linear classifiers fail
- ullet using a non-linear mapping Φ and a linear classifier in the feature space may succeed

feature space : example

input space : $\mathbf{x} = (x_1, x_2)$ (2 attributes)

feature space: $\Phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ (6 attributes)



kernels

$$\exists \Phi: X \to \mathbf{H}, \ k: X \times X \to \mathbf{R}$$

$$k(\mathbf{x}, \mathbf{y}) = k(\mathbf{y}, \mathbf{x})$$

 $k(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$

 \mathbf{H} = feature space, Φ = map(feature) function

- for which k there exits Φ ?
- \bullet given k, if Φ exists, it may be not unique

,

this lecture

kernels

mercer conditions

SVM with kernels designing kernels

feature extraction: kernel PCA

linear algebra

- $\langle x \cdot Ay \rangle = \langle A^T x \cdot y \rangle$. A is **symmetric** if $A = A^T$. then $\langle x \cdot Ay \rangle = \langle Ax \cdot y \rangle$
- A is **positive definite** if A is symmetric and satisfies $\langle x \cdot Ax \rangle = x^T Ax = \sum_{i,j} x_i a_{ij} x_j \ge 0, \forall x$
- A is **unitary (orthogonal)** if $A^T = A^{-1}$ or $AA^T = I$. then $\langle Ax \cdot Ay \rangle = \langle A^T Ax \cdot y \rangle = \langle A_{-1} Ax \cdot y \rangle = \langle x \cdot y \rangle$
- $det(A) \neq 0 \Leftrightarrow A$ has full rank $\Leftrightarrow \exists A^{-1}$

more linear algebra

- λ is **eigenvalue** of matrix A if there is a non-zero vector x(**eigenvector**) such that $Ax = \lambda x$. then $\det(A \lambda I) = 0$. eigenvectors are **linear in-dependent** if eigenvalues are different
- $det(A) = \prod_i \lambda_i$. if a matrix is **triangular/diagonal** then its eigenvalues are exactly the diagonal entries
- if the eigenvectors $V=(v_1^T,...,v_n^T)$ are linear independent and form an **orthonormal** base and $D=[\lambda_1,...,\lambda_n]$ diagonal matrix then $V^{-1}AV=V^TAV=D\Leftrightarrow A=VDV^T=VDV^{-1}$ (diagonalization). any symmetric matrix can be diagonalized
- ullet SVD if A is $m \times n$ then $A = Q_1 M Q_2^T$; Q_1, Q_2 orthogonal, M diagonal

kernel characterization

data dependent - X finite

theorem if the Gram matrix $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ is positive definite then k is a dot product : $\exists \Phi$ such that $k(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$

proof K positive definite $\Rightarrow K = SDS^T$ (diagonalization) where S is orthogonal and D is diagonal with non-negative entries then $k(\mathbf{x}_i, \mathbf{x}_j) = (SDS^T)_{ij} = \langle S_i \cdot DS_j \rangle = \langle \sqrt{D}S_i \cdot \sqrt{D}S_j \rangle$ take $\Phi(\mathbf{x}_i) = \sqrt{D}S_i$

kernel characterization (converse)

data dependent - \boldsymbol{X} finite

theorem if the kernel k is a dot product $\exists \Phi$, $k(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$ then the Gram matrix $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ is positive definite

proof for any $\alpha \in \mathbb{R}^m$

$$\sum_{i,j=1}^{m} \alpha_i \alpha_j K_{ij} = \langle \sum_{i=1}^{m} \alpha_i \Phi(\mathbf{x}_i), \sum_{j=1}^{m} \alpha_j \Phi(\mathbf{x}_j) \rangle = \|\sum_{i=1}^{m} \alpha_i \Phi(\mathbf{x}_i)\|^2 \ge 0$$

so K is positive definite

mercer theorem

theorem[Mercer] Let \mathcal{X} be a compact subset of \mathbf{R}^n . Suppose \mathcal{K} is a continuous symmetric function such that

