
Epistemic Logic for Polyglots
Luis Garcia

Chris Martens

garcia.lui@northeastern.edu
c.martens@northeastern.edu

Northeastern University

Boston, USA

Abstract
A pattern in programming is to stitch together code from dis-

parate programming languages to build a complex program.

This pattern is a manifestation of multilanguage computa-

tion, a subject concerning the interoperation of languages

in a greater system. We discuss ongoing work in develop-

ing a type system for multilanguage computation in the

propositions-as-types discipline, drawing types from epis-

temic modal logic.

CCS Concepts: • Theory of computation→Modal and
temporal logics.

Keywords: multilanguage computation, epistemic logic,

modal logic, propositions-as-types

ACM Reference Format:
Luis Garcia and Chris Martens. 2025. Epistemic Logic for Poly-

glots. In Proceedings of Partial Evaluation and ProgramManipulation
(PEPM ’26). ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 Introduction
A pattern in programming is to stitch together code from dis-

parate programming languages to build a complex program.

For example, consider the three pieces of code in Figure 1.

This is an illustration of a typical web tech stack, which

includes a piece of frontend code, some middleware, and

backend code. Each piece of code operates on its own run-

time, but the overall system works by having the frontend

send data to the backend via the middleware. Data may be

sent back to the frontend in the form of a response.

This pattern is a manifestation of multilanguage compu-

tation, a subject concerning the interoperation of languages

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PEPM ’26, Rennes, France
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

in a greater system. Many large-scale software systems are

written in a variety of languages. There is a whole host of

methods for formalizing this pattern of software develop-

ment. We concern ourselves primarily with the one that we

illustrated above: two (or more) languages interacting via a

lightweight intermediary.

From our example, we can observe a challenge that we

aim to address: the three languages may have differing data

representations. It is the job of the middleware to convert

one to the other. Writing code to do this can be arduous be-

cause the data schema in, say, the frontend, is not beholden

to the requirements of the backend in a static way. Thus,

programmers may find themselves finding out if their mid-

dleware does the job dynamically—that is, at system runtime.

Testing for data compliance between the frontend and the

backend, then, becomes a game of running the system, check-

ing for errors, fixing things in the presence of errors, and

then repeating. Surely, we can do better.

In this paper, we discuss ongoing work in developing a

type system for this sort of multilanguage computation using

a propositions-as-types discipline, where the propositions

are drawn from epistemic modal logic, a family of logics for

reasoning about the knowledge of principals. In our case, the

principals in question are languages, and epistemic proposi-

tions are types for code. A computational interpretation of

proofs in this logic give rise to a multilanguage.

We present 𝜆□𝐾 , a calculus of epistemic types. We begin

with a “monolingual” treatment of the logic, derived from

the well-known judgmental treatment of S4 by Pfenning and

Davies [11]. We then generalize to a multilingual treatment

of the logic, introducing proof terms and typing rules from

which an operational semantics arises in the usual interac-

tion between introduction and elimination forms. We close

with our related and future work.

2 Background
We introduce the epistemic S4 type system with proof terms

following the judgmental approach given by Pfenning and

Davies [11]. Our presentation of the logic can be viewed

as both an extension of the modal logic S4 developed by

Pfenning and Davies, and as a translation of the sequent

calculus given by Garg et al. [4].

In the logic developed by Pfenning and Davies, the □
modality represents validity (a.k.a., necessity), which can be

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


PEPM ’26, January 13, 2026, Rennes, France Luis Garcia, Chris Martens

Listing (1) Frontend code that sends a POST request.

f u n c t i o n sendMessage ( ) {

r e q u e s t ( {

" method " : " POST " ,

" body " : " He l lo , "

} ) ;

}

Listing (2)Middleware code that processes only POST

requests.

onReques t : : Reques t

onReques t r e q u e s t =

Reques t ( Method POST ) ( Body msg )

= send ( msg )

_ = E r ro r

Listing (3) Backend code that responds to the message

in the request.

d e f respond ( message ) :

i f message = " Hel lo , " :

r e t u r n "World ! "

e l s e :

r e t u r n E r r o r

Figure 1. A typical web tech stack written with three different languages. The frontend sends a request to the backend through

some middleware. The backend responds in kind.

seen as a stronger form of truth. Specifically, valid judgments

are ones that “do not depend on hypotheses about the truth

of propositions” [11]. A computational interpretation of this

modality found by Davies and Pfenning is a realization of

staged computation, where valid propositions are interpreted

as types for code [3].

