
Contract Monitoring Semantics as Patterns of Communication

Cameron Swords Amr Sabry Sam Tobin-Hochstadt
Indiana University

{cswords,sabry,samth}@indiana.edu

Abstract
We present a new approach to contract semantics which expresses
myriad monitoring strategies using a small core of foundational
communication primitives. This approach allows multiple existing
contract monitoring approaches, ranging from Findler and Fell-
eisen’s original model of higher-order contracts to semi-eager, par-
allel, or asynchronous monitors, to be expressed in a single lan-
guage built on well-understood constructs. We prove that this ap-
proach accurately simulates the original semantics of higher-order
contracts. A straightforward implementation in Racket demon-
strates the practicality of our approach which can not only enrich
existing Racket monitoring strategies, but also support a new style
of monitoring in which collections of contracts collaborate to es-
tablish a global invariant.

1. Introduction
Since they were introduced by Meyer [25], behavioral contracts
have become an integral part of modern programming prac-
tice, where they are used to express predicates as pre- and post-
conditions on procedures. In a first-order setting, run-time enforce-
ment is well-studied [25, 27, 28]: the pre-condition predicate is
applied to the input; the function is run if the precondition holds;
and the post-condition is checked on the result.

However, when the setting changes from first-order to higher-
order functions, effectful operations, large data structures, or even
lazy languages, contract checking becomes more complex. With
higher-order functions, contracts must be delayed [16]. With large
data structures, programmers wish to avoid checking more than
needed. With lazy languages, contracts can force excess evaluation.
Fortunately, all of these issues have been tackled, with researchers
proposing solid theoretical foundations [4, 15, 16], language inte-
gration accommodating existing semantics [6, 11, 19, 22], and new
forms of contracts [1, 11, 18, 20, 32]. Contracts are now available
in a broad range of production systems.

Even for the specific task of monitoring functions and primitive
values, there are a broad number of approaches to contract monitor-
ing presented in the literature, from eager contracts à la Findler and
Felleisen [16] to future contracts as presented by Dimoulas et al.
[10], and even broader shapes such as the temporal approach pre-
sented by Disney et al. [13]. There are, in fact, so many approaches
to contract monitoring that Degen et al. [7, 8] and Dimoulas and
Felleisen [9] have presented surveys of different approaches, dis-
cussing their similarities and differences.

Despite appearances, this cornucopia of monitoring strategies
share a common core. Going back to first principles, checking that
a given code fragment satisfies a contract clearly requires executing
some “assertion” code, and the execution of this assertion code is
conceptually distinct from the execution of the original code frag-
ment. There is no fundamental reason why either of these modes of
execution should be given supremacy. In particular, taking the view
that the contract execution is somewhat subservient to the main

thread of execution only restricts and complicates the language;
only in the simplest cases does the interaction of the two executions
follow a routine master/slave or call/return pattern. In many cases,
it is conceptually clearer to view the two executions as proceed-
ing independent, synchronizing at specific points. Prior implemen-
tations and semantic foundations for contracts have merged these
non-trivial patterns of interaction into the single, fixed evaluation
semantics for the host language. This not only restricts the power
of contracts but obscures the powerful idea that contract checking
is just a separate process of execution that interacts with the under-
lying program in a variety of communication patterns.

We tackle this problem head-on, giving a unifying account of
multiple contract monitoring semantics while exposing their under-
lying communication patterns. The communication-centric account
clarifies the precise differences between monitoring semantics and
how they impact the overall flow of program execution.

Outline. This paper presents a new model for interpreting and
expressing contract monitoring semantics as models of communi-
cation that facilitate coexistence and semantic interoperability in
the presence of contracts. This paper proceeds as follows: we out-
line our approach through examples of contract monitoring (§2).
Next we present a calculus with CML-style concurrency opera-
tions, demonstrating how these operations, combined with excep-
tions and delaying mechanisms, may recover varied methods of
contract monitoring, including eager, semi-eager, future, and asyn-
chronous monitoring [7, 8, 10, 16, 18] (§3–4). Then we prove that
our model accurately simulates the original semantics of Findler
and Felleisen [16] (§6). Next we present a thread-based implemen-
tation of our framework in Racket and use this system to create
a structural contract sketched by Findler et al. [18], but with im-
proved algorithmic bounds and performance results (§7). Finally
we outline how to embed a number of additional monitoring ap-
proaches into our semantic model, including lazy, temporal, and
statistical monitors (§8), discuss related work (§9), and conclude.

2. Background & Examples
In the conventional study of software contracts, a language designer
extends a core calculus with monitoring facilities that adhere to a
specific monitoring strategy, describing how monitors may interact
with the underlying program evaluator and the precise semantics of
the monitor itself. This semantic decision is a permanent fixture of
the language, often lacking facilities to extend or alter the strategy.

In this section we start to address this problem, abstracting away
from this “one-strategy” approach in favor of a many-strategy user
language. This language abstracts over how contracts may inter-
act with the underlying evaluator, parameterizing contract monitors
with monitoring strategies which indicate precisely how and when a
given contract may interact with the user program. This moves the
decision of how contracts should be monitored into the program-
mer’s hands, allowing users to naturally describe contract behavior
on a program-by-program basis.

1 2015/2/27

Eager Monitoring

check nat/c eager (+ 2 3)

read ι

5

write ι (nat/c (+ 2 3))

write ι 5

Asynchronous Monitoring

check nat/c async (+ 2 3)

(+ 2 3)

5

nat/c (+ 2 3)

5

Future Monitoring

check nat/c future (+ 2 3)

ι1,ι2

force ι1,ι2

(seq
(write ι1 unit)
(read ι2))

(read ι2)

5

write
ι
(nat/c (+ 2 3))

write ι 5

unit

read ι1
write ι2 (read ι)

write ι2 (read ι)

write ι2 5

unit

Semi-Eager Monitoring

check nat/c semi (+ 2 3)

read ι

ι1,ι2

force ι1,ι2

seq (write ι1 unit) (read ι2)

(read ι2)

5

write ι (delay (nat/c (+ 2 3)))

write ι ι1,ι2

unit

read ι1
write ι2 (nat/c (+ 2 3))

write ι2 (nat/c (+ 2 3))

write ι2 5

unit

Figure 1. Communication patterns for eager, semi-eager, future, and asynchronous contract monitoring.

Eager Predicate Contracts. Our first example is a predicate con-
tract that verifies its input is a natural number:

nat/c
∆
= pred/c (λx. x ≥ 0)

This contract can now be used to construct a monitored subexpres-
sion inside a larger expression:

1 + check nat/c eager 5

When the evaluation of this expression encounters the check pa-
rameterized by the eager strategy, the user computation is sus-
pended and the monitor assumes control of the evaluation. Eager
monitors completely verify their contract at assertion time: if the
input value is valid, the monitor terminates with that value result,
and if the input does not satisfy the contract, the monitor termi-
nates at assertion time with an exception1. In either case, the user
evaluation is resumed with the monitor’s result.

This interaction corresponds to Eager Monitoring in Figure 1:
the check form constructs a monitoring expression (colored red) to
verify the contract, pausing the user evaluation until it is complete.
The bold line indicates evaluator construction, the double-arrow
indicates evaluator synchronization, and the normal arrows indicate
evaluation.

Eager Pair Contracts. Eager monitors produce contract violation
even if the program does not rely on the value for its final result,
and thus unused values may produce contract violations. To demon-
strate this quality, consider a second contract combinator over pairs,
written pair/c. Structural contracts require subcomponents that de-
scribe how the substructures should be monitored, and thus pair
contracts accept a subcontract and strategy for each of the first and

1 We omit blame in this section for simplicity.

second elements of the pair:

nat/pcE
∆
= pair/c

nat/c eager
nat/c eager

This pair contract can itself be eagerly enforced, which will eagerly
enforce nat/c on each of the elements of the pair, regardless of their
usage in the program:

fst (check nat/pcE eager (5, 6)) ⇒ 5
fst (check nat/pcE eager (5, -1)) ⇒ exn

The Cost of Eager Contracts. The strict enforcement strategy of
eager contracts is not always a perfect-fit solution. For example,
an eagerly-monitored contract that verifies its input is a prime
number may require immense computational effort while the user
evaluation is suspended:

check prime/c eager (2 ∗ 3763 + 567)

While such enforcement may be ideal (or even necessary) in many
situations, this approach may range from computationally intensive
to impossible for large or infinite structures (such as streams). If this
is the only monitoring strategy available, programmers will find it
too expensive to validate many rich properties.

