Compositional Inductive Invariant Based Verification of Neural Network Controlled Systems

Yuhao Zhou and Stavros Tripakis

Northeastern University

What is this talk about?

A compositional method for verifying the

safety properties of

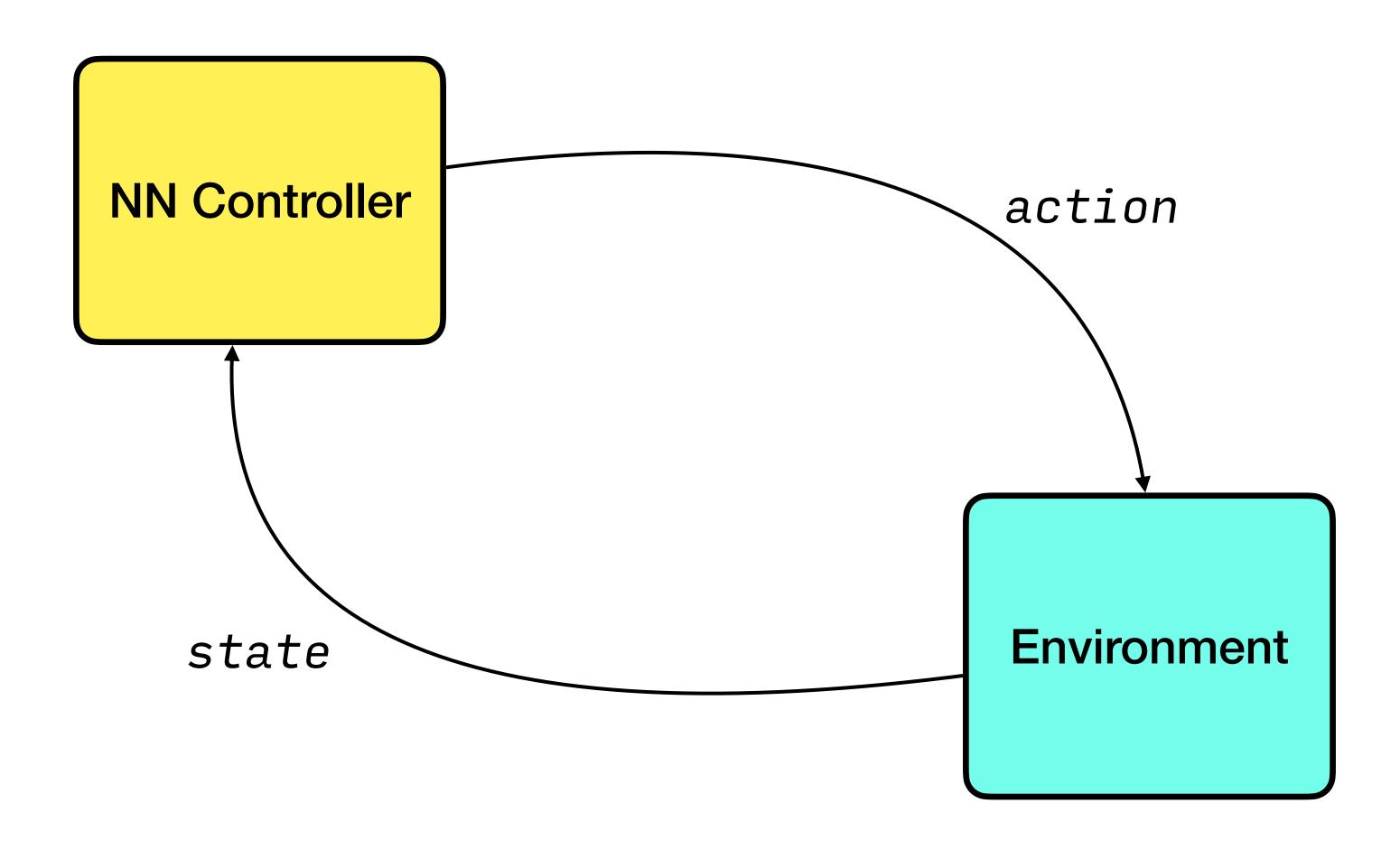
neural network controlled systems

over an infinite time horizon

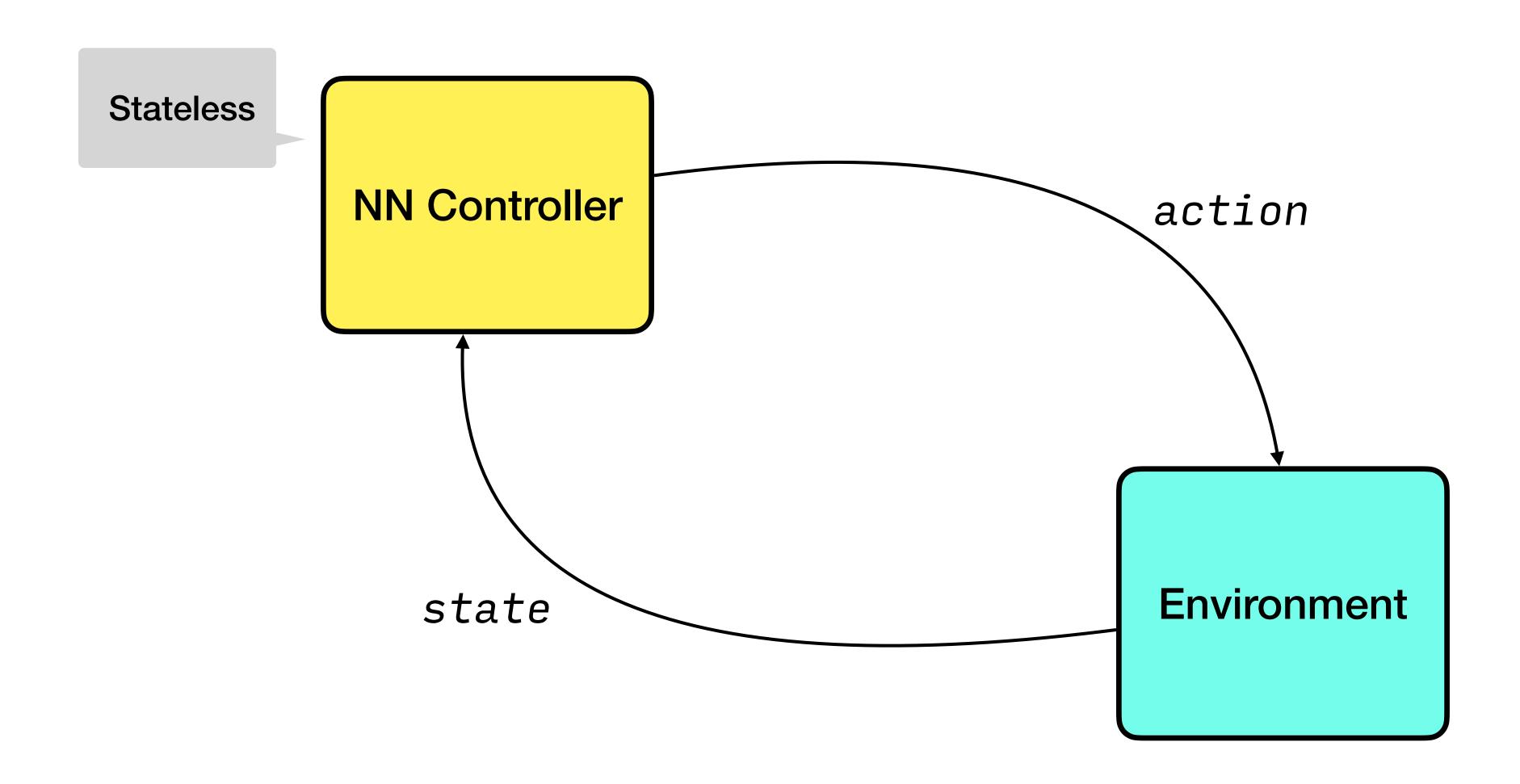
using inductive invariant method

Neural Network Controlled Systems (NNCS)