We can generalize validity by asking to whom is a propo-

sition valid. Such propositions can be stratified among prin-

cipals (a.k.a., agents), yielding to us a notion of knowledge.

Epistemic logic is a family of logics for reasoning about and

characterizing such knowledge. The epistemic logic S4 is

a generalization over the modal logic S4, where validity is

indexed by principals. Thus, the interested reader may find

that, aside from a couple of subtle differences, the system

presented in this section is quite similar to that of Davies

and Pfenning. For those who are not familiar with the judg-

mental approach to modal logic, we hope that this section

acts as an adequate primer.

2.1 Syntax
For now, we consider the judgments 𝐴 true and 𝐾 knows 𝐴,
and the types given by the grammar

Agent 𝐾, 𝐿

Proposition 𝐴, 𝐵,𝐶 ::= 𝑝 | □𝐾𝐴
where 𝑝 is an arbitrary proposition, and□𝐾𝐴 reads “𝐾 knows

𝐴”. We elide definitions for other standard propositions such

as implication, conjunction, and disjunction.

We introduce two contexts as primitives in our proof the-

ory: one containing hypotheses pertaining to truth, and one

containing hypotheses pertaining to knowledge. They are

defined according to the grammar

Truth Context Δ ::= · | Δ, 𝐴 true
Knowledge Context Γ ::= · | Γ, 𝐾 knows 𝐴.

For terms, we have the grammar

Expression 𝐸 ::= 𝑥 | box𝐾𝐸 | letbox𝐾 𝑥 = 𝐸1 in 𝐸2

where 𝑥 is a variable, box𝐾𝐸 is a “boxed” expression, and

letbox𝐾 𝑥 = 𝐸1 in 𝐸2 will be used to “unbox” boxed expres-

sions.

2.2 Typing Rules
From the logic angle, we concern ourselves with judgments

of the form 𝐴 true and 𝐾 knows 𝐴, and the hypothetical

judgment

Γ;Δ ⊢ 𝐶 true.

This expresses that under hypotheses about agents’ knowl-

edge Γ and the truth Δ, we may conclude 𝐶 is true.

From the other side of the Curry-Howard correspondence,

we are interested in typing our expressions given at the end

of Section 2.1. Thus, we annotate all of our propositions with

terms. In Γ, we will generally have variable-type pairings

of the form 𝑢 ::𝐾 𝐴. In Δ, we will have pairings of the form
𝑥 : 𝐴. Finally, our conclusion will be annotated with a gen-

eral expression, allowing us to reintroduce our hypothetical

judgment:

Γ;Δ ⊢ 𝐸 : 𝐶.

Before getting to our typing rules, we must define one

operation over the knowledge context. Intuitively, it is an op-

eration that filters away knowledge variables from a context

given a single agent.

Definition 2.1 (Knowledge Restriction). Let Γ be a context

consisting of only judgements of the form 𝑢 ::𝐾 𝐴. Then, the

knowledge restriction on Γ is defined inductively as follows:



Epistemic Logic for Polyglots PEPM ’26, January 13, 2026, Rennes, France

·|𝐾 = ·
(Γ, 𝑢 ::𝐾 𝐴) |𝐾 = Γ |𝐾 , 𝑢 ::𝐾 𝐴

(Γ, 𝑢 ::𝐿 𝐴) |𝐾 = Γ |𝐾 if 𝐿 ≠ 𝐾

We may now define inference rules characterizing our

notion of knowledge. We begin with the rules for □𝐾 , given
by the following introduction and elimination rules.