Asynchronous Contracts. Instead of suspending the user eval-
uator during contract verification, other approaches allow the
user evaluator to proceed while the contract is concurrently en-
forced [10, 13]. In the simplest variant of the idea, the monitor is
concurrently enforced, halting the computation with an error if the
contract is violation, but the user process is otherwise unimpeded.

This approach corresponds to Asynchronous Monitoring in Fig-
ure 1: the check form constructs a monitored expression (colored

2 2015/2/27

red) to verify the contract, continuing the user evaluation in paral-
lel. If the monitor verifies the contract, it silently ends its execution.
If an error is detected, however, the entire computation might halt
with the error. For example, we may asynchronously enforce nat/c
in a number of expressions by changing eager to async:

check nat/c async 5 ⇒ 5
(λx. x + 5) (check nat/c async -1) ⇒ 4 or exn

We use “or” in the second example because asynchronous moni-
toring induces a third option for contract monitoring: the monitor
may not complete before the user evaluator. Asynchronous moni-
toring only guarantees “best-effort checking”: if a contract is too
large or complex to verify during the program’s execution, and the
program otherwise terminates correctly, then the remaining veri-
fication work is discarded. As a result, asynchronous contract en-
forcement is often “too weak”, precisely because we the two eval-
uators are completely disjoint. It may be preferable to facilitate a
synchronization between the two evaluators at the user program’s
request.

Future Contracts. In their original presentation [10], future con-
tracts track a master (user) process and a slave (monitoring) pro-
cess, synchronizing during I/O events to enforce pending contracts.
We take a more traditional approach to future monitors, providing
the initiating process with a promise—a reference to the monitor
result à la computational futures [3, 21]. When the initiating evalu-
ator forces the promise, the expression retrieves the contract result,
yielding either the original value or an error. This style of contract
monitoring allows the user program to control when the program
will wait for a contract result by forcing the promise.

check nat/c future 5 ⇒ ref
force (check nat/c future -1) ⇒ exn
force (check nat/c future 5) ⇒ 5
force (check nat/c future -1) ⇒ exn

This series of interactions correspond to Future Monitoring in Fig-
ure 1: the check form constructs a monitored expression (colored
red) to verify the contract and a future-fulfillment mechanism (as
another process, colored blue) before returning a reference to the
future-fulfillment mechanism to the user process. This allows the
user evaluator to continue computation until the value is required
while a concurrent process enforces the contract, minimizing the
time required in the user evaluator for contract enforcement. To
further demonstrate this behavior, consider a revised contract over
pairs that checks its sub-contracts using future:

nat/pcF
∆
= pair/c nat/c future nat/c future

Now we must explicitly force the subcomponents of the pair:
fst (force (check nat/pcF future (5, -1))) ⇒ ref

force (fst (force (check nat/pcF future (5, -1)))) ⇒ 5
force (snd (force (check nat/pcF future (5, -1)))) ⇒ exn

force (fst (check nat/pcF eager (5, -1))) ⇒ 5
force (check nat/pcE future (5, -1)) ⇒ exn

The last two examples are of particular interest: each pair contract
requires three strategies for each of its first sub-component, second
sub-component, and the overall pair. If we use future for all three,
we receive a promise that, when forced, returns a pair of further
promises. Our framework allows the free intermixing of monitoring
strategies, however, so we can construct a pair contract that is
enforced at assertion time while delaying each of the subcomponent
contract, or that is eagerly enforces its subcomponents when forced.

Semi-Eager Contracts. The presentation of future contracts pre-
sumes that the contract monitor is too computationally complex
to perform while suspending the user evaluator. Delaying the ac-
tual contract evaluation, however, is often sufficient: if a structural
contract may be checked in layers and pieces as the program tra-
verses the structure, piecewise demand-time contract enforcement
is often sufficient. This suggests a fourth model of contract moni-
toring which delays the monitor enforcement until the user evalua-

tor forces the expression. Findler and Felleisen first used so-called
semi-eager evaluation to model contracts across module bound-
aries, enforcing contracts only when invoked by the client mod-
ule [16]. Hinze et al. [22] and Degen et al. [7] model this approach
by encoding the Findler-Felleisen semantics directly in Haskell,
and Chitil [5] builds on this encoding, introducing a number of
combinators that exploit this delaying behavior.

Future monitoring closely mirrors semi-eager monitoring: while
the former immediately performs contract enforcement but delays
evaluator communication, the latter delays contract enforcement
and immediately performs communication afterwards. As a result,
the two strategies behave identically from the user’s perspective in
the absence of effectful operations and computational time:

check nat/c semi 5 ⇒ ref
force (check nat/c semi -1) ⇒ exn
(λx. 1 + force x) (check nat/c semi 5) ⇒ 6
(λx. 1 + force x) (check nat/c semi -1) ⇒ exn

While the usage looks identical with respect to expected outputs,
the underlying semantic differences expose an axis of variation for
contract monitors: where the delaying mechanism occurs in the
monitoring process. This difference is apparent in the pattern pre-
sented as Semi-Eager Monitoring in Figure 1: we move the delay
mechanism creation from the user evaluator to the monitoring eval-
uator, and thus expose a natural variance in monitoring semantics.

Data Structural Contracts. The contracts we have presented so
far omit a large part of the design space for contracts: neither
predicates nor pairs readily lend themselves to recursive contracts.
Binary-search trees, conversely, provide an interesting venue for
exploring structural contracts in the large, presenting opportunities
for contract enforcement that contrast well with the asymptotic and
algorithmic obligations of the underlying structure. For example,
we might construct a contract to ensure that a given tree is indeed
organized in sorted order. We can do this with a dependent tree
contract that takes four subcontracts and strategies for each of the
leaf, left subtree, node value, and right subtree:

fix bst/E lo hi.
tree/dc (pred/c null?) eager

(λn. bst/E lo n) eager
(pred/c (λx. lo ≤ x and x ≤ hi)) eager
(λn. bst/E n hi) eager

This contract ensures that each leaf of the tree is a null value and
each value that occurs in the tree is within the correct numeric
bounds. Under eager monitoring this contract must traverse the
entire tree to enforce this constraint, requiring O(n) time, whereas
a insertion algorithm would require O(logn) time in a balanced
tree. This style of monitoring is often preferable to ensure program
safety, but such traversals become problematic as the structure
increases in size. We can forgo such a strong guarantee, however,
and opt for semi-eager contract enforcement:

fix bst/S lo hi.
tree/dc (pred/c null?) eager

(λn. bst/S lo n) semi
(pred/c (λx. lo ≤ x and x ≤ hi)) eager
(λn. bst/S n hi) semi

This contract will enforce the invariant on exactly the nodes we
visit during the program, which will recover O(logn) complexity
for insertion into a balanced tree. Even so, we have tied the user
evaluator to this contract, relying on the user program’s evaluation
to enforce the contract. Departing from such a coupling requires a
full separation of the monitoring evaluator from the user evaluator.

Future monitors provides two approaches to such separation.
In the first, we construct such a monitor by replacing the two
uses of semi with future in the definition of bst/S, yielding
bst/F . This third implementation of the binary-search tree invariant
yields a unique situation: the future monitors will traverse the entire
structure of the tree, but the user evaluator only waits on the results
that are relevant to the completion of the program. Thus we may

3 2015/2/27

complete the user evaluator’s computation without enforcing the
invariant over the entire tree.

Alternatively, we might enforce bst/E concurrently under the
future strategy, demanding the promise at the end of the entire
user program. This will allow us to continue with a computation,
verifying the contract concurrently and retrieving the final result at
the last possible moment. This last alternative for future monitoring
may also be constructed with asynchronous monitoring: the mon-
itor will traverse the entire tree and enforce the contract, reporting
an error only if and when it is detected.

Function Contracts. Monitoring a function contract verifies con-
tracts on a function’s input and output values. Like a pair contract,
a function contract consists of two sub-contracts and their associ-
ated strategies: the first contract, or pre-condition, is enforced on
function inputs, and the second contract, or post-condition, is as-
serted on the result of the function application. These contracts are
constructed with the function contract combinator func/c:

fnat/cE
∆
= func/c nat/c eager nat/c eager

fnat/cS
∆
= func/c nat/c semi nat/c semi

Function contracts deviate from pair contracts in one important
way: while it was possible to write eager pair contracts that might
produce inefficiency or diverge, the equivalent approach for func-
tion contracts is untenable. For any infinite set of valid inputs or
outputs, such as the natural numbers, it is generally impossible to
traverse the entire domain and codomain of a procedure to ensure
that each adheres to the pre- and post-condition.