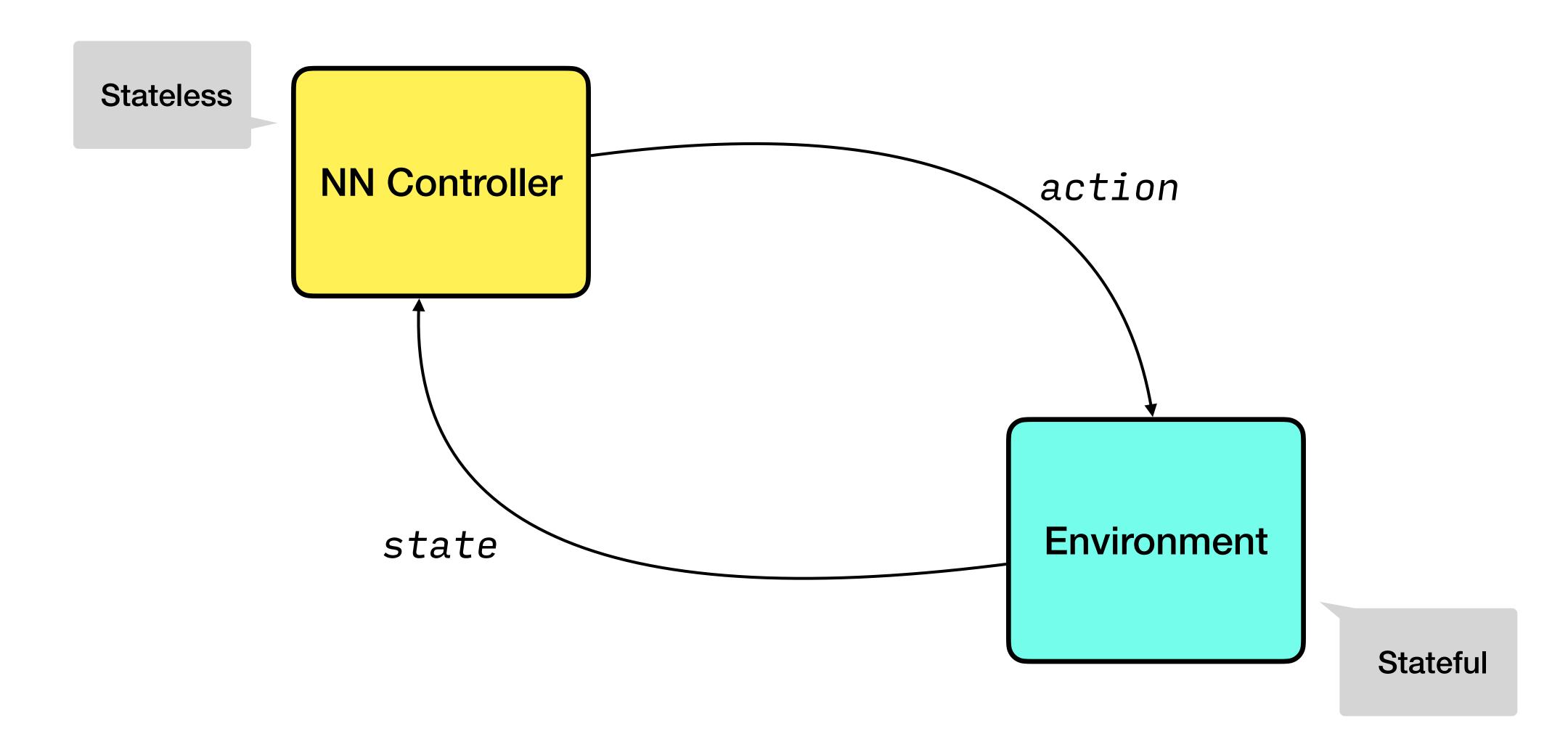
Neural Network Controlled Systems



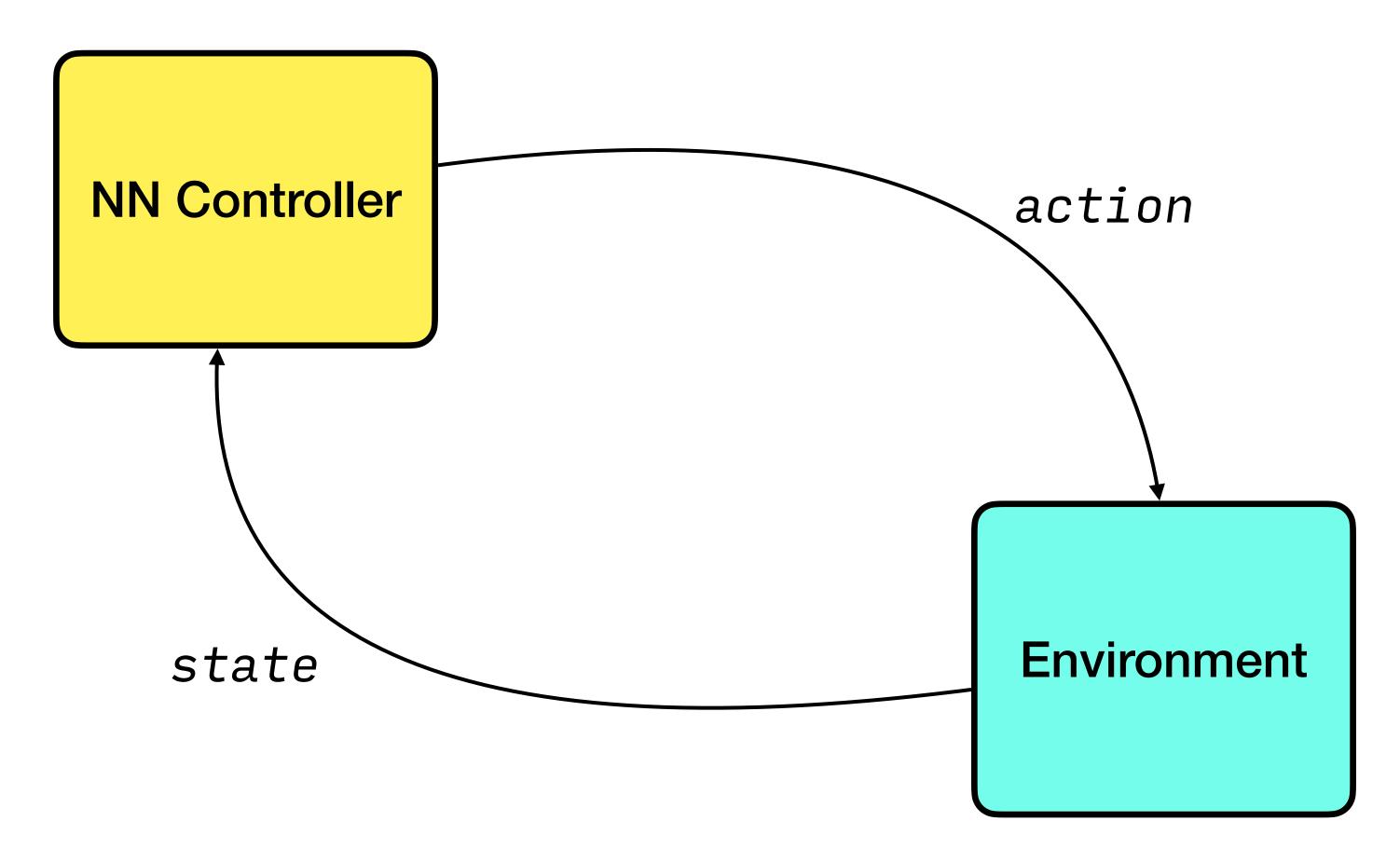
Neural Network Controlled Systems



Neural Network Controlled Systems



NNCS Safety Verification Problem



Check that every reachable state satisfies a given state predicate Safe

Why NNCS Verification?

NNCS Used in Safety-Critical Applications

Autonomous Cars

Industrial Control

Healthcare

Our Approach: Key Difference with Prior Work

Majority of Past Work	Bounded-Time Horizon	Reachability Analysis
Ours	Infinite-time Horizon	Inductive Invariant Method

Inductive Invariant Method

Discover a state predicate *IndInv*, such that

- (1) $Init \implies IndInv$
- (2) $(IndInv \land Next) \implies IndInv'$
- (3) $IndInv \implies Safe$

Challenges for Inductive Invariant Method

Discovery of IndInv

Check if candidate IndInv is indeed inductive

Challenges for Inductive Invariant Method

Discovery of IndInv

Check if candidate IndInv is indeed inductive

This paper

Inductiveness Check in NNCS

Inductiveness NNCS

$$(IndInv \land Next) \implies IndInv'$$
 $Next = Next_{NNC} \land Next_{ENV}$

Inductiveness Check in NNCS

Inductiveness NNCS

$$(IndInv \land Next) \implies IndInv' \qquad Next = Next_{NNC} \land Next_{ENV}$$

Inductiveness in NNCS

 $(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$

Inductiveness Check in NNCS

Inductiveness NNCS

$$(IndInv \land Next) \implies IndInv'$$

$$Next = Next_{NNC} \land Next_{ENV}$$

Inductiveness in NNCS

Monolithic Method: Check this formula directly

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

SMT Solvers

(e.g. Z3)

Do not scale due to the size of NN controller

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

SMT Solvers

(e.g. Z3)
Do not scale due to the size of NN controller

NN Verifier

(e.g. α , β -CROWN) Limited expressiveness of verifiable specifications

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

SMT Solvers

(e.g. Z3)
Do not scale due to the size of NN controller

NN Verifier

(e.g. α , β -CROWN) Limited expressiveness of verifiable specifications

Monolithic method cannot efficiently check if the candidate IndInv is indeed inductive

Our Contribution

Replace monolithic check

$$(M) \qquad (IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

with 2 easier checks

$$(C1) \qquad (IndInv \land Next_{NNC}) \implies Bridge$$

$$(C2) (Bridge \land Next_{ENV}) \implies IndInv'$$

Replace monolithic check

$$(M) \qquad (IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$
Guaranteed by construction of $Bridge$

$$(C1) \qquad (IndInv \land Next_{NNC}) \implies Bridge$$

$$(C2) \qquad (Bridge \land Next_{ENV}) \implies IndInv'$$

Replace monolithic check

$$(M)$$
 $(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$

Guaranteed by construction of *Bridge*

with 2 easier checks

$$(C1) \qquad (IndInv \land Next_{NNC}) \implies Bridge$$

$$(C2) \qquad (Bridge \land Next_{ENV}) \implies IndInv'$$

SMT Solvers

can handle this (but we help with parallelization)

Soundness and Completeness

```
(M) \qquad (IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'
(C1) \qquad (IndInv \land Next_{NNC}) \implies Bridge
(C2) \qquad (Bridge \land Next_{ENV}) \implies IndInv'
```

Soundness and Completeness

```
(M) \qquad (IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'
(C1) \qquad (IndInv \land Next_{NNC}) \implies Bridge
(C2) \qquad (Bridge \land Next_{ENV}) \implies IndInv'
```

Theorem: Soundness

If (C1) and (C2) hold, then (M) holds

Soundness and Completeness

```
(M) \qquad (IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'
(C1) \qquad (IndInv \land Next_{NNC}) \implies Bridge
(C2) \qquad (Bridge \land Next_{ENV}) \implies IndInv'
```

Theorem: Soundness

If (C1) and (C2) hold, then (M) holds

Theorem: Completeness

If (M) holds, then there exists Bridge such that (C1) and (C2) hold

Questions

```
(C1) (IndInv \land Next_{NNC}) \Longrightarrow Bridge
```

(C2)
$$(Bridge \land Next_{ENV}) \Longrightarrow IndInv'$$

Questions

```
(C1) \qquad (IndInv \land Next_{NNC}) \implies Bridge
```

(C2)
$$(Bridge \land Next_{ENV}) \Longrightarrow IndInv'$$

How to discover Bridge

Questions

- (C1) $(IndInv \land Next_{NNC}) \implies Bridge$
- (C2) $(Bridge \land Next_{ENV}) \Longrightarrow IndInv'$