Γ |𝐾 ; · ⊢ 𝐸 : 𝐴
□𝐾 I

Γ;Δ ⊢ box𝐾𝐸 : □𝐾𝐴

Γ;Δ ⊢ 𝐸1 : □𝐾𝐴 Γ, 𝑢 ::𝐾 𝐴;Δ ⊢ 𝐸2 : 𝐶 □𝐾 E

Γ;Δ ⊢ letbox𝐾 𝑢 = 𝐸1 in 𝐸2 : 𝐶
Read from the bottom-up, the introduction rule (□𝐾 I)

imposes that in order to prove that an agent knows a fact,

we must only use the facts that the agent already knows. The

truth context is empty to enforce this independence of agent

knowledge. The knowledge restriction presents a departure

from the modal logic S4. Whereas in that system, all valid

hypotheses are allowed to be used in the derivation, in this

one, only the knowledge of a single agent is permitted. The

elimination rule (□𝐾 E) allows us to permanently reuse the

fact that an agent knows a proposition in the scope of 𝐸2.

Next, are our hypothesis rules.

hyp

Γ;Δ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
hyp*

Γ, 𝑥 ::𝐾 𝐴;Δ ⊢ 𝑥 : 𝐴

The first hypothesis rule (hyp) is standard for natural deduc-

tion systems, and admits a uniform substitution principle.

The second rule allows us to conclude that 𝐴 is true if an

agent knows 𝐴. This establishes that if an agent knows a

fact, that fact must be true. This second rule admits a second

substitution principle, which we state below.

Proposition 1 (Substitution Principle for Knowledge). If
Γ |𝐾 ; · ⊢ 𝐸1 : 𝐴 and Γ, 𝑢 ::𝐾 𝐴;Δ ⊢ 𝐸2 : 𝐶 , then Γ;Δ ⊢
[𝐸1/𝑢]𝐸2 : 𝐶 .

2.3 𝛽𝜂-Principles
Reduction rules and equivalence laws for the boxed expres-

sions arise from the interaction between their elimination

and introduction forms. First, we have a local reduction,
which gives us a clue for what our 𝛽-reduction rule should

be. This can be witnessed by introducing a boxed expres-

sion and then immediately eliminating it from the top-down.

Thus, we have

D
Γ |𝐾 ; · ⊢ 𝐸1 : 𝐴 □𝐾 I

Γ;Δ ⊢ box𝐾𝐸1 : □𝐾𝐴
E

Γ, 𝑢 ::𝐾 𝐴;Δ ⊢ 𝐸2 : 𝐶 □𝐾E
Γ;Δ ⊢ letbox𝐾 𝑢 = box𝐾𝐸1 in 𝐸2 : 𝐶

⇒R

F
Γ;Δ ⊢ [𝐸1/𝑢]𝐸2 : 𝐶,

where F is given by the substitution principle applied to D
and E. Our 𝛽-reduction rule should then be

𝛽□𝐾letbox𝐾 𝑢 = box𝐾𝐸1 in 𝐸2 ↦→ [𝐸1/𝑢]𝐸2
We can get a clue for an 𝜂-law via local expansion, which

is witnessed by using an elimination form followed immedi-

ately by an introduction form from the bottom-up.

D
Γ;Δ ⊢ 𝐸 : □𝐾𝐴

⇒E

D
Γ;Δ ⊢ 𝐸 : □𝐾𝐴

hyp*

Γ |𝐾 , 𝑢 ::𝐾 𝐴; · ⊢ 𝑢 : 𝐴
□𝐾 I

Γ, 𝑢 ::𝐾 𝐴;Δ ⊢ box𝐾𝑢 : □𝐾𝐴 □𝐾E
Γ;Δ ⊢ letbox𝐾 𝑢 = 𝐸 in box𝐾𝑢 : □𝐾𝐴

Therefore, we have the following law:

𝜂□𝐾
𝐸 ≡ letbox𝐾 𝑢 = 𝐸 in box𝐾𝑢

While the 𝛽𝜂-principles point the way to an operational

semantics for our language, they do not yield all the answers.