To this end, functional contract enforcement postpones the pre-
and post-condition contracts until the function’s precise input is
available. This delay manifests as a secondary λ-abstraction around
the monitored procedure, and thus while a function contract may be
monitored under any strategy, that overall strategy only determines
when the wrapped procedure is constructed [4]. (The literature sug-
gests an alternative method for checking function contracts through
statistical verification [12, 14], which we discuss in Sec. 8.) We de-
fine two monitored procedures using the contracts above:

sub1/mE
∆
= check fnat/cE eager (λx. x − 1)

sub1/mS
∆
= check fnat/cS eager (λx. force x− 1)

We use eager in both cases to avoid delaying the construction of
the wrapped procedure. Applications proceed as follows:

sub1/mE 5 ⇒ 4 (ef1) sub1/mS 5 ⇒ ref (sf1)
sub1/mE -1 ⇒ exn (ef2) sub1/mS -1 ⇒ exn (sf2)
sub1/mE 0 ⇒ exn (ef3) sub1/mS 0 ⇒ ref (sf3)

force (sub1/mS 0) ⇒ exn (sf4)

The first three examples are as expected: no contract is violated
in the first, the pre-condition is violated in the second, and the
post-condition is violated in the third. The semi-eager examples
are more intricate: example (sf1) behaves as expected, returning a
reference that will yield 4 when forced, example (sf2) produces an
exception when the value monitored by the pre-condition is forced
in the body of the function, and examples (sf3) and (sf4) indicate
that the post-condition result must be demanded before usage.

The Many-Strategy Approach. Unfortunately, none of these ap-
proaches provide a single “silver bullet” solution to contract mon-
itoring. While Degen et al. [7] conclude that “faithfulness is better
than laziness”, we assert that each strategy is an ideal fit in a num-
ber of situations, and so fixing the contract evaluator with a single
strategy is a poor fit for programmer flexibility.

Furthermore, there is evidence that some useful contracts cannot
be expressed with any of the strategies or combinators we have
introduces so far [18]. For example, consider checking the fullness
of a binary search tree, which ensures that a tree of height n has
2n nodes. This property is easy to verify by traversing the tree,
but it poses subtle issues for contract monitoring strategies. We

would like to check as much of the tree as possible without forcing
additional evaluation, but the contract requires traversal and thus
we require some mechanism to back-propagate values to waiting
contracts as the tree is explored.

As we will see in Sec. 7.2, asynchronous and semi-eager strate-
gies combined with communication allow us to write this back-
propagation mechanism, arranging a series of callbacks to verify
the tree is full. This contract requires careful construction, but it
will allow us to signal an error after we have traversed any unbal-
anced part of the subtree to its leaves.

The contracts we have examined thus far are all built from the
same primitive effects: exceptions, concurrent processes with com-
munication, and delaying and forcing mechanisms. In the next
sections we will outline a core calculus with these operations
and demonstrate how to construct general, generic, and strategy-
agnostic monitoring mechanisms from them.

3. An Concurrent Calculus for Contracts
Having demonstrated the core ideas of this new approach to con-
tract monitoring, we turn our attention toward formalizing these
features in λCC, the calculus of concurrent contracts. This calculus
combines several standard features, including pure λ-expressions,
exceptions, delay and force primitives, and a process model in-
spired by Concurrent ML [24, 29, 30]. The pure λ-calculus por-
tion of the calculus includes several common forms (the unshaded
portion of Figure 3), including if, case, pairs, and recursive bind-
ings.Each of the additional language layers provides a separate
level of abstraction in λCC aimed at a distinct class of clients:

• The λ-calculus with check, raise, strategies s, blame B, and
force (but not delay), appearing as “white” and red in Figure 3.
This language fragment provides a framework for user pro-
grams that wish to enforce contracts and interact with delayed
contract values. Contract writers also use this calculus to con-
struct contracts and contract combinators that naturally adhere
to the standard notions of value propagation for contracts. All of
the contract combinators used in Sec. 2 and defined in Figure 6
are written in this language. Furthermore, we track blame fol-
lowing Dimoulas et al. [11]: each blame object contains three
strings, indicating the contract, positive, and negative parties.

• The λ-calculus with the above features and synchronous pro-
cess facilities chan, read, and write, including the white, red,
and purple portions of Figure 3. These primitives allow con-
tract writers to interact with the contract runtime to craft addi-
tional patterns of communication between monitoring evalua-
tors to recover new—and sometimes improved—contract eval-
uation patterns. These three forms are colored purple to indi-
cate their dual nature as contract writing facilities and under-
lying semantic specification. The only style of contract where
we have found this necessary was described in the previous sec-
tion, using λCC’s built-in communication facilities to construct
contracts in a recursive, dependent structural contract. We show
how to express this style of contract in our Racket implementa-
tion in Sec. 7.

• The full calculus, including everything in Figure 3 (the white,
red, purple, and blue portions), adds the additional features to
complete the semantic model of contract monitoring in terms of
processes. These effects along with answers a, channel names
ι, the special delay reference form (Sec. 3.2), process pools P ,
process tags T , channel maps K, evaluation contexts E , and
process contexts C, provide a basis for the implementation of
check, force, and delay. Furthermore, this calculus serves as
a semantic specification for the runtime evaluation of contract

4 2015/2/27

e := x | v | e e | fix f x. e | if e then e else e | (e, e)
| unop e | binop e e | case (e; inl x . e; inr x . e)
| injl | injr
| check e s e B | force e | raise e
| read e | chan e | write e e
| spawn T e | delay e | catch e e

s := eager | semi | future | async | · · ·
B := (str, str, str)
v := λx. e | true | false | inl v | inr v | (v, v)

| unit | n | str
| ι | drefι1,ι2

E := � | E e | v E | if E then e else e | (E, e) | (v, E)
| unop E | binop E e | binop v E
| case (E; inl x . e; inr x . e) | injl E | injr E
| check � s e B | force E | raise E
| write E e | write v E | read E
| spawn T E | catch E e | catch v E

a := v | raise v
P := P + P | 〈n, T | e〉 | done a
T := U | M | A
K := {ι0, ..., ιn}
C := � | 〈n, T | E〉 | C + P

Figure 2. Syntax of λCC.

monitors, giving an account of the underlying operations of
contracts, and it is not intended for use in user programs.

3.1 Core Features
We have already introduced the core user language (colored white
and red) with canonical λ-calculus forms2 through a series of ex-
amples, and thus we now focus on the remaining pieces of λCC:
exceptions, processes, check, delay, and force. Exceptions are stan-
dard, and each of check, force, and delay are implemented in terms
of processes. Therefore we briefly explain exceptions and focus
on the concurrent aspects of λCC, postponing delay and force until
Sec. 3.2. The check form is described in Sec. 4, where we provide
the semantics for each of eager, async, future, and semi mon-
itoring in terms of the underlying process calculus and delay. In the
remainder of the paper we use→ for a single local evaluation rule
and 7→ for a top-level evaluation step.

Exceptions We include the standard exception mechanisms raise
and catch to report and handle contract violations. The last three
rules in Figure 3 illustrate their behavior. The catch h e form in-
stalls a handler h during the evaluation of e. If that evaluation ter-
minates with a value v, the handler is discarded and the entire form
evaluates to v. Otherwise the evaluation of emay raise an exception
value v′, in which case the intermediate contexts are discarded until
either the exception reaches the top level or encounters the closest
handler. In the latter case, the handler h is invoked on v′.

Processes and Process Calculus Runtime configurations in λCC,
written K;P , consist of a collection of channels K that scope over
concurrent processes P . The set of channels K grows over the
course of evaluation as new channels are constructed for commu-
nication with chan. The syntax distinguishes three kinds of pro-
cesses: 〈n, T | e〉 represents an individual process made up of a
unique process numerical identifier n, a process tag T , explained
below and a λ-expression e; done a, a halt state which indicates
that the computation has terminated with an answer a; and P + P

2 The semantic relations for these forms are standard and thus omitted.

Process Evaluation Rules

e 7→ e′

K;P + 〈n, T | e〉 ⇒ K;P + 〈n, T | e′〉
(STEP)

n′ /∈ C[spawn T ′ e]
K; C[spawn T ′ e]⇒ K; C[unit] + 〈n′, T ′ | e〉

(SPAWN)

ι /∈ K
K; C[chan v]⇒ K∪ {ι}; C[v ι]

(CHANNEL)

ι ∈ K
K; C[read ι] + C′[write ι v]⇒ K; C[v] + C′[unit]

(SYNC)

K; 〈n,U | a〉+ PA ⇒ K; done a
(TERM1)

K; 〈n,M | v〉+ P ⇒ K;P
(TERM2)

K; 〈n,A | v〉+ P ⇒ K;P
(TERM3)

K; 〈n,A | raise v〉+ P ⇒ K; done (raise v)
(TERM4)

Exception Evaluation Rules

catch h � /∈ E
E[raise v′]→ raise v′ catch h v → v catch h (raise v′)→ h v′

Figure 3. Small-step semantics for the effectful forms of λCC.

is the concurrent computation of processes (or collections of pro-
cesses). Process contexts C decompose process configurations.