$$\iint_{\mathcal{X}} \mathcal{K}(\mathbf{x}, \mathbf{z}) f(\mathbf{x}) f(\mathbf{z}) d\mathbf{x} d\mathbf{z} \ge 0$$

for all $f\in\mathcal{L}_2\big(\mathcal{X}\big)$. Then, $\mathcal{K}\big(\mathbf{x},\mathbf{z}\big)$ can be expanded in a uniformly convergent series

$$\mathcal{K}(\mathbf{x}, \mathbf{z}) = \sum_{j=1}^{\infty} \lambda_j \phi_j(\mathbf{x}) \phi_j(\mathbf{z})$$

in terms of the eigenfunctions $\phi_j \in \mathcal{L}_2 (\mathcal{X})$ of $(\mathcal{T}_{\mathcal{K}} f)(\cdot) = \int_{\mathcal{X}} \mathcal{K}(\cdot, \mathbf{x}) f(\mathbf{x}) d\mathbf{x}$ normalized so that $||\phi_j||_{\mathcal{L}_2} = 1$ and positive associated eigenvalues $\lambda_j \geq 0$.

valid kernels

- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = \mathcal{K}_1(\mathbf{x}, \mathbf{z}) + \mathcal{K}_2(\mathbf{x}, \mathbf{z})$
- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = a\mathcal{K}_1(\mathbf{x}, \mathbf{z})$
- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = \mathcal{K}_1(\mathbf{x}, \mathbf{z}) \mathcal{K}_2(\mathbf{x}, \mathbf{z})$
- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = f(\mathbf{x})f(\mathbf{z})$
- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = \mathcal{K}_3(\phi(\mathbf{x}), \phi(\mathbf{z}))$

p(x) a polynomial with positive coefficients

- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = p(\mathcal{K}_1(\mathbf{x}, \mathbf{z}))$
- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = exp(\mathcal{K}_1(\mathbf{x}, \mathbf{z}))$
- $\mathcal{K}(\mathbf{x}, \mathbf{z}) = exp(-||\mathbf{x} \mathbf{z}||^2/\sigma^2)$

dot product kernels

$$k(\mathbf{x}, \mathbf{y}) = k(\langle \mathbf{x}, \mathbf{y} \rangle)$$

theorem

- •the function k of the dot product kernel must satisfy $k(t) \geq 0, k'(t) \geq 0$ and $k'(t) + tk''(t) \geq 0 \ \forall t \geq 0$ in order to be a positive definite kernel. that may still be insufficient
- ullet if k s a power series expansion

$$k(t) = \sum_{n=0}^{\infty} a_n t^n$$

then k is a positive definite kernel iff $\forall n, a_n \geq 0$

this lecture

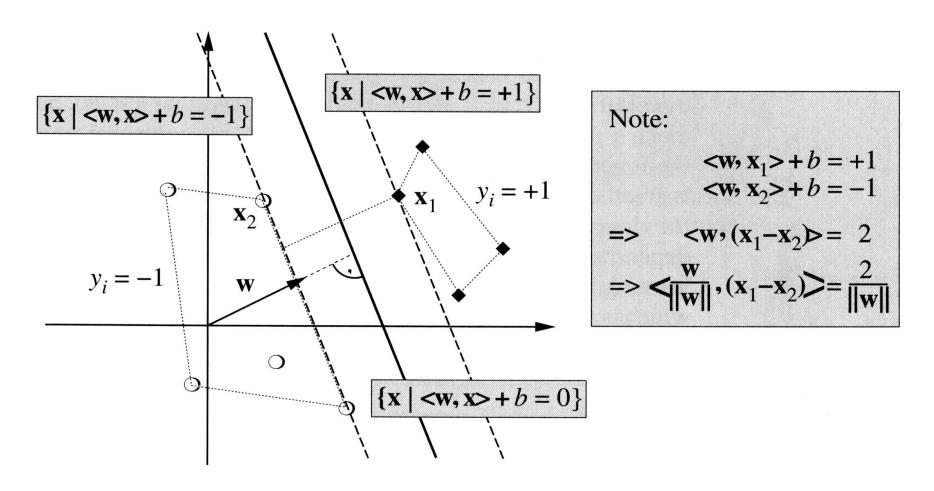
kernels mercer conditions

SVM with kernels

designing kernels

feature extraction: kernel PCA

SVMs



plug a kernel into SVM

after a long discussion on optimization theory...