For example, what of the congruence rules? Should a boxed

expression be allowed to run under a box? The answers to

such questions are out of scope for this paper. They are de-

sign decisions that can have ramifications over the practical

use of a language. For example, Davies and Pfenning’s deci-

sion to make boxed expressions in the modal S4 not run is

part of the reason why their language is suitable for staged

computation [3].

3 Epistemic Logic for Polyglots
The language given in Section 2 can be seen as a general-

ization on the system of Davies and Pfenning. If we limited

ourself to a single agent, then we’d have a system that is

exactly the same. The question, then, is what does having

more than one agent afford us?We propose that having more

than one agent grants the ability to express a type system for

multiple interoperating languages. Intuitively, each agent is a

stand-in for a language. A boxed expression is an expression

in a foreign language, typed using that foreign languages’

rules.

To develop this interpretation of epistemic logic, we must

introduce some new notions. To aid in differentiating be-

tween the constructs of a foreign language and our language,

we will color-code, use the metavariable 𝐹 to range over

foreign expressions, and use the metavariable 𝜏 for foreign

types.

3.1 Typing Rules
We begin with mapping types of a foreign language to types

in our language. We write 𝐴 ∼𝐾 𝜏 to mean “foreign type 𝜏

from language 𝐾 maps to local type A”. This idea of type

conversion is based on the one given by Patterson et al. [10].

We think of this as a programmer-specified judgment that

will be used by a type checker to ensure that the rest of the



PEPM ’26, January 13, 2026, Rennes, France Luis Garcia, Chris Martens

program is well-typed even under the presence of foreign

code.

Next, we redefine our epistemic context to map directly

to foreign types, and define foreign contexts.

Knowledge Context Γ ::= · | Γ, 𝑢 ::𝐾 𝜏

Foreign Context Φ ::= · | Φ, 𝑥 : 𝜏

Now, we consider the mapping of the knowledge context

in our language to foreign contexts. We denote a context

mapping with the relation Γ ∼𝐾 Φ.

Definition 3.1. Let Γ be a knowledge context and Φ be a

foreign context from language 𝐾 . We define a translation

from the former to the latter inductively as follows:

· ∼𝐾 ·
Γ ∼𝐾 Φ

Γ, 𝑥 ::𝐾 𝜏 ∼𝐾 Φ, 𝑥 : 𝜏

Γ ∼𝐾 Φ 𝐾 ≠ 𝐿

Γ, 𝑥 ::𝐿 𝜏 ∼𝐾 Φ

Finally, we introduce a new judgment

Φ ⊢𝐾 𝐹 : 𝜏,

denoting that a foreign function 𝐹 is typed at 𝜏 under the

foreign context Φ.
We may now discuss our new typing rules.

Γ ∼𝐾 Φ Φ ⊢𝐾 𝐹 : 𝜏
□𝐾 I

Γ;Δ ⊢ box𝐾𝐹 : □𝐾𝜏
This new rule requires that we show that the boxed expres-

sion type checks at 𝜏 under the foreign context constructed

from translating Γ. Note that, by Definition 3.1, the types

transferred to Φ are exactly those from Γ |𝐾 .
Next is our new elimination form.

Γ;Δ ⊢ 𝐸1 : □𝐾𝜏 Γ, 𝑢 ::𝐾 𝜏 ;Δ ⊢ 𝐸2 : 𝐶 □𝐾E
Γ;Δ ⊢ letbox𝐾 𝑢 = 𝐸1 in 𝐸2 : 𝐶

The new rule allows us to switch from a foreign typing con-

text back to our host typing context. We may permanently

use the fact that the boxed code is typed at 𝜏 .