How to discover Bridge

How to check (C1) and (C2) in a scalable way

Questions

```
(C1) (IndInv \land Next_{NNC}) \Longrightarrow Bridge
```

(C2)
$$(Bridge \land Next_{ENV}) \Longrightarrow IndInv'$$

How to discover Bridge

Automatic method

How to check (C1) and (C2) in a scalable way

Decompose IndInv

 $IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$

Decompose IndInv

$$IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$$

For each state predicate p_i , compute postcondition ψ_i , such that

$$(p_i \land Next_{NNC}) \implies \psi_i$$

Decompose IndInv

$$IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$$

For each state predicate p_i , compute postcondition ψ_i , such that

NN controller input constraint

$$(p_i \land Next_{NNC}) \implies \psi_i$$

Decompose IndInv

$$IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$$

For each state predicate p_i , compute postcondition ψ_i , such that

NN controller input constraint

$$(p_i \wedge Next_{NNC}) \implies \psi_i$$

Output range verified by NN verifier

Decompose IndInv

$$IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$$

For each state predicate p_i , compute postcondition ψ_i , such that

NN controller input constraint

$$(p_i \wedge Next_{NNC}) \implies \psi_i$$

Output range verified by NN verifier

$$Bridge := (p_1 \land \psi_1) \lor \cdots \lor (p_n \land \psi_n)$$

$$(IndInv \land Next_{NNC}) \implies Bridge$$

$$(IndInv \land Next_{NNC}) \implies Bridge$$

Replaced by IndInv decomposition $IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$

$$(IndInv \land Next_{NNC}) \implies Bridge$$

Replaced by IndInv decomposition $IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$

Replaced by Bridge definition $Bridge := (p_1 \land \psi_1) \lor \cdots \lor (p_n \land \psi_n)$

$$(IndInv \land Next_{NNC}) \implies Bridge$$

Replaced by IndInv decomposition

$$IndInv \iff (p_1 \lor p_2 \lor \cdots \lor p_n)$$

Replaced by Bridge definition

$$Bridge := (p_1 \land \psi_1) \lor \cdots \lor (p_n \land \psi_n)$$

Condition (C1) becomes

$$\bigvee_{i} (p_i \wedge Next_{NNC}) \implies \bigvee_{i} (p_i \wedge \psi_i)$$

$$\bigvee_{i} (p_i \wedge Next_{NNC}) \implies \bigvee_{i} (p_i \wedge \psi_i)$$

$$\bigvee_{i} (p_i \wedge Next_{NNC}) \implies \bigvee_{i} (p_i \wedge \psi_i)$$

Since $p_i \wedge Next_{NNC} \implies p_i$, we can simplify the formula to

$$\bigvee_{i} (p_i \wedge Next_{NNC}) \implies \bigvee_{i} \psi_i$$

$$\bigvee_{i} (p_i \wedge Next_{NNC}) \implies \bigvee_{i} (p_i \wedge \psi_i)$$

Since $p_i \wedge Next_{NNC} \implies p_i$, we can simplify the formula to

$$\bigvee_{i} (p_i \wedge Next_{NNC}) \implies \bigvee_{i} \psi_i$$

This holds because the NN verifier guarantees

$$(p_i \land Next_{NNC}) \implies \psi_i$$

$$(Bridge \land Next_{ENV}) \implies IndInv'$$

$$(Bridge \land Next_{ENV}) \implies IndInv'$$

Replaced by the definition

 $Bridge := (p_1 \land \psi_1) \lor \cdots \lor (p_n \land \psi_n)$

$$(Bridge \land Next_{ENV}) \implies IndInv'$$

Replaced by the definition

$$Bridge := (p_1 \land \psi_1) \lor \cdots \lor (p_n \land \psi_n)$$

Condition (C2) becomes

$$(\bigvee_{i} (p_i \wedge \psi_i \wedge Next_{ENV})) \implies IndInv'$$

$$(Bridge \land Next_{ENV}) \implies IndInv'$$

Replaced by the definition

$$Bridge := (p_1 \land \psi_1) \lor \cdots \lor (p_n \land \psi_n)$$

Condition (C2) becomes

$$(\bigvee_{i} (p_i \wedge \psi_i \wedge Next_{ENV})) \Longrightarrow IndInv'$$

which is equivalent to

$$\bigwedge_{i} ((p_i \land \psi_i \land Next_{ENV}) \implies IndInv')$$

$$(Bridge \land Next_{ENV}) \implies IndInv'$$

Replaced by the definition

$$Bridge := (p_1 \land \psi_1) \lor \cdots \lor (p_n \land \psi_n)$$

Condition (C2) becomes

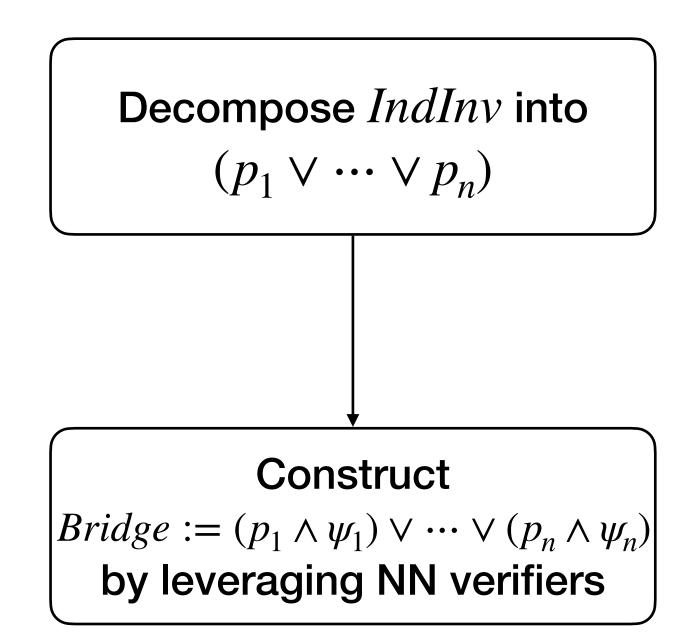
$$(\bigvee_{i} (p_i \wedge \psi_i \wedge Next_{ENV})) \Longrightarrow IndInv'$$

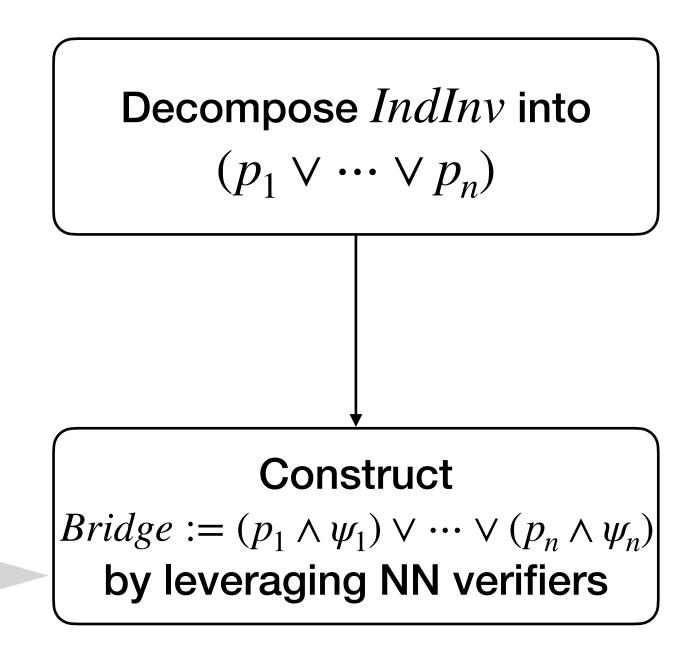
This conjunction of smaller formulas can be checked in parallel!

which is equivalent to

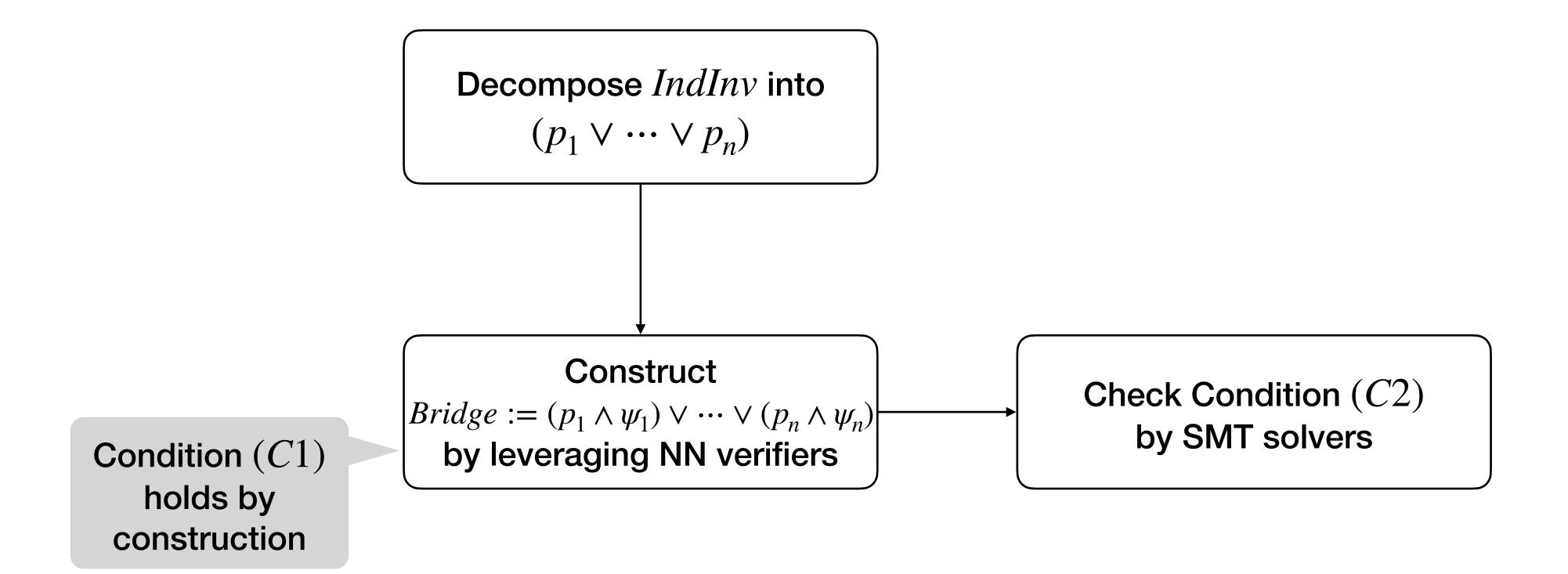
$$\bigwedge_{i} ((p_i \land \psi_i \land Next_{ENV}) \implies IndInv')$$