the primal problem

minimize
$$\langle \mathbf{w} \cdot \mathbf{w} \rangle$$

subject to $y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \geq 1, \forall i$

the dual problem

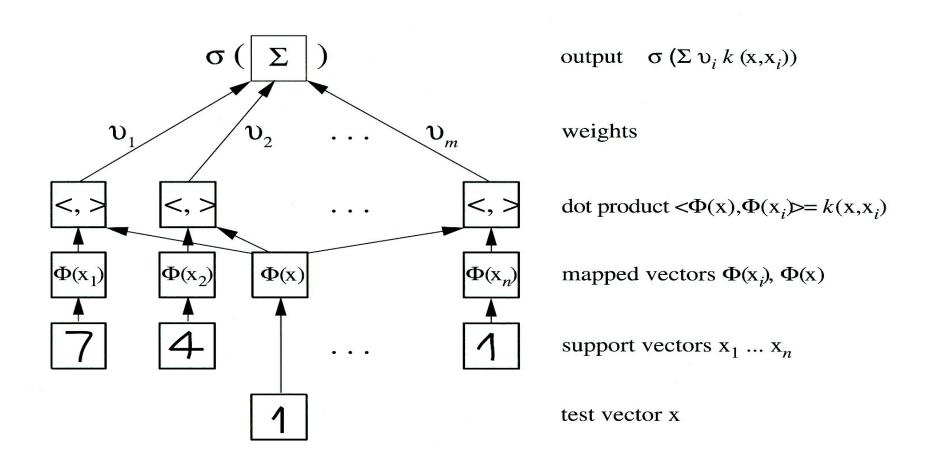
maximize
$$P(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle$$
 subject to $\sum_{i=1}^{m} y_i \alpha_i = 0, \alpha_i \geq 0, \forall i$

kernel trick replace the dot product $\langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle$ with a kernel $k(\mathbf{x}_i, \mathbf{x}_j)$: maximize

$$P(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j)$$

subject to $\sum_{i=1}^{m} y_i \alpha_i = 0, \alpha_i \geq 0, \forall i$

SVM with kernels



the kernel trick

maximize

$$P(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j)$$

subject to $\sum_{i=1}^{m} y_i \alpha_i = 0, \alpha_i \geq 0, \forall i$

- ullet we need only the kernel k ,not Φ thats good...
- any algorithm that only depends on dot products (rotationally invariant) can be kernelized
- any algorithm that is formulated in terms of positive definite kernel(s) supports a kernel-replace
- math was around for long time (1940s Kolgomorov, Aronszajn, Schoenberg) but the practical importance was underestimated

SVM, concept class, good kernels

C a concept class = set of concepts

a kernel is **complete** if it is "fine-grained" enough $k(\mathbf{x}_i, \cdot) = k(\mathbf{x}_j, \cdot) \Rightarrow c(\mathbf{x}_i) = c(\mathbf{x}_j), \forall c \in C$

a kernel is **correct(linear-good** wrt to C) if an SVM with perfect separation can be learned with it $\forall c \in C, \exists \mathbf{w} \text{ such that } \sum_i w_i k(\mathbf{x}_i, \mathbf{x}) \geq 0 \Leftrightarrow c(\mathbf{x})$