Last but not least are our variable rules.

hyp

Γ;Δ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
𝐴 ∼𝐾 𝜏

hyp
∗

Γ, 𝑢 ::𝐾 𝜏 ;Δ ⊢ 𝑢 : 𝐴

The first rule (hyp) remains the same. The second rule allows

us to use the fact that an agent knows 𝜏 to prove 𝐴 given

that 𝐴 “acts like” 𝜏 .

We must now take stock of our development thus far. Up

to this point, we have reintroduced our introduction and

elimination forms in the context of multilanguage computa-

tion. If our goal was to develop a glue language that acts as a

shared compilation target a la Patterson et al. [10], then our

rules may be enough. However, our motivation is to have

the glue language act as an intermediary between multiple

languages. Our elimination form (□𝐾E) shows us that we
may use data from a foreign language in our glue language.

Thus, we have a way to take foreign code as input. What

about output? Unfortunately, the rules of epistemic S4 do not

give us a way to transfer data from the glue language to a for-

eign language. Therefore, we must invent a new expression

external to the logic to allow us to do this.

We extend 𝜆□𝐾 with a new expression as follows:

Expression 𝐸 ::= · · · | tell𝐾 𝑢 = 𝐸1 in 𝐸2,

where tell is named to suggest the act of telling a princi-

pal some fact. We define a single typing rule for this new

expression.

Γ;Δ ⊢ 𝐸1 : 𝐴 𝐴 ∼𝐾 𝜏 Γ, 𝑢 ::𝐾 𝜏 ;Δ ⊢ 𝐸2 : 𝐶
tell

Γ;Δ ⊢ tell𝐾 𝑢 = 𝐸1 in 𝐸2 : 𝐶

This rule allows us to push a true proposition into the knowl-

edge base of an agent.

Let’s take a look at an example. We have two typical

simply-typed lambda calculi 𝑎 and 𝑏 extended with particu-

lar base types. Language 𝑎 will have a String base type, and

language 𝑏 will support natural numbers (N). Suppose fib is

a library function in language 𝑏 that computes a Fibonacci

number efficiently. Now, we extend 𝜆□𝐾 with natural num-

bers as base types, such that N ∼𝑎 String and N ∼𝑏 N. Then,
we may write the following example program:

letbox𝑎 𝑢 = box𝑎“nine” in (tell𝑏 𝑤 = 𝑢 in box𝑏fib𝑤).

A type derivation for this program can be seen in Figure 2.

3.2 𝛽𝜂-Principles
Just like with the monolingual version of 𝜆□𝐾 , we witness

local reduction and expansion to give us a clue for the opera-

tional semantics of our language. Before we begin, we must

develop the concept of substitution in the presence of for-

eign code. We write ⌜𝐹⌝𝐾 = 𝐸 to mean “foreign expression

𝐹 translates to glue expression 𝐸”. We picture the function

⌜_⌝ to be a parameter for the language that dictates how the

glue code processes its inputs with the stipulation that the

following principle holds.

Principle 1. If Φ ⊢𝐾 𝐹 : 𝜏 , Γ ∼𝐾 Φ, and 𝐴 ∼𝐾 𝜏 , then Γ; · ⊢
⌜𝐹⌝𝐾 : 𝐴.

Next, we need have a substitution principle.

Proposition 2 (Substitution Principle for Polyglot Knowl-

edge). If Φ ⊢𝐾 𝐹 : 𝜏 and Γ, 𝑢 ::𝐾 𝜏 ;Δ ⊢ 𝐸 : 𝐶 , then Γ;Δ ⊢
[⌜𝐹⌝𝐾/𝑢]𝐸 : 𝐶 .

This substitution principle captures one aspect of the glue

language’s role as a mediator: it should translate well-typed

inputs into well-typed intermediate representations. With

this principle in hand, we may witness our local reduction.



Epistemic Logic for Polyglots PEPM ’26, January 13, 2026, Rennes, France

...