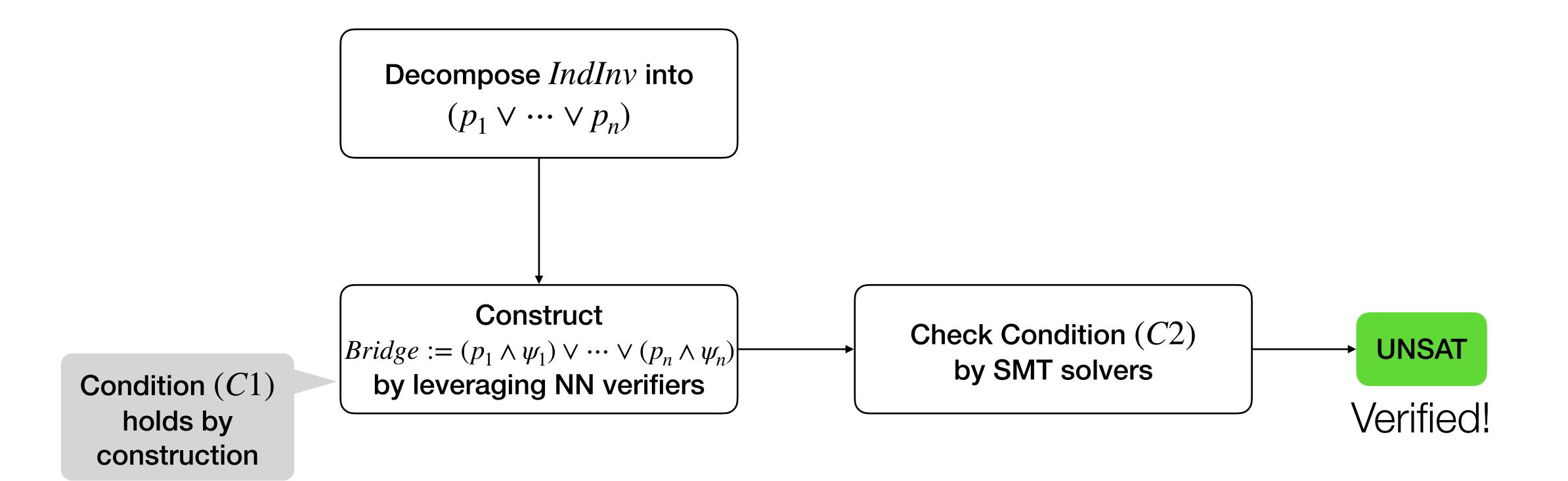
Decompose IndInv into $(p_1 \lor \cdots \lor p_n)$