The remaining semantics in Figure 3 formalizes the behavior of
processes. We use ⇒ to rewrite process configurations, where ⇒
is non-deterministic in the result depending on scheduling choices.
The rules implicitly identify configurations that differ in the names
of bound variables or in the order or grouping of processes.

The first rule, STEP, describes internal steps taken during pro-
cess evaluation: if the process body can take a top-level step e 7→
e′, then the process may take an internal step under the ⇒ re-
lation. The next four evaluation rules describe the possible ter-
mination conditions for a process configuration. The second rule,
SPAWN, describes process creation. We require two arguments to
spawn a process: a process tag T , signifying the nature of the
process, and an expression e to evaluate in the new process. In a
well-formed configuration, there is exactly one process tagged U
which represents the “main” computation. Configurations may in-
clude any number of monitoring processes, tagged M, as well as
asynchronous processes, tagged A. Spawning a new process allo-
cates a unique process identification number, adds the process to
the configuration, the original process receives unit, and evaluation
proceeds.

The third rule, CHANNEL, creates new channels for syn-
chronous process communication. This form takes a procedure
as input and creates a new channel ι, adds it to K, and provides
the new channel as input to the procedure. The fourth rule, SYNC,
describes synchronous communication: if the program configura-
tion includes a process ready to write a value across a channel and

5 2015/2/27

catchM
∆
= λx f. case (x; inl y . f y; inr y . raise y) rep/D

∆
= fix rep/D i1 i2 x. seq (read i1) (write i2 x) (rep/D i1 i2 x)

v 6= drefι1,ι2
force v → v force (drefι1,ι2)→ seq (write ι1 unit) (catchM (read ι2) id)

delay e→ chan (λi1 i2. seq (spawn A (seq (read i1) (let x = catch injr (injl e) in seq (write i2 x) (rep/D i1 i2 x)))) drefi1,i2)

Figure 4. Small-step semantics for a delaying mechanism in λCC.

another ready read from the same channel, these two processes can
simultaneously perform the communication step.

The termination behavior of a process is dictated by its tag,
U, M, or A, described by TERM1–TERM4 in Figure 3. If a
process configuration consists solely of a finished user process
and asynchronous processes, the configuration may halt non-
deterministically with the result of the user process. If any of the
asynchronous processes has detected a contract violation, the con-
figuration may also non-deterministically terminate with that con-
tract violation. If a monitoring process halts with an error due to a
malformed expression, the entire configuration becomes stuck.

3.2 Delay and Force
Some contract monitoring strategies (e.g., semi-eager and future)
require fine-grained interaction with the user evaluator in the call-
by-value calculus to delay the evaluation of code fragments. One
way to express such interactions would be to require user expres-
sions to provide synchronization hooks for the monitoring thread.
Taken to its logical extreme, this approach would reduce to man-
ually implementing the call-by-value, call-by-name, and call-by-
need λ-calculi [31]. These encodings would allow any pattern of
interaction between the user evaluator and the monitor, but they
would come at a heavy price: every λ-expression would be ex-
pressed as a process and each application would encode the desired
behavior as a pattern of communication between the procedure and
argument processes. The pure λ-calculus sublanguage would evap-
orate, yielding a process-based calculus.

This extreme approach is incompatible with our goals of ex-
plaining, integrating, and implementing existing contract systems
into existing languages with our approach. Even a less-extreme ap-
proach would require intrusive changes to add synchronous behav-
ior in the user program. Instead we add delay and force facilities
to provide “enough” control over the critical portions of evalua-
tion without requiring substantial modification to user programs.
Monitoring strategies can use delay to suspend the evaluation of λ-
expressions, and user programs must explicitly use force to evalu-
ate these suspended expressions. As we illustrate in Sec. 7, wherein
we introduce our Racket implementation and use it to write sev-
eral contracts, these occurrences of force are not overly intrusive.
Furthermore, force may be removed if the language has sufficient
support to automatically force values during runtime [21].

The need for force seems to imply greater inconvenience for
programmers, compared to existing contract systems which al-
low the result of contract monitoring to be used directly. How-
ever, this seeming convenience relies in most cases (such as con-
tract systems for Racket or Haskell) on only allowing strategies
which fit precisely with the underlying language evaluation se-
mantics. Instead, we allow programmers to choose between strate-
gies without requiring changes to the underlying evaluation se-
mantics. Only when there is a mismatch between the monitoring
strategy and the evaluation, as in a call-by-value language with
semi monitoring, is manual control over evaluation with force
needed. Dimoulas et al. [10] present a call-by-value calculus with
future monitoring without delay and force, but only ever execute

flat predicate contracts in parallel. Furthermore, they manually add
synchronization—equivalent to force—at effect points. They sug-
gest that this could be implicitly performed by the runtime system,
just as implicit forcing could be added.

While integral to the inner workings of semi and future,
delay and force are straightforward to define with the communi-
cation and process facilities in λCC (Figure 4). To evaluate delay e,
we construct a pair of new channels ι1 and ι2 and a new process
that performs a blocking read on ι1. The process that invoked delay
receives a delay reference, a tagged pair which contains ι1 and ι2
and represents the delayed expression.

The force operation follows: when force is invoked on a de-
lay reference, the forcing process writes unit to ι1 and immedi-
ately reads from ι2. The secondary process reads from ι1 as a trig-
gering mechanism before evaluating e—catching any errors—and
writing the resulting value to ι2. This process finally replicates it-
self via rep/D, ensuring further forces of the same delay reference
produces the same value. The forcing process receives an injected
value and invokes catchM, defined in Figure 4, on it. The catchM
definition works as follows: if the forcing process receives a value,
we unwrap the value and return it; if the forcing process receives
an exception, we re-raise the exception at the forcing site. This re-
covers the standard approach to encoding delay and force.

Finally, applying force to any value which is not a delay-
reference returns the value unchanged. This operation is a matter
of programmer convenience: any program that may interact with a
monitored value can freely force the necessary expressions and thus
the same procedure will work under eager or delayed monitoring.

4. Contract Monitoring with Processes
We now construct the monitoring behaviors characterized in Sec. 2,
presenting the underlying semantics for check to describe the
many-strategy monitoring system for λCC. This semantic model,
presented in Figure 5, explicitly encodes each monitoring strategy
as a pattern of process communication, illustrating their subtle and
precise differences.

Eager Monitors. The eager approach to contract monitoring
closely matches the CPCF calculus described by Dimoulas et al.
[11], Findler and Felleisen [16], where every contract is checked
at assertion time. These checks are modeled as immediate inter-
actions between processes, as presented in Figure 1. Consider a
further diagram where the monitor produces an error:

check nat/c eager (+ 2 -3)

catchM (read ι) id

raise b

write i (catch injr (injl (nat/c (+ 2 -3) b)))

write ι (inr raise b)

This behavior is encoded via the process effect operators in λCC in
the eager definition of check (see Figure 5). To demonstrate this
interaction, consider the running example of enforcing the contract

6 2015/2/27

check c eager e b→ chan (λi. seq (spawn M (write i (catch injr (injl (c e b))))) (catchM (read i) id))
check c future e b→ chan (λi. seq (spawn M (write i (catch injr (injl (c e b))))) (delay (catchM (read i) id)))
check c semi e b→ chan (λi. seq (spawn M (write i (catch injr (injl (delay (c e b)))))) (catchM (read i) id))
check c async e b→ seq (spawn A (c e b)) e

Figure 5. Small-step semantics for the contract monitoring mechanism in λCC.

nat/c3:
〈0,U | check nat/c eager v b〉

⇒∗ 〈0,U | catchM (read ι) id〉
+〈1,M | write ι (catch injr (injl (nat/c v b)))〉

When v := 5, the computation proceeds as:
⇒∗ 〈0,U | catchM (read ι) id〉 +〈1,M | write ι (inl 5)〉
⇒∗ 〈0,U | catchM (inl 5) id〉
⇒∗ 〈0,U | 5〉

When v := -1, the computation proceeds as:
⇒∗ 〈0,U | catchM (read ι) id〉 +〈1,M | write ι (inr b)〉
⇒∗ 〈0,U | catchM (inr b) id〉
⇒∗ 〈0,U | raise b〉

Here check immediately constructs the communication channel
ι and the monitoring process. The initiating process performs a
blocking read across ι while the monitoring process checks the
contract with the monitored value. The result of the contract is
handled by injecting values to the left and exceptions to the right
before writing them to the initiating process. Finally, the initiating
evaluator processes the result with catchM, continuing with the
value or re-throwing the exception.

