Epistemic Logic for Polyglots

Luis Garcia
Chris Martens

garcia.lui@northeastern.edu
c.martens@northeastern.edu
Northeastern University
Boston, USA

Abstract

A pattern in programming is to stitch together code from dis-
parate programming languages to build a complex program.
This pattern is a manifestation of multilanguage computa-
tion, a subject concerning the interoperation of languages
in a greater system. We discuss ongoing work in develop-
ing a type system for multilanguage computation in the
propositions-as-types discipline, drawing types from epis-
temic modal logic.
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1 Introduction

A pattern in programming is to stitch together code from dis-
parate programming languages to build a complex program.
For example, consider the three pieces of code in Figure 1.
This is an illustration of a typical web tech stack, which
includes a piece of frontend code, some middleware, and
backend code. Each piece of code operates on its own run-
time, but the overall system works by having the frontend
send data to the backend via the middleware. Data may be
sent back to the frontend in the form of a response.

This pattern is a manifestation of multilanguage compu-
tation, a subject concerning the interoperation of languages
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in a greater system. Many large-scale software systems are
written in a variety of languages. There is a whole host of
methods for formalizing this pattern of software develop-
ment. We concern ourselves primarily with the one that we
illustrated above: two (or more) languages interacting via a
lightweight intermediary.

From our example, we can observe a challenge that we
aim to address: the three languages may have differing data
representations. It is the job of the middleware to convert
one to the other. Writing code to do this can be arduous be-
cause the data schema in, say, the frontend, is not beholden
to the requirements of the backend in a static way. Thus,
programmers may find themselves finding out if their mid-
dleware does the job dynamically—that is, at system runtime.
Testing for data compliance between the frontend and the
backend, then, becomes a game of running the system, check-
ing for errors, fixing things in the presence of errors, and
then repeating. Surely, we can do better.

In this paper, we discuss ongoing work in developing a
type system for this sort of multilanguage computation using
a propositions-as-types discipline, where the propositions
are drawn from epistemic modal logic, a family of logics for
reasoning about the knowledge of principals. In our case, the
principals in question are languages, and epistemic proposi-
tions are types for code. A computational interpretation of
proofs in this logic give rise to a multilanguage.

We present 17K, a calculus of epistemic types. We begin
with a “monolingual” treatment of the logic, derived from
the well-known judgmental treatment of S4 by Pfenning and
Davies [11]. We then generalize to a multilingual treatment
of the logic, introducing proof terms and typing rules from
which an operational semantics arises in the usual interac-
tion between introduction and elimination forms. We close
with our related and future work.

2 Background

We introduce the epistemic S4 type system with proof terms
following the judgmental approach given by Pfenning and
Davies [11]. Our presentation of the logic can be viewed
as both an extension of the modal logic S4 developed by
Pfenning and Davies, and as a translation of the sequent
calculus given by Garg et al. [4].

In the logic developed by Pfenning and Davies, the O
modality represents validity (a.k.a., necessity), which can be
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Listing (1) Frontend code that sends a POST request.

function sendMessage (){

request ({
"method": "POST",
"body ": "Hello ,"

1)
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Listing (2) Middleware code that processes only POST
requests.

onRequest Request
onRequest request =
(Method POST)

= send (msg)

Request (Body msg)

_ = Error

Listing (3) Backend code that responds to the message

in the request.

def respond(message):

if message = "Hello,
"World!"

return
else:

return Error

Figure 1. A typical web tech stack written with three different languages. The frontend sends a request to the backend through

some middleware. The backend responds in kind.

seen as a stronger form of truth. Specifically, valid judgments
are ones that “do not depend on hypotheses about the truth
of propositions” [11]. A computational interpretation of this
modality found by Davies and Pfenning is a realization of
staged computation, where valid propositions are interpreted
as types for code [3].

We can generalize validity by asking to whom is a propo-
sition valid. Such propositions can be stratified among prin-
cipals (a.k.a., agents), yielding to us a notion of knowledge.
Epistemic logic is a family of logics for reasoning about and
characterizing such knowledge. The epistemic logic S4 is
a generalization over the modal logic S4, where validity is
indexed by principals. Thus, the interested reader may find
that, aside from a couple of subtle differences, the system
presented in this section is quite similar to that of Davies
and Pfenning. For those who are not familiar with the judg-
mental approach to modal logic, we hope that this section
acts as an adequate primer.