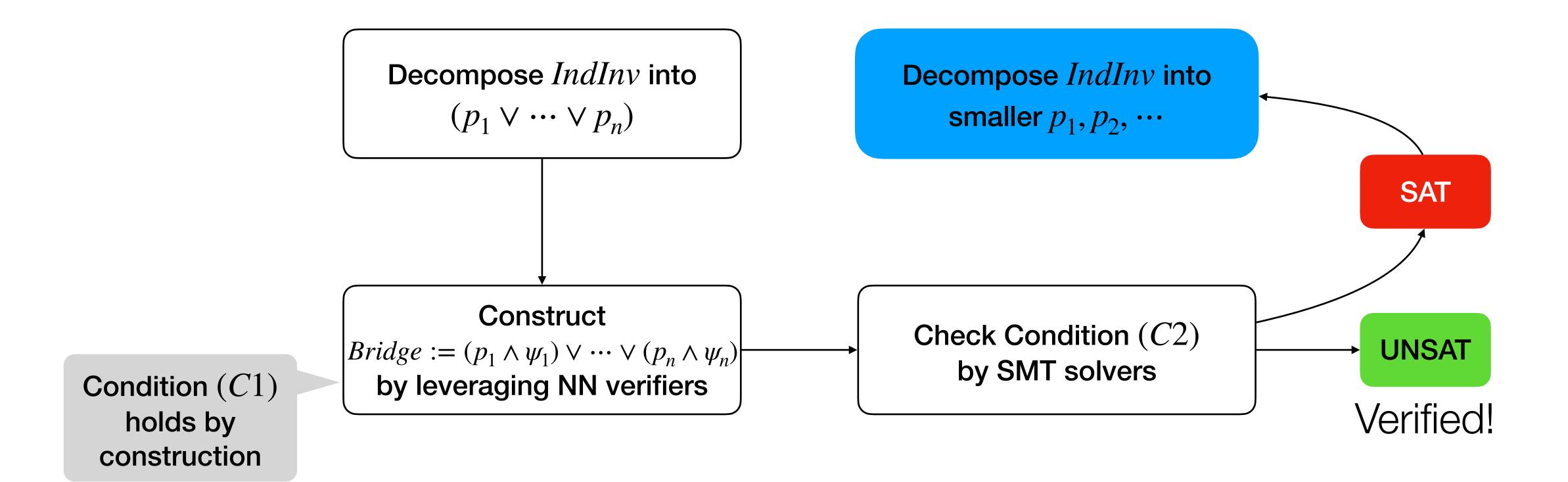


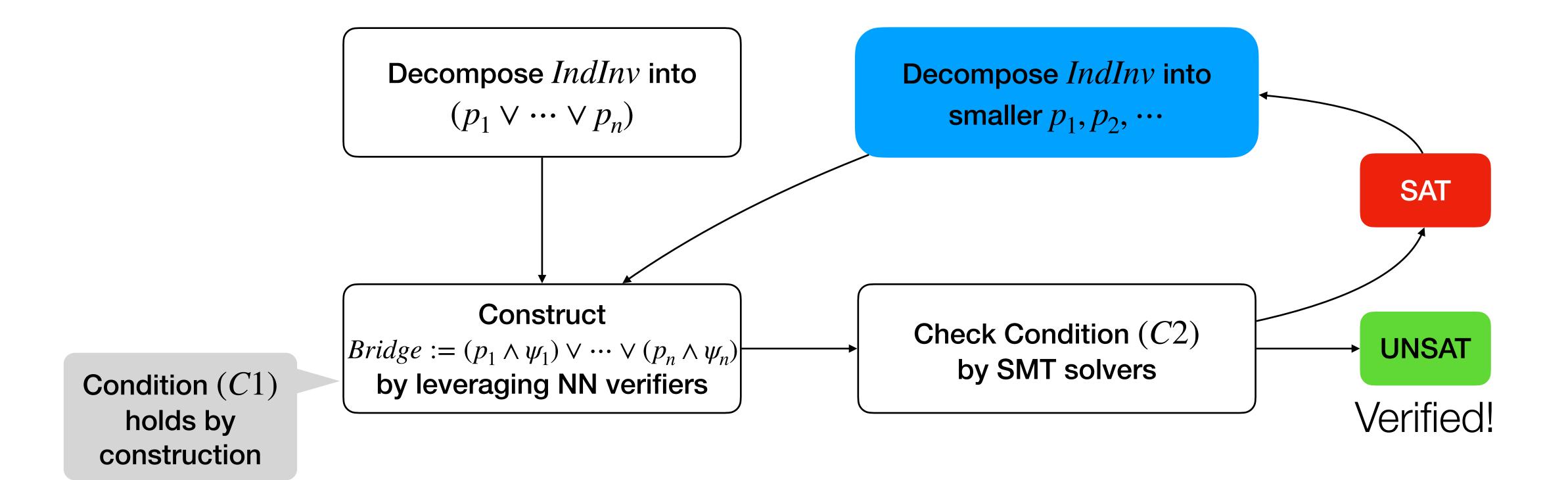


Condition (C1) holds by construction

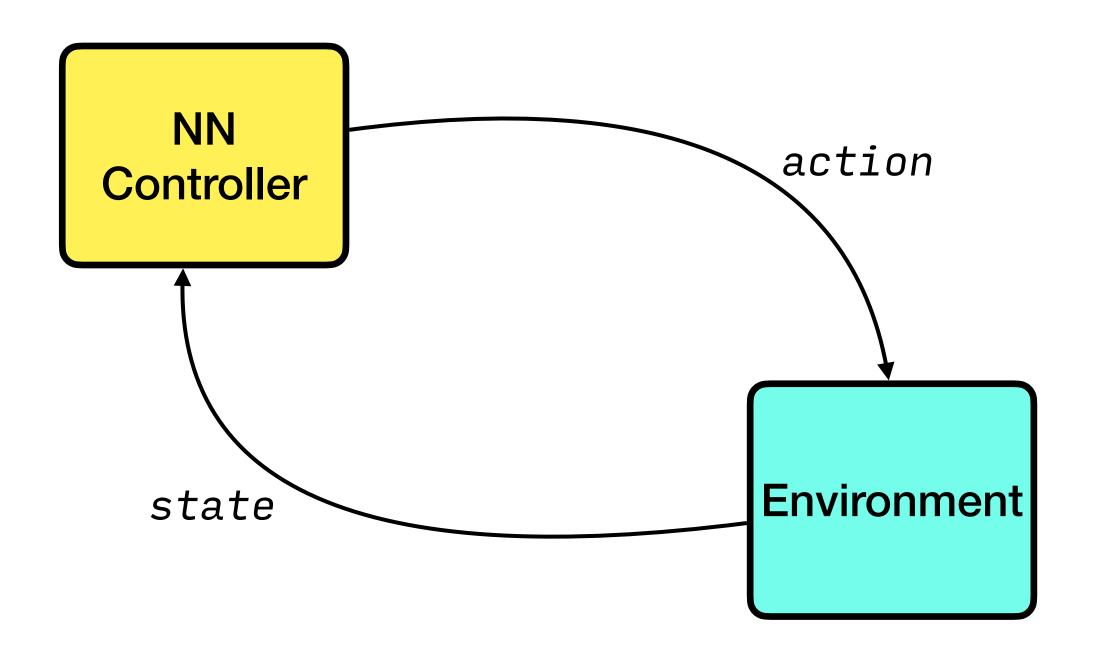








2D Navigation Case Study



State variables

$$x, y \in \mathbb{R}$$

NN controller

$$(a,b) = NN(x,y)$$

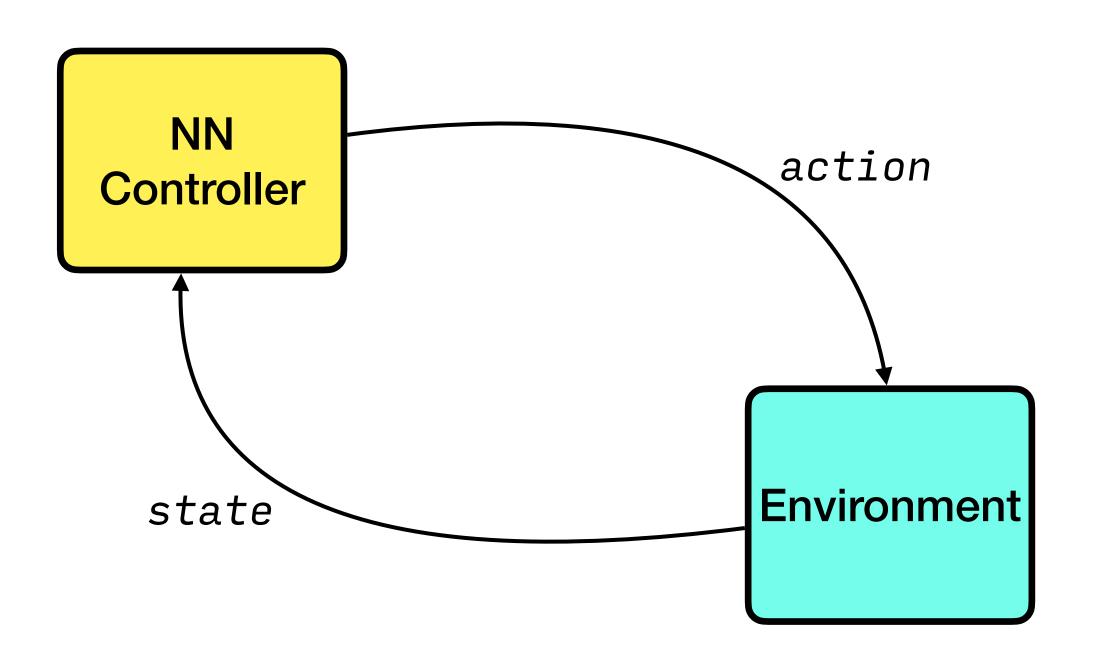
Environment

$$0.5 \le c \le 1.0$$

$$x' = x + 0.1 \cdot c \cdot a,$$

$$y' = y + 0.1 \cdot c \cdot b$$

2D Navigation Case Study



State variables

$$x, y \in \mathbb{R}$$

Represent a 2D plane

NN controller

$$(a,b) = NN(x,y)$$

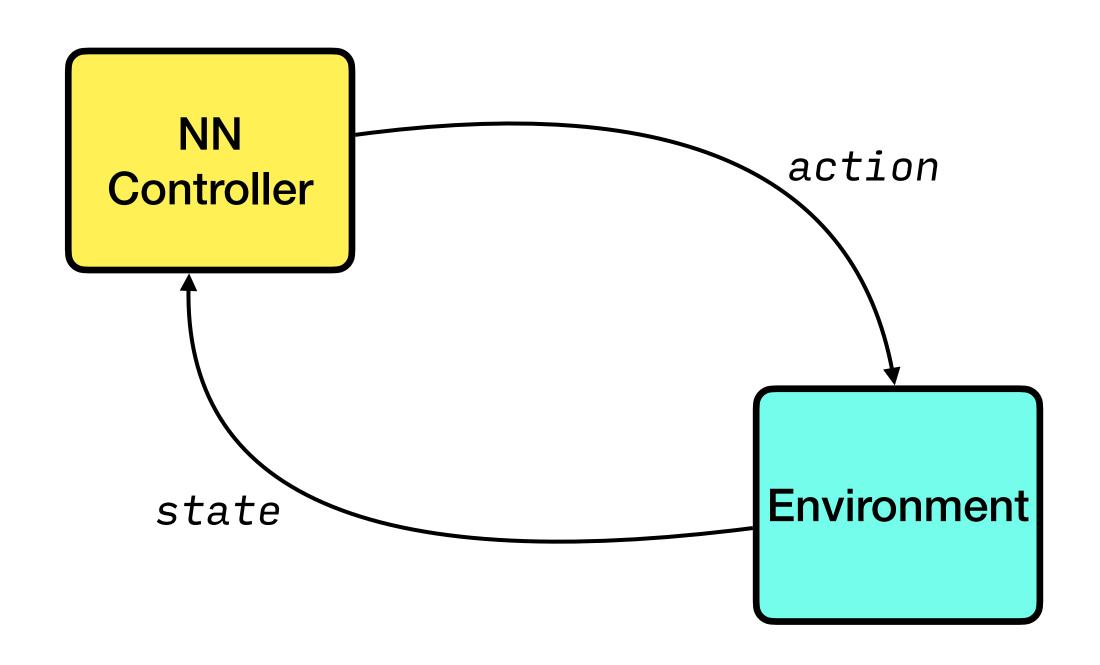
Environment

$$0.5 \le c \le 1.0$$

$$x' = x + 0.1 \cdot c \cdot a,$$

$$y' = y + 0.1 \cdot c \cdot b$$

2D Navigation Case Study



State variables

$$x, y \in \mathbb{R}$$

NN controller

$$(a,b) = NN(x,y)$$

Environment

$$0.5 \le c \le 1.0$$

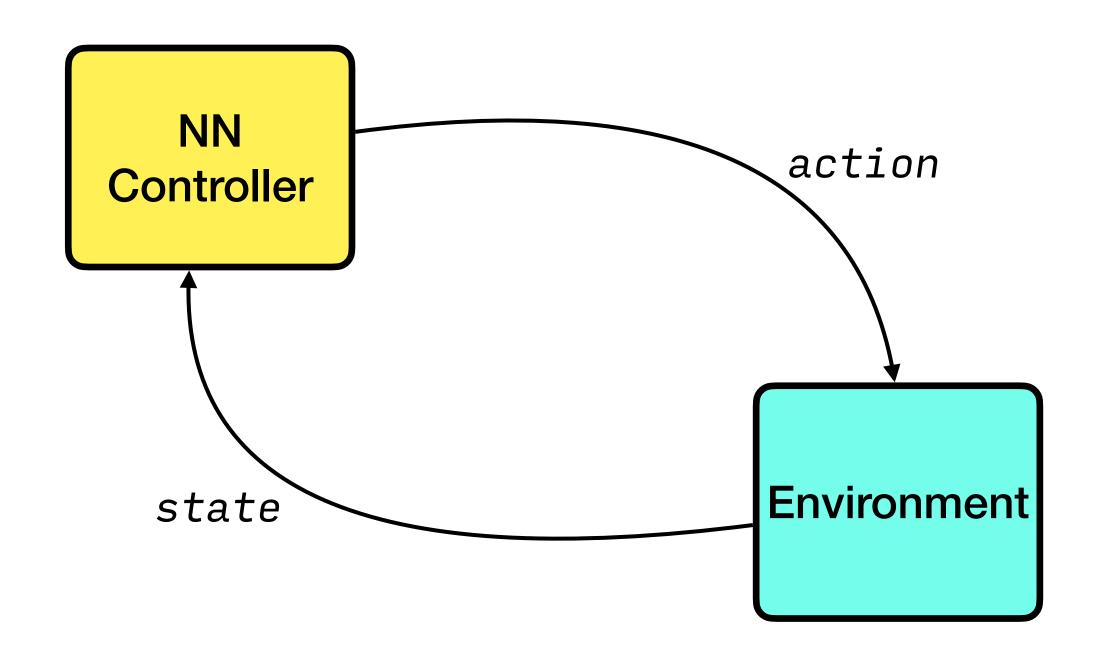
$$x' = x + 0.1 \cdot c \cdot a,$$

$$y' = y + 0.1 \cdot c \cdot b$$

Represent a 2D plane

NNC takes states, outputs 2 reals a, b

2D Navigation Case Study



State variables

$$x, y \in \mathbb{R}$$

NN controller

$$(a,b) = NN(x,y)$$

Environment

$$0.5 \le c \le 1.0$$

$$x' = x + 0.1 \cdot c \cdot a,$$

$$y' = y + 0.1 \cdot c \cdot b$$

Represent a 2D plane

NNC takes states, outputs 2 reals a, b

Non-deterministic, discrete-time

• Trained 9 NN controllers, from 2×32 neurons to 2×1024 neurons

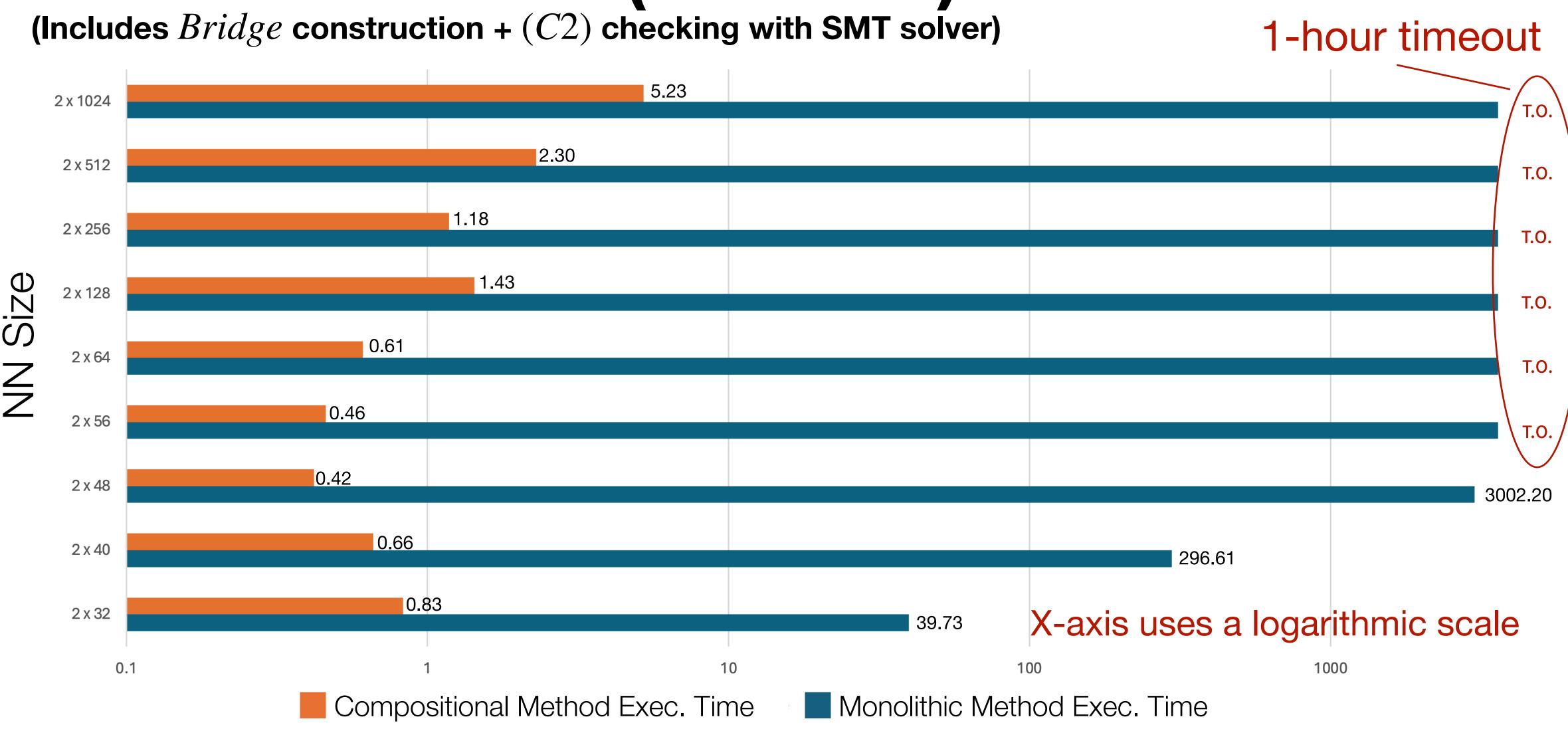
- Trained 9 NN controllers, from 2×32 neurons to 2×1024 neurons
- Use same environment with different NN controllers

- Trained 9 NN controllers, from 2×32 neurons to 2×1024 neurons
- Use same environment with different NN controllers
- Compare monolithic vs compositional method

- Trained 9 NN controllers, from 2×32 neurons to 2×1024 neurons
- Use same environment with different NN controllers
- Compare monolithic vs compositional method
- Z3 for the monolithic method

- Trained 9 NN controllers, from 2×32 neurons to 2×1024 neurons
- Use same environment with different NN controllers
- Compare monolithic vs compositional method
- Z3 for the monolithic method
- Z3 and AutoLIRPA for the compositional method

Execution Times (seconds)



Use inductive invariant method to verify NNCS over infinite time horizon

- Use inductive invariant method to verify NNCS over infinite time horizon
- Novel compositional method to overcome the scalability issues of the monolithic method

- Use inductive invariant method to verify NNCS over infinite time horizon
- Novel compositional method to overcome the scalability issues of the monolithic method
- Results: reduce the execution time from hours to seconds