Asynchronous Monitors. The asynchronous approach to con-
tract monitoring consists of stand-alone monitors that perform
“best-effort” checking: if the monitor is not finished when the user
program is complete, then the entire program produces the user-
program answer and discards the incomplete monitor, as presented
in Figure 1. Consider a further diagram where the monitor produces
an error:

check nat/c async (+ 2 -3)

(+ 2-3) nat/c (+ 2 -3 b)

b

With explicit processes, this monitoring strategy is straightforward,
as implemented in Figure 5. When invoked, check spawns an asyn-
chronous process to perform the check; there is no additional syn-
chronization except for possible termination of the configuration
in the event of an error. When the monitor is complete, the asyn-
chronous process terminates with either a value v or an exception
raise v. This lack of synchronization can produce non-deterministic
results for asynchronous monitoring:

∅; 〈0,U | id (check nat/c async -1 b)〉
⇒∗ {ι}; 〈0,U | id -1〉+〈1,A | (nat/c -1 b)〉
⇒∗ {ι}; 〈0,U | -1〉 +〈1,A | (nat/c -1 b)〉
⇒∗ {ι}; done -1

⇒∗ {ι}; 〈0,U | id -1〉+〈1,A | (nat/c -1 b)〉
⇒∗ {ι}; 〈0,U | · · ·〉 +〈1,A | raise b〉
⇒∗ {ι}; 〈1,A | raise b〉
⇒∗ {ι}; done (raise b)

Even with this potential non-determinism, asynchronous contracts
can provide a reasonable alternative to completely verifying con-
tracts over large structures.

3 We elide K in our examples for simplicity of presentation.

Future Monitors. Originally posed by Dimoulas et al. [10], fu-
ture contracts check contracts concurrently during program execu-
tion, synchronizing only when necessary for the program to con-
tinue. Dimoulas et al. [10] perform this synchronization at all pro-
gram side effects; we instead synchronize when the value is de-
manded. The implementation of future monitoring follows eager
monitoring, but delays the receipt of the resulting value until it is
needed (Figure 5). The consumer of the contracted value can force
the future at any time, at which point the blocking nature of read
will halt the current process until contract checking is complete.
Returning to our example, evaluation proceeds as follows:
1. 〈0,U | force (check nat/c future 5 b)〉
2.⇒∗ 〈0,U | force (delay (catchM (read ι) id))〉+

〈1,M | write ι (catch injr (injl (nat/c 5 b)))〉
3.⇒∗ 〈0,U | force drefι2,ι3〉+

〈1,M | write ι (catch injr (injl 5))〉+ 〈2,A | · · ·〉
4.⇒∗ 〈0,U | catchM (read ι3) id〉+

〈1,M | write ι (inl 5)〉+ 〈2,A | · · · read ι · · ·〉
5.⇒∗ 〈0,U | catchM (read ι3) id〉+ 〈2,A | · · · write ι3 (inl 5) · · ·〉
6.⇒∗ 〈0,U | 5〉+ 〈2,A | · · ·〉

The derivation corresponds to the enforcement process presented
in Future Monitoring in Figure 1: the check form constructs two
new processes, colored red and blue, that collectively provide the
monitoring future. The third, fourth, and fifth steps correspond to
the synchronizations that take place in Figure 1, first between the
user and delay processes, then the monitor and delay processes,
and finally the user and delay processes again. The derivation ends
with the monitoring process removed from the configuration and
the user process continuing with the monitor result.

Semi-Eager Monitoring. Semi-eager monitoring [5–8, 22] de-
lays contract checking until the checked value is demanded, an
approach that appears naturally when Findler-Felleisen-style are
recreated in lazy languages such as Haskell [5, 7, 22]. The imple-
mentation of semi-eager monitoring mirrors future monitoring, ex-
cept that the contract expression is delayed instead of the user con-
sumption form (Figure 5). Returning again to our example, evalua-
tion proceeds as follows:

〈0,U | force (check nat/c semi 5 b)〉
⇒∗ 〈0,U | force (catchM (read ι) id)〉+
〈1,M | write ι (catch injr (injl (delay (nat/c 5 b))))〉

⇒∗ 〈0,U | force (catchM (read ι) id)〉+
〈1,M | write ι drefι2,ι3〉+ 〈2,A | · · ·〉

⇒∗ 〈0,U | force drefι2,ι3〉+ 〈2,A | seq (read ι1) · · ·〉
⇒∗ 〈0,U | catchM (read ι2) id〉+
〈2,A | let x = catch injr (injl (nat/c 5 b)) in · · ·〉

⇒∗ 〈0,U | catchM (read ι2) id〉+
〈2,A | seq (write ι2 (inl 5)) (rep/D ι1 ι2 (inl 5))〉

⇒∗ 〈0,U | 5〉+ 〈1,A | rep/D ι1 ι2 (inl 5)〉
When the resultant delay reference is forced, the initiating process
signals the delay reference to perform the monitoring operation.
The delay reference process returns the result of the contract en-
forcement via the correct injection, facilitating communication be-
tween the user evaluator and the delayed monitor.

5. Contract Combinators
As we have seen, a contract is a procedure that accepts a value
and a blame record and produces a checked version of the value
(see also Figure 7), raising the appropriate exception on failure. In
a higher-order language, we can abstract over these contracts, pro-

7 2015/2/27

pred/c
∆
= λc. λx b. if c x then x else raise b

pair/c
∆
= λc1 s1 c2 s2.

λp b. (check c1 s1 (fst p) b, check c2 s2 (snd p) b)

func/c
∆
= λc1 s1 c2 s2.

λf b. λx. check c2 s2 (f (check c1 s1 x (inv b))) b

func/dc
∆
= λc1 s1 g s2.

λf b.
λx. check (g (check c1 s1 x (ind b))) s2

(f (check c1 s1 x (inv b))) b

Figure 6. Contract combinators for λCC.

ducing a library of contract combinators written with check in λCC.
Remarkably, λCC contracts look syntactically similar, since these
abstractions do not need to interact with the low-level communica-
tion semantics of check. The simplest contract combinator, pred/c,
simply checks a predicate on the monitored value. More sophisti-
cated contract combinators (see Figure 6) reuse the check form to
enforce subcontracts on subcomponents of their input.

Predicate Contracts. Predicate contracts, constructed with pred/c,
follow directly from our previous description. The combinator
pred/c takes a predicate c as input and produces a contract that
expects a value x and blame tuple b as input. When this procedure
is invoked, we evaluate the expression

if c x then x else raise b

Here, x is the monitored value, c is the monitoring predicate, b is the
responsible party. This expression is evaluated when the contract is
enforced as (c e b) in Figure 5, returning the value on success or
raising the blame tuple as an exception on failure.

Pair Contracts. As discussed in Sec. 2, pairs use two subcontracts
with their associated strategies for each of the left and right sub-
components. The pair combinator constructs the contract in terms
of its subcontracts, monitoring each on the appropriate subcompo-
nent of the pair with check as:

(check c1 s1 (fst p) b, check c2 s2 (snd p) b)

Here p is the monitored pair, c1 and s1 are the contract and strategy
for the first element, and c2 and s2 are the contract and strategy
for the second element. The contract decomposes the pair into its
sub-pieces when the monitoring strategy specifies to do so, and
construct a new pair via check, which is returned to the initiating
(or demanding) location.

Function Contracts. Function contracts, constructed with func/c
in Figure 6, take two contracts and strategies which indicate the pre-
and post-condition and their strategies. The result is a procedure
that expects some function f and the appropriate blame labels.
When invoked, the combinator constructs the function:

λx. check c2 s2 (f (check c1 s1 x (inv b))) b

Here f is the monitored function, x is that function’s input, c1 and
s1 are the contract and strategy for the pre-condition, and c2 and
s2 are the contract and strategy for the post-condition. We also
introduce the blame operator inv, which inverts the pre-condition
blame labels to ensure correct blame [11]. Dependent function
follow directly4, using ind to construct the indy label structure.