this lecture

kernels
mercer conditions
SVM with kernels
designing kernels

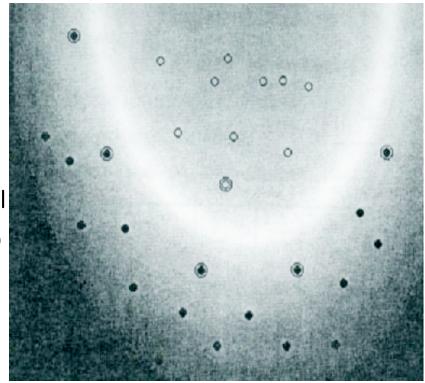
feature extraction: kernel PCA

polynomial kernel

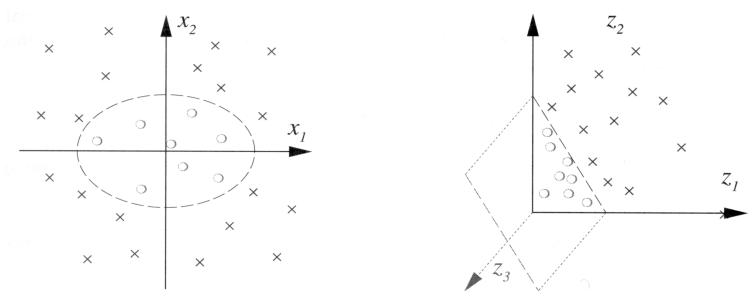
theorem define the map $\mathbf{x} \to C_d(\mathbf{x})$ where $C_d(\mathbf{x})$ the vector consisting in all possible d^{th} degree ordered products of the entries of $\mathbf{x} = (x_1, x_2, ..., x_N)$ then $\langle C_d(\mathbf{x}), C_d(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle^d$

$$k(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + c)^d$$
 polynomial kernel

 invariant to group of all orthogonal transformations(rotations, mirroring)



polynomial kernel: toy example



use the map $\mathbf{x}=(x_1,x_2)\to \Phi(\mathbf{x})=(x_1^2,x_2^2,\sqrt{2}x_1x_2)$ ellipse from 2D-input space becomes hyperplane into 3D-feature space

note $C_2(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2, x_2x_1)$ maps data in a 4D-feature space but it generates the same kernel

$$k(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle = \langle C_2(\mathbf{x}), C_2(\mathbf{y}) \rangle = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 y_1 x_2 y_2$$

Gaussian Radial Basis Function kernel

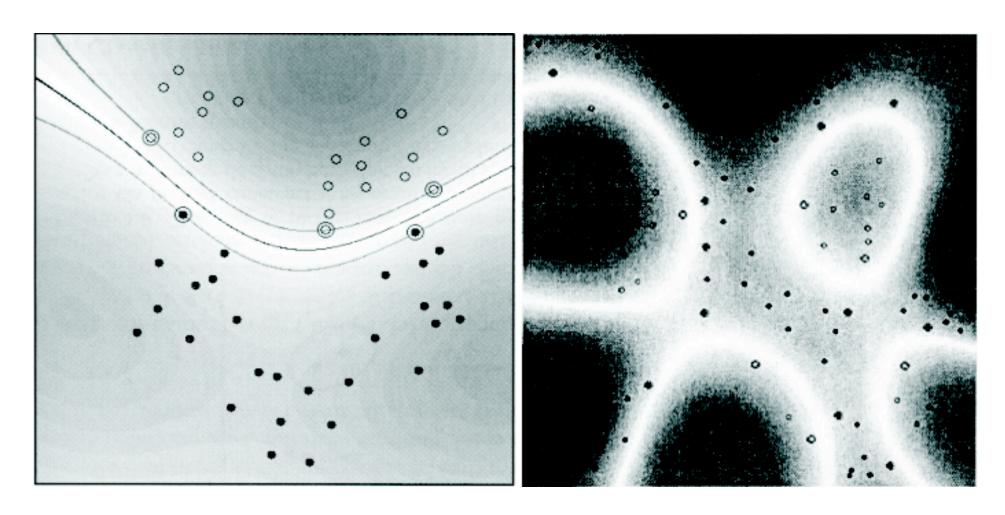
$$k(\mathbf{x}, \mathbf{y}) = \exp(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2})$$

more general $k(\mathbf{x}, \mathbf{y}) = f(d(\mathbf{x}, \mathbf{y}))$ where d is a metric on X and f is a function on \mathbf{R}_0^+ ; usually d arises from dot product $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$