Summary

- Use inductive invariant method to verify NNCS over infinite time horizon
- Novel compositional method to overcome the scalability issues of the monolithic method
- Results: reduce the execution time from hours to seconds
- Artifact available online: https://github.com/YUH-Z/comp-indinv-verification-nncs

Summary

- Use inductive invariant method to verify NNCS over infinite time horizon
- Novel compositional method to overcome the scalability issues of the monolithic method
- Results: reduce the execution time from hours to seconds
- Artifact available online: https://github.com/YUH-Z/comp-indinv-verification-nncs
- Future work: automated discovery of *IndInv*

Summary

- Use inductive invariant method to verify NNCS over infinite time horizon
- Novel compositional method to overcome the scalability issues of the monolithic method
- Results: reduce the execution time from hours to seconds
- Artifact available online: https://github.com/YUH-Z/comp-indinv-verification-nncs
- Future work: automated discovery of *IndInv*

Thank you!

Thank you!

Details

Details

• 3.3GHz 8-core AMD CPU, 16 GB memory, RTX3060 GPU

Details

- 3.3GHz 8-core AMD CPU, 16 GB memory, RTX3060 GPU
- Z3 on CPU

Details

- 3.3GHz 8-core AMD CPU, 16 GB memory, RTX3060 GPU
- Z3 on CPU
- AutoLIRPA on GPU with CUDA enabled

2D Maze Case Study

NN	size	Verified?		Monolithic		Compositional		L#Splits		#SMT		#NNV	
				execution time		execution time				queries		queries	
		Det	NDet	Det	NDet	Det	NDet	Det	NDet	Det	NDet	Det	NDet
$2 \times$	32	$ \mathrm{T} $	T	51.59	39.73	0.73	0.83	12	14	61	71	49	57
$2 \times$	40	Γ	T	113.69	296.61	0.70	0.66	13	13	66	66	53	53
$2 \times$	48	T	T	410.14	3002.20	0.52	0.42	10	8	51	41	41	33
$2 \times$	56	Γ	T	1203.76	T.O.	0.42	0.46	8	9	41	46	33	37
$2 \times$	64	T	T	T.O.	T.O.	0.76	0.61	15	12	76	61	61	49
$2 \times$	128	F	T	T.O.	T.O.	2.21	1.43	64	28	225	141	160	113
$2 \times$	256	T	T	T.O.	T.O.	1.68	1.18	27	23	136	116	109	93
$2 \times$	512	T	T	T.O.	T.O.	3.04	2.30	60	45	301	226	241	181
$2 \times$	1024	T	T	T.O.	T.O.	1.94	5.23	38	102	191	511	153	409

Theorem: Completeness

If (M) holds, then there exists Bridge such that (C1) and (C2) hold

Theorem: Completeness

If (M) holds, then there exists Bridge such that (C1) and (C2) hold

Theorem: Completeness

If (M) holds, then there exists Bridge such that (C1) and (C2) hold

If (M) does not hold, we want to avoid hopeless search for Bridge

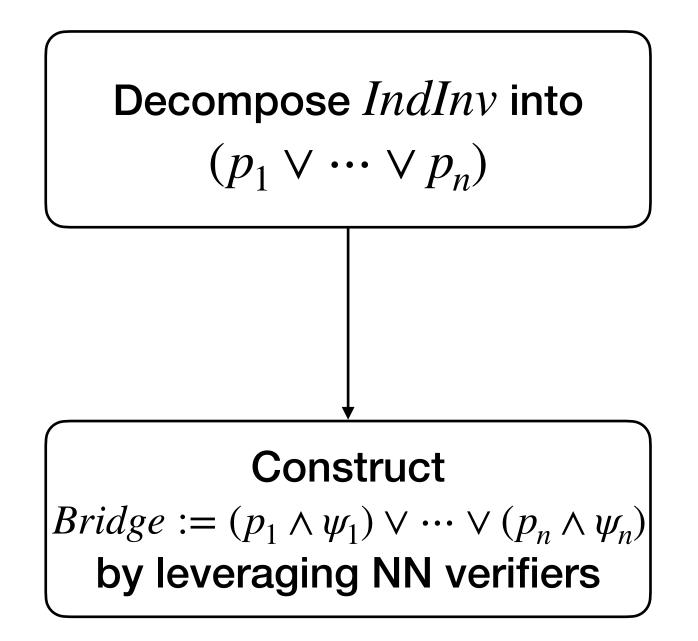
Theorem: Completeness

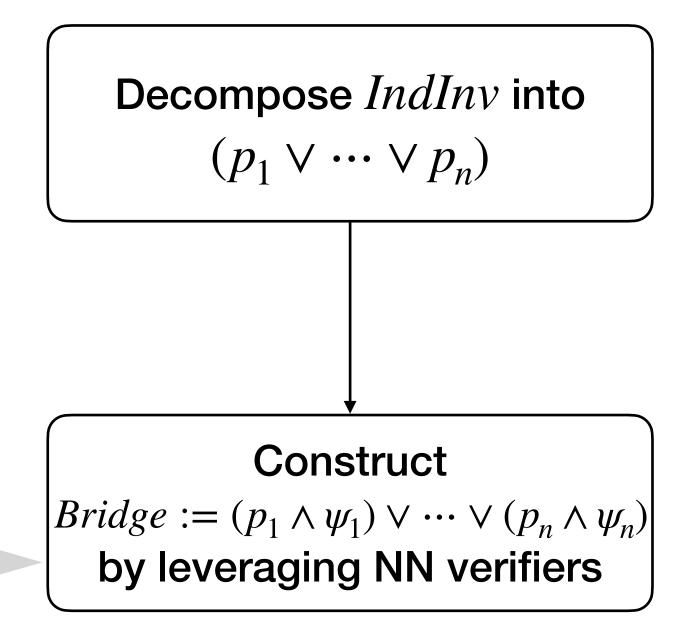
If (M) holds, then there exists Bridge such that (C1) and (C2) hold