· ⊢𝑎 “nine” : String □𝑎I·; · ⊢ box𝑎“nine” : □𝑎String

hyp*

𝑢 ::𝑎 N; · ⊢ 𝑢 : N

...

𝑤 : N ⊢ fib : N → N
hyp

𝑤 : N ⊢ 𝑤 : N ⊃ E

𝑤 : N ⊢ fib𝑤 : N □𝑎I
𝑢 ::𝑎 N,𝑤 ::𝑏 N; · ⊢ box𝑏fib𝑤 : □𝑏N

tell

𝑢 ::𝑎 N; · ⊢ tell𝑏 𝑤 = 𝑢 in box𝑏fib𝑤 : □𝑏N □𝑎E·; · ⊢ letbox𝑎 𝑢 = box𝑎“nine” in (tell𝑏 𝑤 = 𝑢 in box𝑏fib𝑤) : □𝑏N

Figure 2. Fragment of the typing derivation for our running example, eliding side conditions for context and type translations.

letbox𝑎 𝑢 = box𝑎“nine” in (tell𝑏 𝑤 = 𝑢 in box𝑏fib𝑤)
↦→ (𝛽□𝐾 ) tell𝑏 𝑤 = 9 in box𝑏fib𝑤 with ⌜“nine”⌝𝑎 = 9

↦→ (𝛽𝑡𝑒𝑙𝑙𝐾 ) box𝑏fib 9 with ⌞9⌟𝑏 = 9

Figure 3. Speculative run of our example program.

D
Φ ⊢𝐾 𝐹 : 𝜏

□𝐾 I
Γ;Δ ⊢ box𝐾𝐹 : □𝐾𝜏

E
Γ, 𝑢 ::𝐾 𝜏 ;Δ ⊢ 𝐸 : 𝐶

□𝐾E
Γ;Δ ⊢ letbox𝐾 𝑢 = box𝐾𝐹 in 𝐸 : 𝐶

⇒R

F
Γ;Δ ⊢ [⌜𝐹⌝𝐾/𝑢]𝐸 : 𝐶,

where F is given by the multilingual substitution princi-

ple. With this derivation in mind, we have a candidate 𝛽-

reduction rule:

𝛽□𝐾
Γ;Δ ⊢ letbox𝐾 𝑢 = box𝐾𝐹 in 𝐸 : 𝐶 ↦→ [⌜𝐹⌝𝐾/𝑢]𝐸
Local expansion is much the same as it was before. We

assume that the foreign language has a hypothesis rule akin

to the one we described in Section 2.2.

D
Γ;Δ ⊢ 𝐸 : □𝐾𝜏

⇒E

D
Γ;Δ ⊢ 𝐸 : □𝐾𝜏

hyp

Φ, 𝑢 : 𝜏 ⊢𝐾 𝑢 : 𝜏
□𝐾 I

Γ, 𝑢 ::𝐾 𝜏 ;Δ ⊢ box𝐾𝑢 : □𝐾𝜏 □𝐾E
Γ;Δ ⊢ letbox𝐾 𝑢 = 𝐸 in box𝐾𝑢 : □𝐾𝜏

Thus, we have the following 𝜂-law:

𝜂□𝐾
𝐸 ≡ letbox𝐾 𝑢 = 𝐸 in box𝐾𝑢

As we stated in Section 2.3, the 𝛽𝜂-principles help us under-

stand some of the behavior of our expressions, while leaving

us with a space of design decisions. We must ask some of

the same questions we asked then. Answering these is the

subject of ongoing work.