6. Metatheory
We briefly sketch out two metatheoretical aspects of our system:
the type system and an embedding of the original contract system
presented by Findler and Felleisen [16].

4 The dependent function combinator uses the same strategy for both en-
forcements of c1, but it is possible to vary this strategy between them.

τ := int | bool | str | error | ()
| τ → τ | τ × τ | τ + τ | chan τ | con τ | σ

σ := eager | seager | future | async
blame

∆
= str× str× str

con τ
∆
= τ → blame→ τ

check
∆
= con τ → σ → τ → blame→ τ

Figure 7. Typing grammar for λCC.

Typing the Contract Calculus. We briefly sketch the type system
for λCC, using the type grammar in Figure 7. The typing rules are
standard: delay e and force e share the type of e. The raise form
may be given any type.

We define con τ as an abbreviation for contract types with the
shape discussed previously: The contract shorthand enforces the
contract shape discussed previously: a contract takes its input and
blame labels, returning the original type τ . The strategy types σ are
as expected: eager is typed as eager and so forth. The check form
takes a contract of type con τ , a strategy of type σ, a monitored
expression of type τ , and a blame set of type blame, returning a
value of type τ 5.

Communication requires types for channels, which are included
in an additional type environment ∆ overK;P . A process configu-
rations is well-typed if each process term is made up of well-typed
subterms, and any individual process is well-typed if the underlying
λ-calculus expression is well-typed.

Theorem 6.1. For any well-typed configurationK;P , either:K;P
is in a well-typed halt state; there exists some well-typed configu-
ration K′;P ′, well-typed, such that K;P ⇒ K′;P ′; or K;P is
in a stuck state S, which include configurations where a monitor-
ing process has raised an exception or is otherwise blocked, or all
processes are blocked on communication that may not be further
reduced by SYNC.

Correctness of Encoding. We demonstrate that our semantics
faithfully recreates the original semantics provided by Findler and
Felleisen’s Contracts for Higher-Order Functions [16]. We choose
this semantic model for two reasons: first, this semantics has been
widely accepted and rigorously verified, and second, the subtleties
of less-eager monitoring approaches vary whereas the semantics of
eager monitoring is well-accepted. Furthermore, this embedding is
one-way: while it may be possible to recover the exact commu-
nication structure of every collection of processes [26], it is not
worthwhile or insightful. Finally, Findler and Felleisen [16] use lax
monitoring for dependent monitors (as discussed by Dimoulas et al.
[11]), and thus we omit them.

Theorem 6.2. If c is an expression in FF , the original semantics
presented by Findler and Felleisen [16], then there is some context
P ∈ FF such that c = P [c′] and a translation function T (P, c′) :
FF → λCC such that either:

1. if P [c′] 7→∗ v, then T (P, c′)⇒∗ done v;
2. if P [c′] 7→∗ exn p, then T (P, c′) ⇒∗ done (raise b) where
p ∈ b.

Proof. We assume that Findler and Felleisen’s I operator has al-
ready been run on the input c, which performs obligation insertion,
or, more simply, inserts the contracts provided by the outer val rec
binding form into the main expression. We proceed by “recoloring”
the if expressions in c, indicating whether they were constructed by
a contract monitor or not. We also explicitly mark contract forms

5 Explicitly typing delay references require a type-level metafunction that
uses the strategy’s type to calculate the final type of a contract (Sec. 4).

8 2015/2/27

containing values as value forms in the language to ease transla-
tion. Monitoring flat contracts will now produce something of the
form ifc e1 e2 e3. The proof proceeds by induction on the length
of 7→∗, where we we define a handful of translation functions such
that T (P, c′ = F (g(P), f(c′))):

fblame : xFF → blame

fval : VFF → ((C,K), v)
f : cFF → ((C,K), e)
g : P → (C,K)
F : (C,K)→ ((C,K), e)→ K;P

We only present one case in full:
Case: P [V

contract(V2),p,n
1] 7→ P [ifc (V2 V1) V1 (blame p)]:

We perform the following translations:
((Cv1 ,Kv1), v1) = fval(V1)
((Cv2 ,Kv2), v2) = fval(V2)

c = λx b. if v2 x then x else raise b
((Cv2 ,Kv2), c) = fval(contract(V2))
((Cp,Kp), pcc) = fval(p)
((Cn,Kn), ncc) = fval(n)

b = fblame(p)

Then f(V contract(V2),p,n
1) = ((P1,K1), e1) where:

e1 = check c eager v̂1 b
P1 = Cv1[Cv2[�]]
K1 = Kv1 ∪ Kv2

Then let ιv1 be a unique channel and f(ifc (V2 V1) V1 (blame p)) =
((P2,K2), e2) where:
e2 = catchM (read ιv1) id
P2 = Cv1 [Cv2[�+ 〈n,M | write ιv1 (catch injr (injl (c v1 b)))〉]]
K2 = Kv1 ∪ Kv2 ∪ {ιv1}

Then we compute g(P) = (CP ,KP).
Finally, let C = CP [Cv1 [Cv2 [�] and K = Kv1 ∪Kv2 ∪KP Therefore:

F ((CP ,KP), ((P1,K1), e1))
= K; C[check c eager v̂1 b]
⇒∗ K ∪ {ιv1}; C[[catchM (read ιv1) id]+

〈n,M | write ιv1 (catch injr (injl (c2 v1 b)))〉]
F ((CP ,KP), ((P2,K2), e2))

7. Implementation and Advanced Monitors
In a language (Racket [19]) with the right infrastructure (syntactic
extension, processes, exceptions, and communication primitives),
our implementation6 can be realized as a library in less than 100
lines of code. We elide the exact implementation details; they fol-
low directly from the previous semantics. Each strategy is repre-
sented by an instance of a Racket structure, the contract combi-
nators and blame facilities are provided as modules, and check is
provided as a syntactic transformer:

(define-syntax checkCon
(syntax-rules ()

[(c s e b)
(cond [(eager-strat? s) ...]

[(semi-strat? s) ...]
[(future-strat? s) ...]
[(async-strat? s)
(begin (thread (λ () (c e b))) e)])]))

We now use this implementation, called ccon, to demonstrate the
extensibility of our system, from simple contracts to additional
contract combinators for structural contracts over trees [18]. We
start with small examples:

> (checkCon nat/c eager 5 b)
5

6 https://github.com/cgswords/ccon

> (checkCon nat/c eager -1 b)
Exception: ...
> (checkCon nat/c semi 5 b)
#<promise ...>
> (force (checkCon nat/c future 5 b))
5

These calls are as expected, corresponding to our earlier examples
in Sec. 2 and Sec. 4. The result of the third and fourth contract
demonstrate the underlying usage of Racket’s delay for semi-eager
and future strategies. (Here b is a blame structure with Server,
Contract, and Client labels.)

7.1 Tree Contracts in ccon

To demonstrate the expressive power of ccon (and thus λCC), we
next construct a tree data structure and define contract combinators
for the structure. We define a tree structure as node in Figure 8,
where a tree is either a null value, (), or a node containing a value
and left and right subtrees.

We also define the tree contract combinator treerec/c, a recur-
sive combinator which reuses itself on its left and right subtrees.
This procedure determines if the current node is a leaf or internal
node and then constructs the appropriate monitor. We can use this
contract to enforce tree-wide invariants, such as ensuring that every
value is a natural number:

(define nat-tree-E (tree/c nat/c eager eager nat/c eager))

> (checkCon nat-tree-E eager (make-node ...) b)

We can also use this contract as a pre-condition to a procedure such
as get-root-value, which returns the root value of any tree t:

> (get-root-value t)
5
> (checkCon (func/c nat-tree-E eager nat/c eager) eager t b)
5

The first invocation inspects the root node of the tree, returning the
value. Conversely, the second invocation traverses the entire tree
structure, enforcing the precondition contract before extracting the
value from the root node. To recover the original complexity, we
can use the solution presented by Findler et al. [18], rewriting nat
-tree-E with semi-eager strategies. However, unlike Findler et al.,
we have a fine-grained decision to make: shall we eagerly or semi-
eagerly enforce the value contract? Eager value checking, nat-tree
-S1 below, ensures that any node we inspect will have a natural
number in the value position. Conversely, full semi-eager checking,
nat-tree-S2 below, will only verify that values are natural numbers
when the program demands them.