If (M) does not hold, we want to avoid hopeless search for Bridge

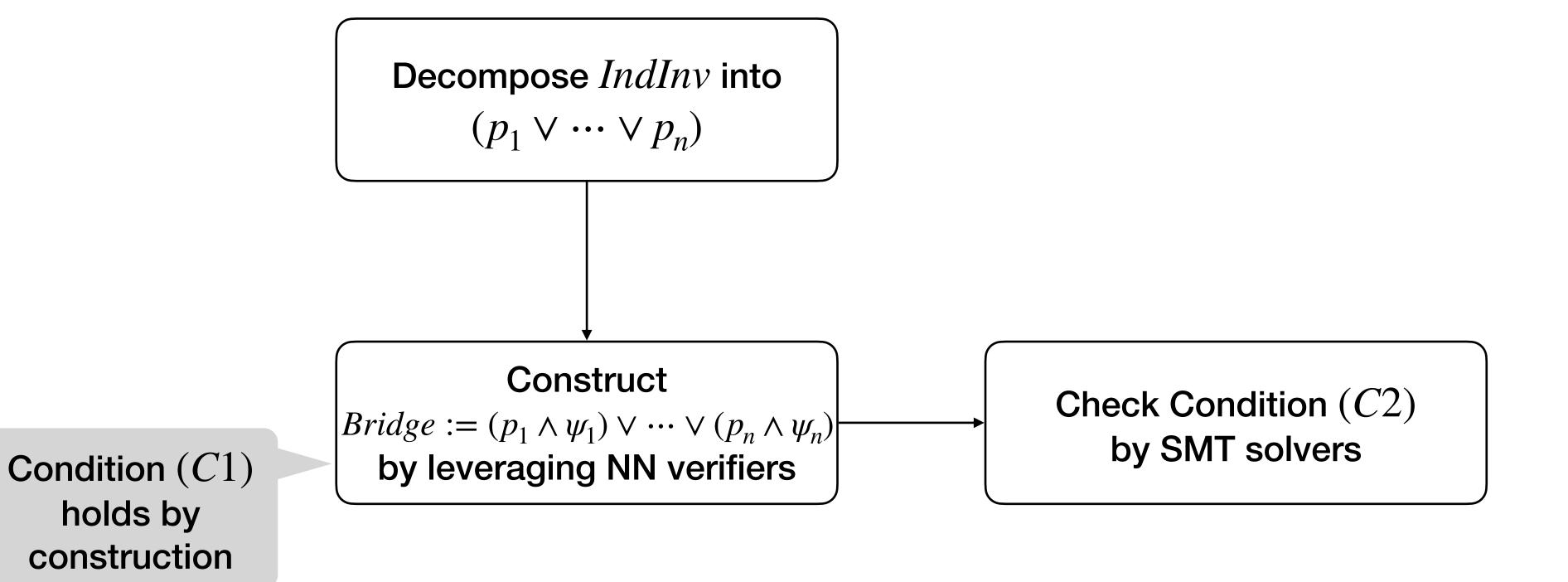
A practical **falsification** heuristic inherits the decomposition ideas