One such question is on the behavior of the tell expression.
Without a logical account for it, we’ll need to design one

from scratch. Toward a speculative reduction rule, we write

⌞𝐸⌟𝐾 = 𝐹 to mean “glue expression 𝐸 translates to foreign

expression 𝐹 ". This is another function to be a parameter for

the language specified by a user with the requirement that

the following principle holds:

Principle 2.
1. ⌞⌜𝐹⌝𝐾⌟𝐾 = 𝐹

2. ⌜⌞𝐸⌟𝐾⌝𝐾 = 𝐸

With this principle, we give the following candidate re-

duction rule:

𝛽𝑡𝑒𝑙𝑙𝐾
Γ;Δ ⊢ tell𝐾 𝑢 = 𝐸1 in 𝐸2 ↦→ [⌞𝐸1⌟𝐾/𝑢]𝐸2

For an example of these rules in play, see Figure 3.

4 Related Work
Multilanguage computation is a field with a rich history and

a wide variety of goals and techniques. We will discuss the

most relevant pieces of work, which concern themselves with

more syntactic formalisms for multilanguage computation.

Of course, wemustmention the seminal work ofMatthews

and Findler [8], which establishes different ways to embed

foreign code into a program in a type-directed way. We

view our box and letbox expressions as two halves of the

boundary expression in that work. Rather than focus on

two languages interoperating directly with each other via

these boundaries, our presentation centers on languages

operating through glue code, much like thework of Patterson

et al. [10], which we will discuss below. Note that we do

not provide extra semantics for when specific expression

forms are boxed. For example, we do not provide rules for

transforming boxed lambda expressions. This is because our

languages are not directly embedded into each other: when

a lambda expression is inserted into code, it is an expression

in that code’s language.

The interpretation of epistemic logic as glue code for im-

plementing type and expression conversions is heavily influ-

enced by the work of Patterson et al. [10]. However, while

they study languages compiling into a shared target, we are

exploring the use of glue code as an intermediate represen-

tation that links disparate languages.



PEPM ’26, January 13, 2026, Rennes, France Luis Garcia, Chris Martens

Readers may find our work to be very similar to that of

Zdancewic et al. [13] due to the emphasis of thinking of

principals as constructs in a programming language. In this

work, principals are stand-ins for different pieces of a system,

such as a client and a host in a file system. The principals

of this work are not representations of different languages.

Thus, they do not study language interoperation.

5 Future Work, Discussion, and Conclusion
There is, of course, some work to do on this concept. First,

we need to explore some metatheory, and to understand how

differing properties of the foreign languages might interact

the properties of the glue language. Second, we need to think

on our operational semantics. Third, we are interested in

finding a logical account for the tell expression.
We speculate that such an account may be found in one

of many different formulations of epistemic logic. The abil-

ity to transfer information held by one agent to another is

realized in dynamic epistemic logic (DEL), an extension of

epistemic logic that includes actions which update agent

knowledge [1]. In this setting, agents are able to act in such

ways that reveal information to other agents, such as sim-

ply telling each other facts. Aside from DEL, there is also

the concept of public knowledge [9]. Glue code acting as an
intermediary suggests a logical view of it as a source that

different agents can gain knowledge from without directly

interacting with each other. Lastly, we speculate that a treat-

ment of the epistemic language with the lens of adjoint logic,
a framework for combining logics, can be illumnating [7].

From this perspective, epistemic logic is a logic combining

two modes of truth: truth itself and knowledge. Shift oper-

ations allow us to embed propositions from one mode into

another mode. We speculate that tell may be expressible as

a particular combination of these shifts.

Further on the horizon for this work is an exploration

of its practical use. In this regard, we are inspired by work

in choreographic programming [2, 6, 12]. Here, a choreogra-

phy is a program that specifies, from a global point of view,

the behavior of a multiagent system. Static type-checking

gives guarantees about the system, such as freedom from

deadlocks. By way of endpoint projection, local programs cor-

responding to locations in the system are derived. Now, there

is some indication that the modal logic for choreographic

programming is not epistemic, but doxastic—that is, relating
to belief, the dual of knowledge [5]. Whether or not this is

true is yet to be seen. In the meantime, we speculate that,

from a language based on 𝜆□𝐾 , we may give rise to practical

systems via an inverse to endpoint projection: rather than

derive local programs that run independently, we generate

one that acts between the local programs.