2.1 Syntax

For now, we consider the judgments A true and K knows A,
and the types given by the grammar

Agent K, L

Proposition A,B,C == p|OgA

where p is an arbitrary proposition, and g A reads “K knows
A”. We elide definitions for other standard propositions such
as implication, conjunction, and disjunction.

We introduce two contexts as primitives in our proof the-
ory: one containing hypotheses pertaining to truth, and one
containing hypotheses pertaining to knowledge. They are
defined according to the grammar

Truth Context A ==
Knowledge Context T :u=

- | A, A true
- | T, K knows A.

For terms, we have the grammar

Expression E :=x|boxgE | letboxg x = E; in E;
where x is a variable, boxgE is a “boxed” expression, and
letboxx x = E; in E; will be used to “unbox” boxed expres-
sions.

2.2 Typing Rules

From the logic angle, we concern ourselves with judgments
of the form A true and K knows A, and the hypothetical
judgment

T'; A+ C true.

This expresses that under hypotheses about agents’ knowl-
edge I and the truth A, we may conclude C is true.

From the other side of the Curry-Howard correspondence,
we are interested in typing our expressions given at the end
of Section 2.1. Thus, we annotate all of our propositions with
terms. In I', we will generally have variable-type pairings
of the form u ::x A. In A, we will have pairings of the form
x : A. Finally, our conclusion will be annotated with a gen-
eral expression, allowing us to reintroduce our hypothetical
judgment:

I;ARE:C.

Before getting to our typing rules, we must define one
operation over the knowledge context. Intuitively, it is an op-
eration that filters away knowledge variables from a context
given a single agent.

Definition 2.1 (Knowledge Restriction). Let I' be a context
consisting of only judgements of the form u ::x A. Then, the
knowledge restriction on I is defined inductively as follows:
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(Tuzg A)lg = Tluux A
(F,u::LA)|K = F|K IfL?ﬁK

We may now define inference rules characterizing our
notion of knowledge. We begin with the rules for Ok, given
by the following introduction and elimination rules.

Tlg;-FE:A
T; A+ boxgE : OgA

Og I

I'’A v+ E|:0OgA INuuzg A;ARE;, : C
I; A+ letboxg u = E;in E; : C

Read from the bottom-up, the introduction rule (Og I)
imposes that in order to prove that an agent knows a fact,
we must only use the facts that the agent already knows. The
truth context is empty to enforce this independence of agent
knowledge. The knowledge restriction presents a departure
from the modal logic S4. Whereas in that system, all valid
hypotheses are allowed to be used in the derivation, in this
one, only the knowledge of a single agent is permitted. The
elimination rule (Og E) allows us to permanently reuse the
fact that an agent knows a proposition in the scope of E,.

Next, are our hypothesis rules.

I:IKE

TaxiArsiA P TxogAdrx:a P
The first hypothesis rule (hyp) is standard for natural deduc-
tion systems, and admits a uniform substitution principle.
The second rule allows us to conclude that A is true if an
agent knows A. This establishes that if an agent knows a
fact, that fact must be true. This second rule admits a second
substitution principle, which we state below.

Proposition 1 (Substitution Principle for Knowledge). If
Tlg;- v Ey : AandT,u =g A;A v+ Ey @ C, thenT;A +
[E{/u]E, : C.

2.3 pn-Principles

Reduction rules and equivalence laws for the boxed expres-
sions arise from the interaction between their elimination
and introduction forms. First, we have a local reduction,
which gives us a clue for what our -reduction rule should
be. This can be witnessed by introducing a boxed expres-
sion and then immediately eliminating it from the top-down.
Thus, we have

D
Tlg;-+FE : A &
Okl
I'; A + boxgE; : OgA Touug A;ARE,: C
T'; Ak letboxg u = boxgE; in E; : C

OgE

=R

T’
;A - [El/u]Eg :C,
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where ¥ is given by the substitution principle applied to D
and &. Our f-reduction rule should then be

Pox

letboxx u = boxgE; in E; — [E{/u]E,

We can get a clue for an n-law via local expansion, which
is witnessed by using an elimination form followed immedi-
ately by an introduction form from the bottom-up.