- invariant on translations $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} + \mathbf{z}, \mathbf{y} + \mathbf{z})$
- $\cos(\angle(\Phi(\mathbf{x}), \Phi(\mathbf{y}))) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle = k(\mathbf{x}, \mathbf{y}) \geq 0 \Rightarrow$ enclosed angle between any 2 mapped points is smaller than $\pi/2$

theorem if $X = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m\}$ all distinct and $\sigma > 0$ then the matrix $K_{ij} = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$ has full rank $\Rightarrow \Phi(\mathbf{x}_1), \Phi(\mathbf{x}_2), ..., \Phi(\mathbf{x}_m)$ are linear independent

RBF kernel SVM



comparison

	SVM	KFD	RBF	AB	AB_R
Banana	11.5±0.07	10.8±0.05	10.8±0.06	12.3±0.07	10.9 ± 0.04
Breast Cancer	26.0±0.47	25.8 ± 0.46	27.6±0.47	30.4 ± 0.47	26.5 ± 0.45
Diabetes	23.5±0.17	23.2 ± 0.16	24.3 ± 0.19	26.5 ± 0.23	23.8 ± 0.18
German	23.6±0.21	23.7 ± 0.22	24.7 ± 0.24	27.5 ± 0.25	24.3 ± 0.21
Heart	16.0±0.33	16.1 ± 0.34	17.6 ± 0.33	20.3 ± 0.34	16.5 ± 0.35
Image	3.0 ± 0.06	3.3 ± 0.06	3.3 ± 0.06	$2.7{\pm}0.07$	$2.7{\pm}0.06$
Ringnorm	1.7±0.01	$1.5{\pm}0.01$	1.7 ± 0.02	1.9 ± 0.03	1.6 ± 0.01
F. Sonar	32.4±0.18	33.2±0.17	34.4±0.20	35.7±0.18	34.2 ± 0.22
Splice	10.9 ± 0.07	10.5±0.06	10.0±0.10	10.1 ± 0.05	$9.5{\pm}0.07$
Thyroid	4.8±0.22	$4.2 {\pm} 0.21$	4.5 ± 0.21	$4.4{\pm}0.22$	4.6 ± 0.22
Titanic	22.4±0.10	23.2±0.20	23.3±0.13	22.6±0.12	22.6±0.12
Twonorm	3.0 ± 0.02	$2.6 {\pm} 0.02$	2.9 ± 0.03	3.0 ± 0.03	2.7 ± 0.02
Waveform	9.9 ± 0.04	9.9 ± 0.04	10.7±0.11	10.8 ± 0.06	$9.8{\pm}0.08$

Fisher kernel

- knowledge about objects in form of a generative probability model
- deals with mising/incomplete data, uncertainty, variable length

family of generative models (density functions) $p(x|\theta)$, smoothly parametrized by $\theta = (\theta^1, ..., \theta^r)$; $l(x, \theta) = \ln p(x|\theta)$

score
$$V_{\theta}(x) := (\delta_{\theta^1} l(x, \theta), ..., \delta_{\theta^r} l(x, \theta)) = \nabla_{\theta} l(x, \theta) = \nabla_{\theta} \ln p(x|\theta)$$

Fisher information matrix $I := \mathsf{E}_p[V_\theta(x)V_\theta(x)^T]$

 $I_{ij} = \mathbf{E}_p[\delta_{\theta^i} \ln p(x|\theta) \cdot \delta_{\theta^j} \ln p(x|\theta)], \ \mathbf{E}_p \text{ is called } \textit{Fisher information metric}$