We have presented 𝜆□𝐾 , a computational interpretation

of the epistemic S4, and an extension with tell. The mono-

lingual epistemic S4 described in this paper is an extension

of the modal S4 introduced by Pfenning and Daves [11],

and a natural deduction expression of the sequent calcu-

lus given by Garg et al. [4]. The multilingual version of the

logic interprets principals as programming languages, and

a computational interpretation of it yields a language for

middleware between multiple disjoint pieces of code. As we

formulated this version of 𝜆□𝐾 , we observed that the flow

of information is one-way: data from foreign code can be

imported by the glue code, but not vice-versa. This led us

to introduce the tell expression. Our 𝛽𝜂-principles show us

how these expressions behave, and give us some clues for

operational semantics. However, the design of a full suite of

semantics is the subject of future work.

6 Acknowledgments
The authors thank the anonymous reviewers for their thor-

ough and helpful feedback, especially Reviewer 1 for the

insight to track foreign types, rather than glue types, in

the knowledge context. We also thank Andrew Wagner and

Cameron Moy for helpful discussions about multilanguages

and metaprogramming, which informed this work.

References
[1] Baltag, A., and Renne, B. Dynamic epistemic logic.

[2] Cruz-Filipe, L., Graversen, E., Lugović, L., Montesi, F., and Per-

essotti, M. Functional choreographic programming. In Interna-
tional Colloquium on Theoretical Aspects of Computing (2022), Springer,
pp. 212–237.

[3] Davies, R., and Pfenning, F. A modal analysis of staged computation.

Journal of the ACM 48, 3 (2001), 555–604.
[4] Garg, D., Bauer, L., Bowers, K. D., Pfenning, F., and Reiter, M. K. A

linear logic of authorization and knowledge. In European Symposium
on Research in Computer Security (2006), Springer, pp. 297–312.

[5] Hirsch, A. K. Corps: A core calculus of hierarchical choreographic

programming. arXiv preprint arXiv:2406.01456 (2024).
[6] Hirsch, A. K., and Garg, D. Pirouette: higher-order typed functional

choreographies. Proceedings of the ACM on Programming Languages 6,
POPL (2022), 1–27.

[7] Jang, J., Roshal, S., Pfenning, F., and Pientka, B. Adjoint natural

deduction. In 9th International Conference on Formal Structures for
Computation and Deduction (FSCD 2024) (2024), Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, pp. 15–1.

[8] Matthews, J., and Findler, R. B. Operational semantics for multi-

language programs. ACM Transactions on Programming Languages
and Systems (TOPLAS) 31, 3 (2009), 1–44.

[9] Meyer, J.-J. C., Meyer, J.-J. C., and van der Hoek, W. Epistemic logic
for AI and computer science. No. 41. Cambridge University Press, 2004.

[10] Patterson, D., Mushtak, N., Wagner, A., and Ahmed, A. Semantic

soundness for language interoperability. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (2022), pp. 609–624.

[11] Pfenning, F., and Davies, R. A judgmental reconstruction of modal

logic. Mathematical Structures in Computer Science 11, 04 (Aug. 2001).
[12] Shen, G., Kashiwa, S., and Kuper, L. Haschor: Functional choreo-

graphic programming for all (functional pearl). Proceedings of the ACM
on Programming Languages 7, ICFP (2023), 541–565.

[13] Zdancewic, S., Grossman, D., and Morrisett, G. Principals in

programming languages: A syntactic proof technique. ACM SIGPLAN
Notices 34, 9 (1999), 197–207.


	Abstract
	1 Introduction
	2 Background
	2.1 Syntax
	2.2 Typing Rules
	2.3 -Principles

	3 Epistemic Logic for Polyglots
	3.1 Typing Rules
	3.2 -Principles

	4 Related Work
	5 Future Work, Discussion, and Conclusion
	6 Acknowledgments
	References