D
T;A+FE:OKA
=E
h *
D Touik A-ru:A P
Okl

T;A+E:0OKA T,u ::x A; A+ boxgu : OgA
T; A+ letboxg u = E in boxgu : OgA
Therefore, we have the following law:

ok

E = letboxg u = E in boxgu

While the fn-principles point the way to an operational
semantics for our language, they do not yield all the answers.
For example, what of the congruence rules? Should a boxed
expression be allowed to run under a box? The answers to
such questions are out of scope for this paper. They are de-
sign decisions that can have ramifications over the practical
use of a language. For example, Davies and Pfenning’s deci-
sion to make boxed expressions in the modal S4 not run is
part of the reason why their language is suitable for staged
computation [3].

3 Epistemic Logic for Polyglots

The language given in Section 2 can be seen as a general-
ization on the system of Davies and Pfenning. If we limited
ourself to a single agent, then we’d have a system that is
exactly the same. The question, then, is what does having
more than one agent afford us? We propose that having more
than one agent grants the ability to express a type system for
multiple interoperating languages. Intuitively, each agentis a
stand-in for a language. A boxed expression is an expression
in a foreign language, typed using that foreign languages’
rules.

To develop this interpretation of epistemic logic, we must
introduce some new notions. To aid in differentiating be-
tween the constructs of a foreign language and our language,
we will color-code, use the metavariable F to range over
foreign expressions, and use the metavariable 7 for foreign

types.

3.1 Typing Rules

We begin with mapping types of a foreign language to types
in our language. We write A ~k 7 to mean “foreign type 7
from language K maps to local type A”. This idea of type
conversion is based on the one given by Patterson et al. [10].
We think of this as a programmer-specified judgment that
will be used by a type checker to ensure that the rest of the
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program is well-typed even under the presence of foreign
code.

Next, we redefine our epistemic context to map directly
to foreign types, and define foreign contexts.

A Tuugr
| d,x T

Knowledge Context T :=

Foreign Context © :u=

Now, we consider the mapping of the knowledge context

in our language to foreign contexts. We denote a context
mapping with the relation I' ~x ©.

Definition 3.1. Let I" be a knowledge context and ® be a
foreign context from language K. We define a translation
from the former to the latter inductively as follows:

W
T~ @ K+#L
Iixupr~g @

I' ~¢ @
Lxugr~gOx:1

Finally, we introduce a new judgment
Ot F:r,

denoting that a foreign function F is typed at 7 under the
foreign context @.
We may now discuss our new typing rules.

'~ @ Org F:7T
I'; A+ boxgF : Ogr

Ogl

This new rule requires that we show that the boxed expres-
sion type checks at 7 under the foreign context constructed
from translating I'. Note that, by Definition 3.1, the types
transferred to @ are exactly those from I'|g.

Next is our new elimination form.

T;AvE:Ogr Tuusg ;ArE,: C
;A + letboxx u =E;inE, : C
The new rule allows us to switch from a foreign typing con-
text back to our host typing context. We may permanently
use the fact that the boxed code is typed at 7.

Last but not least are our variable rules.

T Ax ArxiA MP . “?T;ZZ —hyp
The first rule (hyp) remains the same. The second rule allows
us to use the fact that an agent knows 7 to prove A given
that A “acts like” 7.

We must now take stock of our development thus far. Up
to this point, we have reintroduced our introduction and
elimination forms in the context of multilanguage computa-
tion. If our goal was to develop a glue language that acts as a
shared compilation target a la Patterson et al. [10], then our
rules may be enough. However, our motivation is to have
the glue language act as an intermediary between multiple
languages. Our elimination form (OxE) shows us that we

OgE

*

may use data from a foreign language in our glue language.
Thus, we have a way to take foreign code as input. What
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about output? Unfortunately, the rules of epistemic S4 do not
give us a way to transfer data from the glue language to a for-
eign language. Therefore, we must invent a new expression
external to the logic to allow us to do this.