(define nat-tree-S1 (tree/c nat/c eager semi nat/c eager))
(define nat-tree-S2 (tree/c nat/c eager semi nat/c semi))

> (get-root-val (checkCon nat-tree-S1 eager t b))
5
> (get-root-val (checkCon nat-tree-S2 eager t b))
#<promise ...>

Neither of these solutions is “more correct”: both encodings re-
cover the original complexity of get-root-val, and the divergence
demonstrates the precise power of explicit monitoring strategies.
Furthermore, this change is syntactically insignificant: a program-
mer might try both out to select the most appropriate approach.

7.2 Advanced Contracts in ccon

There are a family of contracts that cannot benefit from the pre-
vious optimization, which include contracts that require upward
value propagation through monitored structures [18], or more gen-
erally, collections of contracts that collaborate to establish global
invariants. For example, one may try to ensure that a binary tree
is full, i.e., that there are 2n nodes in the tree if the height of the
tree is n. Implementing this predicate is straightforward, travers-

9 2015/2/27

(struct node (left value right))

(define (treerec/c c1 s1 s2 c3 s3)
(letrec

((treec
(λ (t b)

(match t
[(node l v r) (let ([nv (checkCon c3 s3 v b)]

[nl (checkCon treec s2 l b)]
[nr (checkCon treec s2 r b)])

(node nl nv nr))]
[v (checkCon c1 s2 v b)]))))

treec))

(define ((tree/dc c1 s1 c2 s2 c3 s3 c4 s4) t b)
(match t

[(node l v r) (let* ([nv (checkCon c3 s3 v b)]
[nl (checkCon (c2 nv) s2 l b)]
[nr (checkCon (c4 nv) s4 r b)])

(node nl nv nr))]
[v (checkCon c1 s2 v b)]))

Figure 8. Tree contracts in Racket with ccon.

(define (full/a i)
(let ([il (make-channel)]

[ir (make-channel)])
(treedc

(pred/c (λ (n) (begin (channel-put i 0) #t))) eager
(λ () (full/a il)) semi
(pred/c

(λ (n)
(let ([hr (sync (choice-evt ir il))]

[hl (sync (choice-evt ir il))])
(if (= hl hr)

(begin (channel-put i (add1 hl)) #t)
#f))))

async
(λ () (full/a ir)) semi)))

Figure 9. The implementation of full as a callback-based contract.

ing the entire tree, but this once again requires visiting every node.
Alternatively, we might construct a dependent tree contract combi-
nator wherein the left and right subtrees are passed into the value
predicate, but Findler et al. [18] observe that these subtrees must be
evaluated to verify the contract, and thus recreate the same asymp-
totic violations. They go on to propose an alternative solution us-
ing attributes [19] to track height information on the tree as it is
explored, relying on the user evaluator to produce an invasive en-
forcement mechanism with amortized bounds. This approach is not
currently part of the Racket contract system.

We can develop a similar solution in ccon using callbacks: we
postpone checking any contract until its subcontracts have been
checked by using channels within asynchronous contracts. While
complex in concept, the only additional facility we require is the
ability to create, propagate, and synchronize with new channels of
communication, which both λCC and Racket provide as low-level
operations. Thus the adventurous contract writer might implement
this callback-oriented approach to fullness as in Figure 9. Further-
more, this solution lives entirely in the contract system: the user is
never exposed to it beyond using force.

Each invocation of the contract is parameterized by a communi-
cation channel i, which indicates where to write the current node’s
height. At each leaf, the predicate writes 0 to i and succeeds. At
internal nodes, we create two additional channels, il and ir, to pass
to the left and right subtrees respectively. Next we assert (full/a il)
and (full/a il) on the appropriate subtrees, utilizing the delaying na-

ture of lambda abstraction to prevent divergence. These contracts
are semi-eagerly monitored, and thus will not be enforced until the
subtrees are demanded by the program7. Finally, we create an asyn-
chronous monitor for the node’s value which performs blocking
reads from il and ir. The results of these reads are the heights of the
left and right subtrees, so we verify they are equal, and either write
the new height across i, triggering the parent node’s fullness test, or
signal a contract violation. This communication chain allows each
contract to propagate values upward from the leaves as the tree is
explored, as indicated with upward-pointing arrows in Figure 10.

Such a contract is only possible after full separation of the mon-
itor evaluator from the user evaluator and exposing communica-
tion tools to contract writers, facilitating contract enforcement in a
custom-crafted traversal of the monitored structure.

7.3 Results
We briefly evaluate the performance of full/a against the eager
fullness contract presented by Findler et al. [18] using a set of
microbenchmarks. We use ccon to implement full/a as in Figure 9,
and the eager fullness contract is constructed in Racket’s native
system as follows:

(define full/c (flat-named-contract 'full/c full?))

Next we set up the following experiment: for trees of size 1 to 224,
we first enforce one of the contracts on the tree and then perform a
single element lookup. This lookup occurs inO(logn) time, and so
the bulk of the computational work in the Racket-primitive contract
will consist of enforcing the fullness contract, while the bulk of
the work in enforcing full/a occurs in the process and channel
construction overhead incurred during execution.

We repeat this test 100 times for each data-point and graph the
arithmetic means in in Figure 11. The x-axis represents the size of
the tree as a function of 2n and the y-axis is a logarithmic scale in
seconds. The orange line, Built-In, indicates that the eager contract
run with Racket’s built-in monitoring facilities provides excellent
performance for small tree structures but slows down exponentially
as the tree increases exponentially in size. Conversely, the blue line,
CCON, indicates that the full/a implementation in ccon slowly only
slightly as longer traversals require increasingly large numbers of
processes and channels.

Our results support our initial discussion of performance recov-
ery. Furthermore, the Racket contract system has been heavily op-
timized for performance [33] and the competitive results of ccon
indicate that the process communication model of λCC is a viable
approach to contract monitoring.

8. Sketches of Additional Monitoring Strategies
We present sketches of implementations for four strategies that
appear in the literature: lazy monitors, temporal monitors, future
monitors in the style of Dimoulas et al., and statistical monitors.

Lazy Contracts. Degen et al. [7, 8] introduce the idea of lazy
monitors, which entirely avoid any aspect of over-evaluation. For
example, checking a predicate on a pair will not force the pair; the
monitoring evaluator will wait for the user evaluator to force the
pair. If the pair is never used, in full, in the user program, then the
monitor will never check it. Modeling lazy monitoring as commu-
nication across processes demonstrates its intrusive interaction with
the main evaluator.

To facilitate this user-driven monitoring, we must construct a
layer of indirection for both evaluators such that the user evaluator
may force any expression under a lazy monitor and the lazy mon-
itor will postpone contract enforcement until this forcing occurs.

7 If we used eager in place of semi, this contract would revert to an eager,
O(2n) check at assertion time.

10 2015/2/27

?◦?

?◦? ?◦?

?◦??◦?

(a)

1◦?

0◦0 ?◦?

?◦??◦?

(b)

1◦?

0◦0 1◦?

?◦?0◦0

(c)

1 ⊗2

0◦0 1◦1

0◦00◦0

(d)

Figure 10. Evolution of contract checking during tree traversal for a full binary tree using asynchronous callbacks.

Figure 11. Timing results for full tree contract verification in
Racket’s built-in contract system versus our semi-eager approach.
Experiments were performed on a MacBook Air with a 1.3 GHz
Intel Core i5 and 4GB of RAM.

check ord/c lazy (6, 5) b

drefι1,ι2

(seq
(write ι1 unit)
(read ι2))

(drefι4,ι5, drefι7,ι8)

(b1, b2)

b1 : 5 b2 : 6

ord/c `ι3

· · · read ι3 · · ·

· · · (`ι6, `ι9) · · ·

Figure 12. Lazy contract communication [8].

We accomplish this by recursively parsing the input expression e
yield two new expression, ed and e`. The first, ed, is an expres-
sion constructed from delay references wrapped around each com-
ponent and sub-component in the original expression. Similarly,
e` is constructed identically using lazy monitor references of the
form `ι. Each delay reference works in the usual way, except that it
will also notify the associated lazy monitor reference when forced.
When evaluated, lazy monitor references perform blocking reads,
proceeding only when the associated delay reference is forced and
provides the appropriate value. The structure of this communica-
tion is presented in Figure 12. This approach closely mirrors the
implementation provided by Degen et al. [8], wherein individual
call-by-need cells register callbacks for contract monitors.

Temporal Contracts. Disney et al. [13] introduce the concept of
temporal monitors, which formalize module interactions as a trace
of events such as function calls and returns. They formalize this

approach by treating each module in the program as a process and
storing the process trace of sends and receives between these mod-
ules as the program proceeds. Finally, the monitoring system ver-
ifies that this trace conforms to certain prefix-closed predicates,
constraining the behavior of each module and producing an error
if this trace violates these predicates. Our approach differs by using
individual processes for each monitor. We explicitly enforce predi-
cates on values and control how processes communicate to replicate
monitoring strategies, omitting the need to preserve process traces.
Such traces, however, may be used to ensure that monitor strategies
correctly adhere to their semantic descriptions.