Fisher kernel

$$K_I(x,y) := V_{\theta}(x)^T I^{-1} V_{\theta}(y)$$

natural kernel M positive definite matrix

$$K_M^{nat}(x,y) := V_{\theta}(x)^T M^{-1} V_{\theta}(y)$$

[information] diffusion kernel

- local relationships

the exponential of a suared matrix H is $e^{\beta H} = \lim_{n \to \infty} (1 + \frac{\beta H}{n})^n = I + \beta H + \frac{\beta^2}{2!}H^2 + \frac{\beta^3}{3!}H^3 + \dots$

exponential kernel $K_{\beta}=e^{\beta H}$, $\frac{\delta K_{\beta}}{\delta \beta}=HK_{\beta}$ (heat eq)

diffusion kernel on graph : consider $H_{ij}=1$ if i j ; $-d_i$ (degree) if i=j; 0 otherwise $w^THw=-\sum_{i,j\in E}{(w_i-w_j)^2}$ negative semidefinite -H=Laplacian of the graph

two approaches to kernel design

model driven - encodes knowledge about domain

- polynomial, Gaussian
- from generative models : Fisher kernel
- local relationships : diffusion kernel

syntax driven - exploits structure of the problem

- terms: convolution kernel
- text classification : string kernel
- tree kernel
- particulary useful for non-vectorial data

convolution kernel

kernel between composite objects building on similarities of resp. parts $k_d: X_d \times X_d \to \mathbf{R}, R$ -relation. define the R-convolution kernel

$$(k_1 \star k_2 \star ... \star k_D)(\mathbf{x}, \mathbf{y}) := \sum_{R} \prod_{d=1}^{D} k_d(x_d, y_d)$$

where the sum runs over all possible decompositions of $\mathbf{x} \to (x_1, x_2, ..., x_D)$ and of $\mathbf{y} \to (y_1, y_2, ..., y_D)$ s.t. $R(\mathbf{x}, x_1, x_2, ..., x_D)$ and $R(\mathbf{y}, y_1, y_2, ..., y_D)$ \bullet proved valid if R is finite

ANOVA kernel (analysis of variance)

if $X=S^N$ and $k^{(i)}$ kernel on $S\times S$ for i=1,2,...,N ,the ANOVA kernel of order D is

$$k_D(\mathbf{x}, \mathbf{y}) := \sum_{1 \le i_1 < \dots < i_D \le N} \prod_{d=1}^D k^{i_d}(x_{i_d}, y_{i_d})$$

String Kernel - similarities between two documents Σ =alphabet, Σ^n =set of all strings of length n for a given index sequence $\mathbf{i}=(1\leq i_1< i_2<...< i_r\leq |s|)$ define $s(\mathbf{i}):=s(i_1)s(i_2)....s(i_r)$ and $l_s(\mathbf{i})=i_r-i_1+1\geq r$ example s= fast food $\mathbf{i}=(2,3,9)\Rightarrow s(\mathbf{i})=$ asd, $l_s(\mathbf{i})=9-2+1=8$

 $0 < \lambda \le 1$ parameter, define $[\Phi_n(s)]$ a map with $|\sum^n|$ components

$$[\Phi_n(s)]_u = \sum_{\mathbf{i}: s(\mathbf{i}) = u} \lambda^{l_s(\mathbf{i})}$$

example $[\Phi_3(Nasdaq)]_{asd} = \lambda^3$, $[\Phi_3(lass das)]_{asd} = 2\lambda^5$

the kernel induced

$$k_n(s,t) = \sum_{u \in \sum^n} [\Phi_n(s)]_u [\Phi_n(t)]_u = \sum_{u \in \sum^n} \sum_{(\mathbf{i},\mathbf{j}):s(\mathbf{i})=t(\mathbf{j})=u} \lambda^{l_s(\mathbf{i})} \lambda^{l_t(\mathbf{j})}$$

 $k := \sum_{n} c_n k_n$ linear combination of kernels on different substring-lengths