We extend APK with a new expression as follows:

Expression E u=---|tellx u=E;in E,,

where tell is named to suggest the act of telling a princi-
pal some fact. We define a single typing rule for this new
expression.

T5ARE A A~k T T,uuzg ;AR Ey: C

T:Artellgu=FE, inE, : C tell

This rule allows us to push a true proposition into the knowl-
edge base of an agent.

Let’s take a look at an example. We have two typical
simply-typed lambda calculi a and b extended with particu-
lar base types. Language a will have a String base type, and
language b will support natural numbers (I\). Suppose fib is
a library function in language b that computes a Fibonacci
number efficiently. Now, we extend APK with natural num-

bers as base types, such that N ~, String and N ~j, Il. Then,
we may write the following example program:
letbox, u = box, “nine” in (tell, w = u in boxy ).

A type derivation for this program can be seen in Figure 2.

3.2 pn-Principles

Just like with the monolingual version of APK we witness
local reduction and expansion to give us a clue for the opera-
tional semantics of our language. Before we begin, we must
develop the concept of substitution in the presence of for-
eign code. We write " 7K = E to mean “foreign expression
F translates to glue expression E”. We picture the function
T _7to be a parameter for the language that dictates how the
glue code processes its inputs with the stipulation that the
following principle holds.

Principle 1. If O +x F:7,T ~x ©,and A ~g 7, thenT;- +
TFK A,

Next, we need have a substitution principle.

Proposition 2 (Substitution Principle for Polyglot Knowl-
edge). If Orx F:randT,u =:x ;A + E : C, then T;A +
[FFX/u)E : C.

This substitution principle captures one aspect of the glue
language’s role as a mediator: it should translate well-typed
inputs into well-typed intermediate representations. With
this principle in hand, we may witness our local reduction.
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—————hyp
> E
i . hyp* o,l
“ k¢ ‘nine” : String O uszg N;j-Fu:N P u g Nyw iz I - F boxy 1 Op ; all
-;+ + box,“nine” : O,String “ u 4 N;- + tell, w = u in box, 1 Op E €
O
-;- + letbox, u = box, “nine” in (tell, w = u in box, ):Op 4

Figure 2. Fragment of the typing derivation for our running example, eliding side conditions for context and type translations.

letbox, u = box, “nine” in (tell, w = u in box,

— (fok)  tell, w =9 in box,
= (Breig)  boxy

)
with " “nine” 7% =9
with L9, =

Figure 3. Speculative run of our example program.

D
OrgF:1 s
- Ogl
;A + boxgF : Ogr Tuzx ;AR E:C
I'; A+ letboxg u =boxgFinE: C

OgE

=R
/(T
;A F [TFEYE: C,

where ¥ is given by the multilingual substitution princi-
ple. With this derivation in mind, we have a candidate f-
reduction rule:

I; A F letboxgx u = boxgFin E : C— [TF'K/y]E Pox

Local expansion is much the same as it was before. We
assume that the foreign language has a hypothesis rule akin
to the one we described in Section 2.2.

D
I;AvRE:QOgr
=E
——h
D Qu:trgu:t P 0ol
T;ARE:Ogr T,u g 7;A Fboxgu : Og7 K
OgE

T'; A + letboxg u = E in boxgu : Og7

Thus, we have the following n-law:

E = letboxgx u = E in boxgu oK
As we stated in Section 2.3, the fn-principles help us under-
stand some of the behavior of our expressions, while leaving
us with a space of design decisions. We must ask some of
the same questions we asked then. Answering these is the
subject of ongoing work.

One such question is on the behavior of the tell expression.
Without a logical account for it, we’ll need to design one
from scratch. Toward a speculative reduction rule, we write
LEK = F to mean “glue expression E translates to foreign
expression F". This is another function to be a parameter for

the language specified by a user with the requirement that
the following principle holds:
Principle 2.

1. TP K= F

2. "LELKTK -

With this principle, we give the following candidate re-
duction rule:

T;AF tellg u = E; in E; — [LE 25X /u]E,

For an example of these rules in play, see Figure 3.