This system may be constructed in λCC by recreating the origi-
nal approach, using a mediator process to construct process traces.
Any communication events will move through this mediator, which
will log the events. Temporal contract assertions will register pred-
icates with this mediator process, which will use these predicates
to ensure the process interaction traces adhere to the correct shape.
Such a mediator must also provide the outlined by Disney et al.
[13], including information capture and correct error propagation.

Future Contracts à la Dimoulas et al. Dimoulas et al. [10]
present an alternate model of future contracts that use a master
user process and a slave monitoring process, delegating predicate
enforcements to the slave process and synchronizing with it when
the master performs effects such as reference manipulation and I/O.

This system may be constructed in λCC using a secondary global
process that acts as the slave process. Any monitors with the appro-
priate strategy are provided to this slave process, which adds the
monitor to a list of active checks. To maintain synchronous com-
munication, it may be convenient to establish the slave as two pro-
cesses: one to receive new monitoring requests and synchronize
with the user process during synchronization events, and another
“worker” process that polls the synchronization process for a mon-
itor, performs it, and provides the synchronization process with the
result before looping. Then, as Dimoulas et al. [10] observe, each
effectful operation is wrapped in a proxy procedure that synchro-
nizes with the slave process before executing. This synchronization
mechanism would elide the need for force.

Statistical Software Contracts. Dimoulas et al. [12] describe the
notion of randomly checked function contracts. In lieu of iterating
over the entire input space for a function, it is possible to use a spot
checker [14] to obtain partial assurance of a contract by generating
and testing a series of inputs. For flat and structural contracts, this
approach may randomly verify its contracts: that is, the contract
may (or may not) be enforced as evaluation proceeds.

Given a random-generation mechanism and a spot-checker, λCC

may be extended to support this type of soft guarantee: predicate
and structural contracts will use a random number generator to
decide which, if any, contracts to enforce, and the full spot-checker
will generate sample inputs to contracted functions. This approach
induces a secondary extension to λCC: while statistical guarantees
may receive their own strategy, it is more natural to introduce a
strategy combinator that will take an existing strategy (such as
eager or semi) and modify it to preserve the original enforcement
strategy while performing probabilistic contract enforcement.

11 2015/2/27

9. Related Work
Eiffel [25] first popularized software contracts and the idea of writ-
ing programs with pervasive contract checking. Eiffel introduces
a number of theoretical and semantic concepts that have since in-
duced a large body of research, including the underlying theoretical
foundations [4, 15, 16], language integration with existing seman-
tics [1, 6–8, 11, 19, 20, 22]. Degen et al. [7, 8] present descriptions
of eager, semi-eager, and lazy monitors; we have characterized the
first two precisely and sketched the third in this paper.

Dimoulas and Felleisen [9] address different approaches to
monitoring through observational equivalence, relying on these
observations to discuss when and how contracts affect the under-
lying program. They reconstruct contract satisfaction from these
principles, and introduce the concept of a shy contract, which can
evaluate no more than the program would, to discuss the work in
laziness by Chitil et al. [6]. Shy contracts are encoded by replac-
ing the arguments to monitored function with weakened arguments
that produce exceptions with over-explored, similar in nature to our
proposal for expression reconstruction in lazy monitoring.

A variety of alternative semantic models exist, primarily focus-
ing on the original notion of eager contract monitoring [4, 15, 17].
We follow Findler and Felleisen [16] in defining a contract system
rather than a model of contract satisfaction.

Multiple approaches to blame assignment, particularly in the
case of dependent function contracts, have been proposed [11, 20],
resulting in the definition of complete monitoring [11]. Since our
contract combinators are library functions, we can provide any
blame assignment approach (e.g. lax, picky, and indy). Proving
complete monitoring in λCC remains future work.

Behavioral specification for process calculi via session types
has been explored extensively [23, 34], providing strong type guar-
antees about process communication patterns. In contrast, we use
communication patterns to describe checking of sequential pro-
grams. Encoding these communication patterns as session types
may further inform the design of contract systems.

10. Conclusion and Future Work
We present a unifying perspective on the semantics of contract
monitoring, wherein myriad semantic approaches and contract
combinators can be characterized by translation into a straight-
forward process calculus. This approach captures multiple existing
approaches to contract monitoring and introduces several new ones.
We also present a unified source language in which programmers
may select strategies on a per-contract basis, rather than the current
status quo where the choice is fixed by the contract system designer.
Furthermore, we propose that λCC is a suitable target for new con-
tract monitoring approaches, providing a extensible interpretation
of the interactions between contracts, contract monitors, and user
programs. Finally, we demonstrate how the runtime framework can
be leveraged to express contracts inexpressible in existing systems,
focusing on upward-propagating delayed contracts for binary trees.

In the future we hope to investigate how the formal seman-
tics translates into existing process-oriented languages such as Er-
lang [2], explore the design space of strategies and strategy com-
binators, and investigate if proofs of complete monitoring [11] can
be carried out in our system,

References
[1] A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In

POPL, 2011.
[2] J. Armstrong, S. Virding, and M. Williams. Erlang Users Guide and

Reference Manual. Version 3.2. Ellemtel Utveklings AB, 1991.
[3] H. C. Baker, Jr. and C. Hewitt. The incremental garbage collection of

processes. In SAIPL, 1977.

[4] M. Blume and D. McAllester. Sound and complete models of con-
tracts. J. Funct. Program., 2006.

[5] O. Chitil. Practical typed lazy contracts. In ICFP, 2012.
[6] O. Chitil, D. McNeill, and C. Runciman. Lazy assertions. In IFL,

2003.
[7] M. Degen, P. Thiemann, and S. Wehr. True lies: Lazy contracts for

lazy languages (faithfulness is better than laziness). In ATPS, 2009.
[8] M. Degen, P. Thiemann, and S. Wehr. Eager and delayed contract

monitoring for call-by-value and call-by-name evaluation. J. Log.
Algebr. Program., 79(7), 2010.

[9] C. Dimoulas and M. Felleisen. On contract satisfaction in a higher-
order world. TOPLAS, 33(5), Nov. 2011.

[10] C. Dimoulas, R. Pucella, and M. Felleisen. Future contracts. In PPDP,
2009.

[11] C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Complete moni-
toring for behavioral contracts. In ESOP, 2012.

[12] C. Dimoulas, R. B. Findler, and M. Felleisen. Option contracts. In
OOPSLA, 2013.

[13] T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-order
contracts. In ICFP, 2011.

[14] F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan.
Spot-checkers. In STOC, 1998.

[15] R. B. Findler and M. Blume. Contracts as pairs of projections. In
FLOPS, 2006.

[16] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ICFP, 2002.

[17] R. B. Findler, M. Blume, and M. Felleisen. An investigation of
contracts as projections. University of Chicago Technical Report
TR02-402, 2002.

[18] R. B. Findler, S.-Y. Guo, and A. Rogers. Lazy contract checking for
immutable data structures. In IFL, 2008.

[19] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-
1, PLT Inc., 2010. http://racket-lang.org/tr1/.

[20] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
Journal of Functional Programming, 2012.

[21] R. H. Halstead, Jr. Implementation of multilisp: Lisp on a multipro-
cessor. LFP, 1984.

[22] R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional
programming. In FLOPS, 2006.

[23] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
ESOP, 1998.

[24] A. Jeffrey. Semantics for core concurrent ml using computation types.
In HOOTS. Cambridge University Press, 1997.

[25] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992. ISBN 0-13-
247925-7.

[26] R. Milner. Functions as processes. Mathematical Structures in Com-
puter Science, 2, 6 1992.

[27] C. Morgan. Programming from specifications. 1990.
[28] D. L. Parnas. A technique for software module specification with

examples. Commun. ACM, 1972.
[29] J. H. Reppy. Concurrent ML: Design, application and semantics, 1993.
[30] J. H. Reppy. Concurrent Programming in ML. Cambridge University

Press, 1999. ISBN 0521480892.
[31] D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile

Processes. Cambridge University Press, 2003.
[32] T. S. Strickland and M. Felleisen. Contracts for first-class classes. In

DLS, Oct. 2010.
[33] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chap-

erones and impersonators: run-time support for reasonable interposi-
tion. In OOPSLA, 2012.

[34] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In PARLE, 1994.

12 2015/2/27