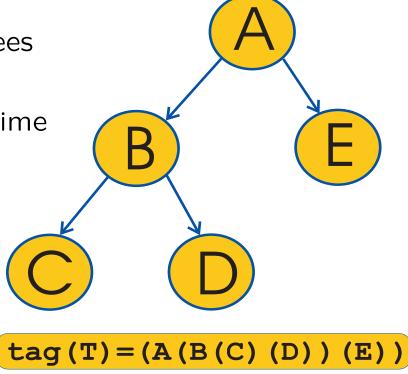
tree kernel

 encode a tree as a string by traversing in preorder and parenthesing

• substrings correspond to subset trees

• tag can be computed in loglinear time

then use a string kernel



kernels correspond to

- similarity measure for the data
- linear representation of the data
- function space for learning
- covariance function for correlated observations
- prior over he set of functions

the kernel is the prior knowledge we have about the problem and its solution - no free lunch here

this lecture

kernels mercer conditions SVM with kernels designing kernels

feature extraction: kernel PCA

 $P_{\text{rincipal}} C_{\text{omponent}} A_{\text{nalysis}} \\$ technique for extracting structure from possible high-dim data sets

given observations $x_i \in \mathbb{R}^N, i=1,...,m$ centered : $\sum_{i=1}^m x_i = 0$ form the covariance matrix $C = \frac{1}{m} \sum_{j=1}^m x_j x_j^T$, positive definite

C can be diagonalized with non negative eigenvalues. To do this, solve the eigenvalue eq $\lambda v = Cv$ for $\lambda \geq 0$ and non-zero eigenvectors $v \in \mathbf{R}^N$ equation becomes

$$\lambda v = Cv = \frac{1}{m} \sum_{j=1}^{m} \langle x_j, v \rangle x_j$$

all v with $\lambda \neq 0$ lie in the span of $x_1...x_m$ hence the eigenvalue eq becomes $\lambda \langle x_i, v \rangle = \langle x_i, Cv \rangle, \forall i$

kernel PCA

 $\Phi: X \to \mathbf{H}$ (possibly nonlinear) map, cenetred $\sum_{i=1}^m \Phi(x_i) = 0$.

the covariance matrix $C = \frac{1}{m} \sum_{j=1}^{m} \Phi(x_j) \Phi(x_j)^T$.

as in PCA , we need to find the eigenvalues and eigenvectors satisfying $\lambda v = Cv$ note that solutions lie in the spam of $\Phi(x_1), ..., \Phi(x_m)$ or $v = \sum_{i=1}^m \alpha_1 \Phi(x_i)$ and equation is equiv to $\lambda \langle \Phi(x_i), v \rangle = \langle \Phi(x_i), Cv \rangle, \forall i$ which becomes

$$\lambda \sum_{i=1}^{m} \alpha_i \langle \phi(x_n), \Phi(x_i) \rangle = \frac{1}{m} \sum_{i=1}^{m} \alpha_i \langle \Phi(x_n), \sum_{j=1}^{m} \Phi(x_j) \langle \Phi(x_j), \Phi(x_i) \rangle \rangle$$

if $K_{ij} = \langle \Phi(x_i), \Phi(x_j) \rangle$ (Gram matrix) then we need to find non-zero solutions of $m\lambda K\alpha = K^2\alpha$ which are between solutions of $m\lambda\alpha = K\alpha$

kernel PCA - properties

kernel PCA is the orthogonal basis transformation in **H** with following properties (assuming eigenvectors in descending order of eigenvalues):

- •first q principal components(proj. on eigenvectors) carry more variance that any other q orthogonal directions
- •the mean-squared approx. error when representing (x_i) by the q first principal components is minimal
- the principal components are uncorrelated
- the first q principal components have max mutual information
- ullet connection with SVM : the n^{th} KPCA feature extractor ,scaled by $1/\lambda_n$ is optimal among all feature extractions, in the sense that it has minimal weight vector norm in the RKHS ${\bf H}$,

$$||v||^2 = \sum_{i,j=1}^m \alpha_i \alpha_j k(x_i, x_j)$$

subject to orthogonality and unit variance set of outputs when applied to training set (x_i)

important things not covered

- regularization
- kernel fisher discriminant
- bayesian kernel methods
- locality-improved kernels

END don't look after this slide

bayesian kernel methods

kernels and Gaussian processes

kernel fisher discriminant