Brelix

4 Related Work

Multilanguage computation is a field with a rich history and
a wide variety of goals and techniques. We will discuss the
most relevant pieces of work, which concern themselves with
more syntactic formalisms for multilanguage computation.

Of course, we must mention the seminal work of Matthews
and Findler [8], which establishes different ways to embed
foreign code into a program in a type-directed way. We
view our box and letbox expressions as two halves of the
boundary expression in that work. Rather than focus on
two languages interoperating directly with each other via
these boundaries, our presentation centers on languages
operating through glue code, much like the work of Patterson
et al. [10], which we will discuss below. Note that we do
not provide extra semantics for when specific expression
forms are boxed. For example, we do not provide rules for
transforming boxed lambda expressions. This is because our
languages are not directly embedded into each other: when
a lambda expression is inserted into code, it is an expression
in that code’s language.

The interpretation of epistemic logic as glue code for im-
plementing type and expression conversions is heavily influ-
enced by the work of Patterson et al. [10]. However, while
they study languages compiling into a shared target, we are
exploring the use of glue code as an intermediate represen-
tation that links disparate languages.
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Readers may find our work to be very similar to that of
Zdancewic et al. [13] due to the emphasis of thinking of
principals as constructs in a programming language. In this
work, principals are stand-ins for different pieces of a system,
such as a client and a host in a file system. The principals
of this work are not representations of different languages.
Thus, they do not study language interoperation.

5 Future Work, Discussion, and Conclusion

There is, of course, some work to do on this concept. First,
we need to explore some metatheory, and to understand how
differing properties of the foreign languages might interact
the properties of the glue language. Second, we need to think
on our operational semantics. Third, we are interested in
finding a logical account for the tell expression.

We speculate that such an account may be found in one
of many different formulations of epistemic logic. The abil-
ity to transfer information held by one agent to another is
realized in dynamic epistemic logic (DEL), an extension of
epistemic logic that includes actions which update agent
knowledge [1]. In this setting, agents are able to act in such
ways that reveal information to other agents, such as sim-
ply telling each other facts. Aside from DEL, there is also
the concept of public knowledge [9]. Glue code acting as an
intermediary suggests a logical view of it as a source that
different agents can gain knowledge from without directly
interacting with each other. Lastly, we speculate that a treat-
ment of the epistemic language with the lens of adjoint logic,
a framework for combining logics, can be illumnating [7].
From this perspective, epistemic logic is a logic combining
two modes of truth: truth itself and knowledge. Shift oper-
ations allow us to embed propositions from one mode into
another mode. We speculate that tell may be expressible as
a particular combination of these shifts.

Further on the horizon for this work is an exploration
of its practical use. In this regard, we are inspired by work
in choreographic programming [2, 6, 12]. Here, a choreogra-
phy is a program that specifies, from a global point of view,
the behavior of a multiagent system. Static type-checking
gives guarantees about the system, such as freedom from
deadlocks. By way of endpoint projection, local programs cor-
responding to locations in the system are derived. Now, there
is some indication that the modal logic for choreographic
programming is not epistemic, but doxastic—that is, relating
to belief, the dual of knowledge [5]. Whether or not this is
true is yet to be seen. In the meantime, we speculate that,
from a language based on A°K, we may give rise to practical
systems via an inverse to endpoint projection: rather than
derive local programs that run independently, we generate
one that acts between the local programs.

We have presented A°X, a computational interpretation
of the epistemic S4, and an extension with tell. The mono-
lingual epistemic S4 described in this paper is an extension
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of the modal S4 introduced by Pfenning and Daves [11],
and a natural deduction expression of the sequent calcu-
lus given by Garg et al. [4]. The multilingual version of the
logic interprets principals as programming languages, and
a computational interpretation of it yields a language for
middleware between multiple disjoint pieces of code. As we
formulated this version of APK, we observed that the flow
of information is one-way: data from foreign code can be
imported by the glue code, but not vice-versa. This led us
to introduce the tell expression. Our Bn-principles show us
how these expressions behave, and give us some clues for
operational semantics. However, the design of a full suite of
semantics is the subject of future work.
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