Decompose IndInv into $(p_1 \lor \cdots \lor p_n)$

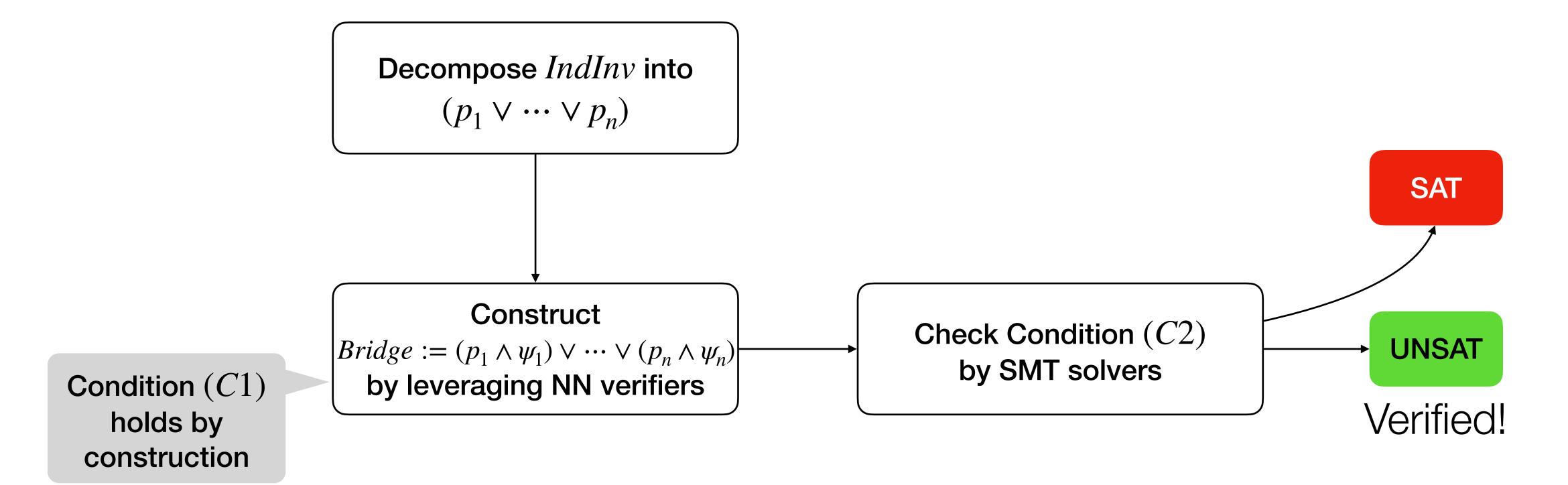




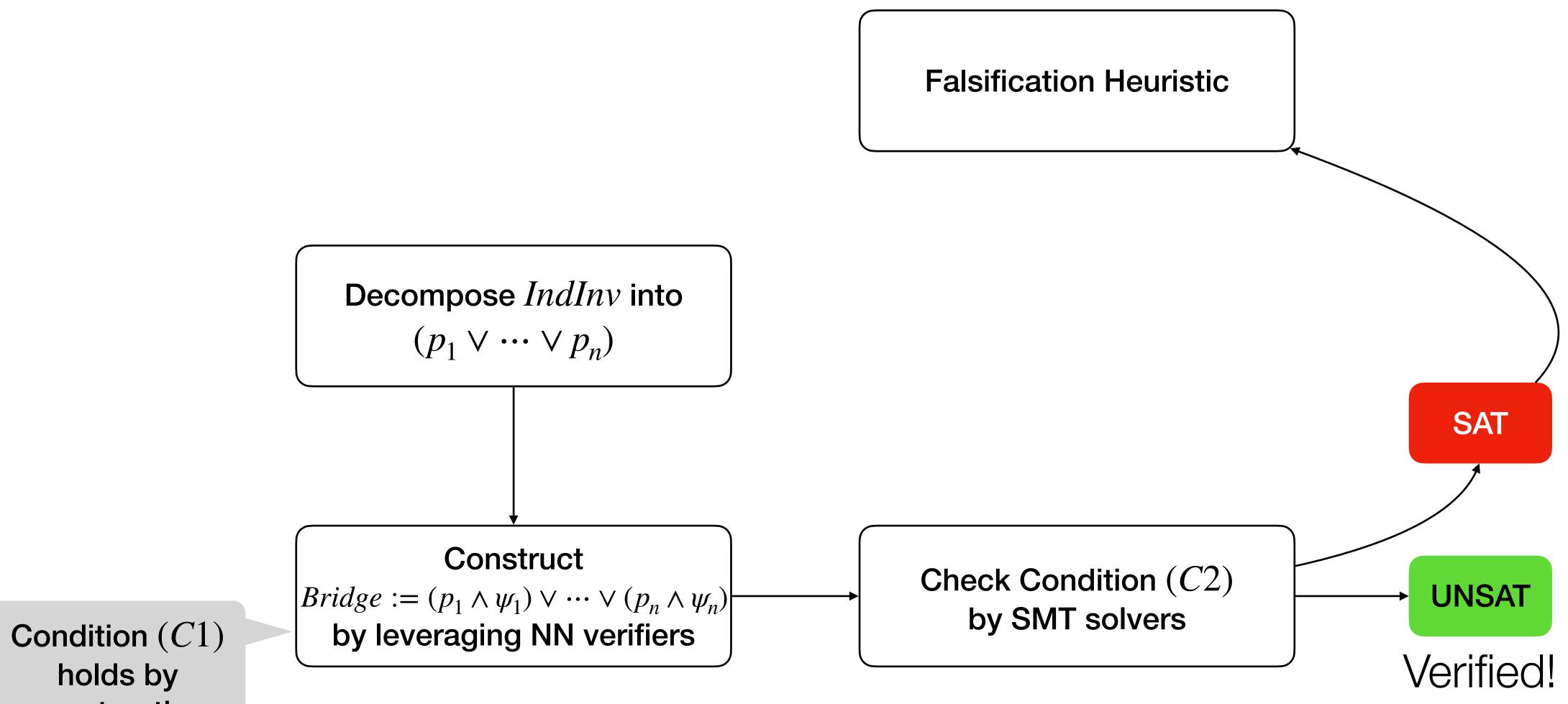
Condition (C1) holds by construction



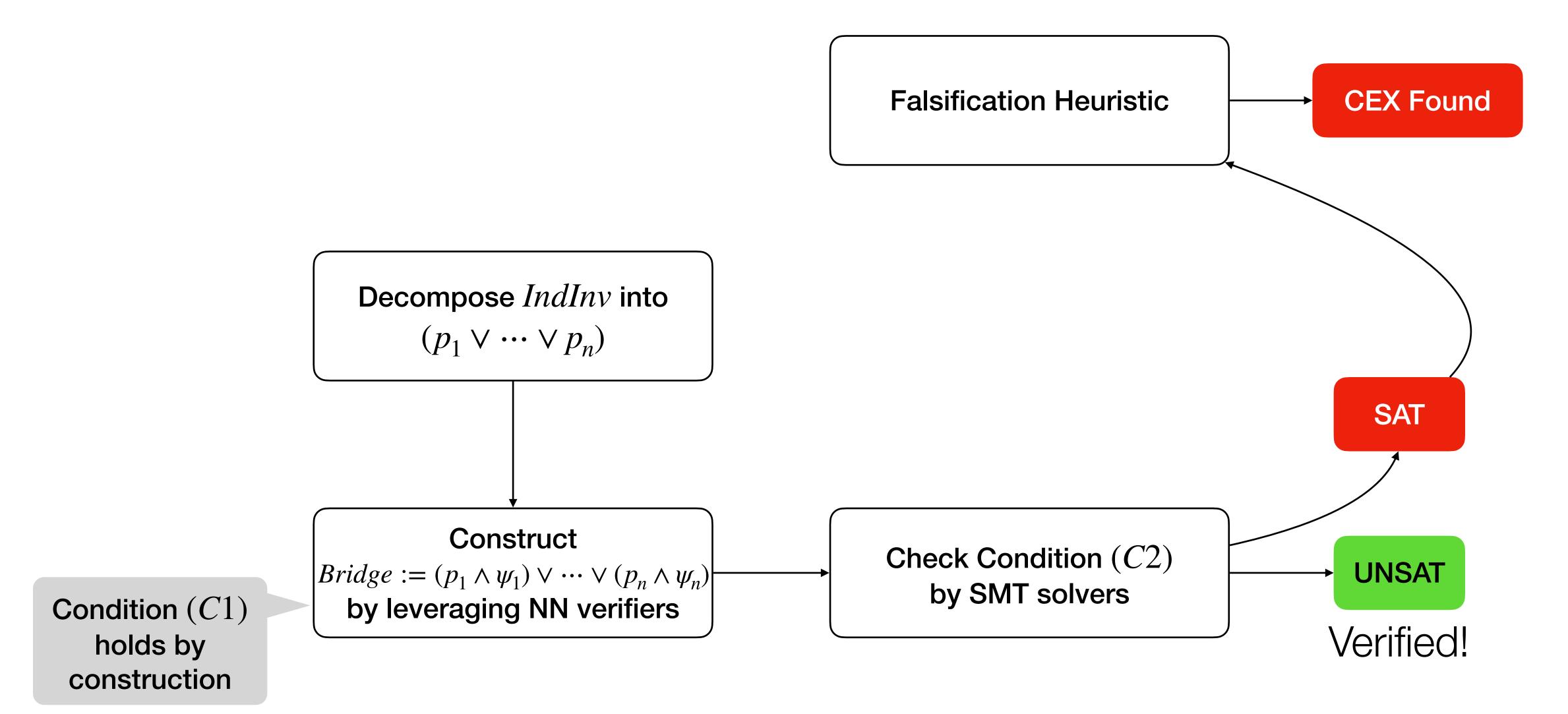
holds by construction

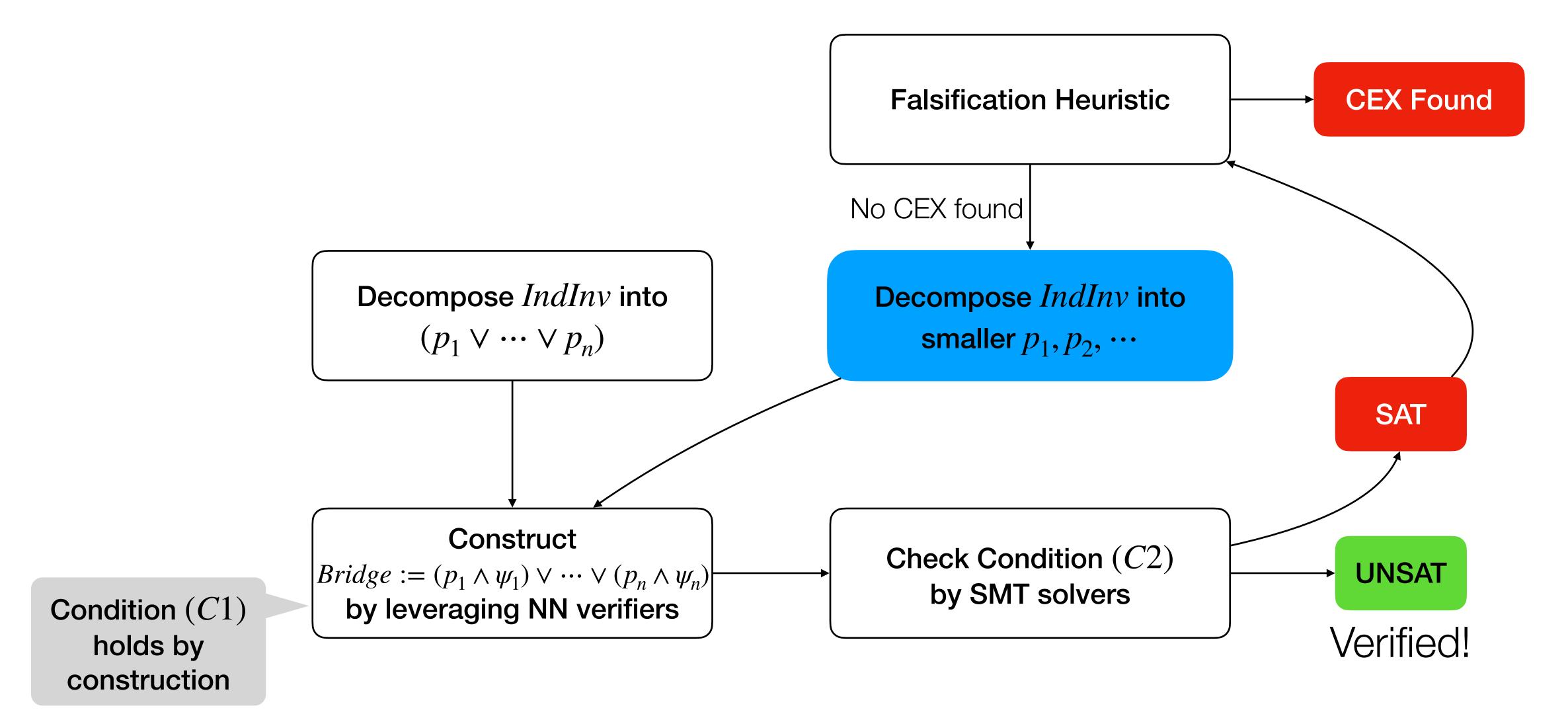


31



construction





Termination of the Algorithm

Termination of the Algorithm

Theorem: Completeness

If (M) holds, then there exists Bridge such that (C1) and (C2) hold

Termination of the Algorithm

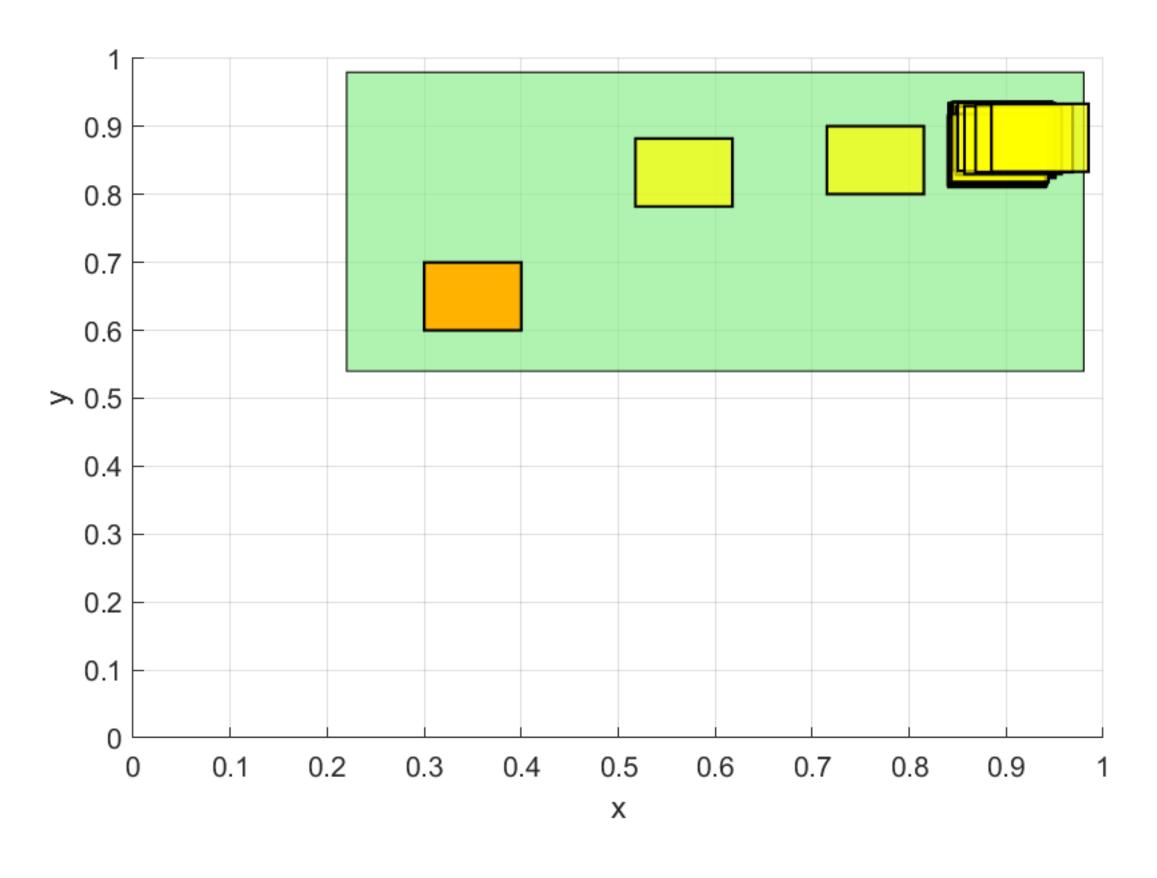
Theorem: Completeness

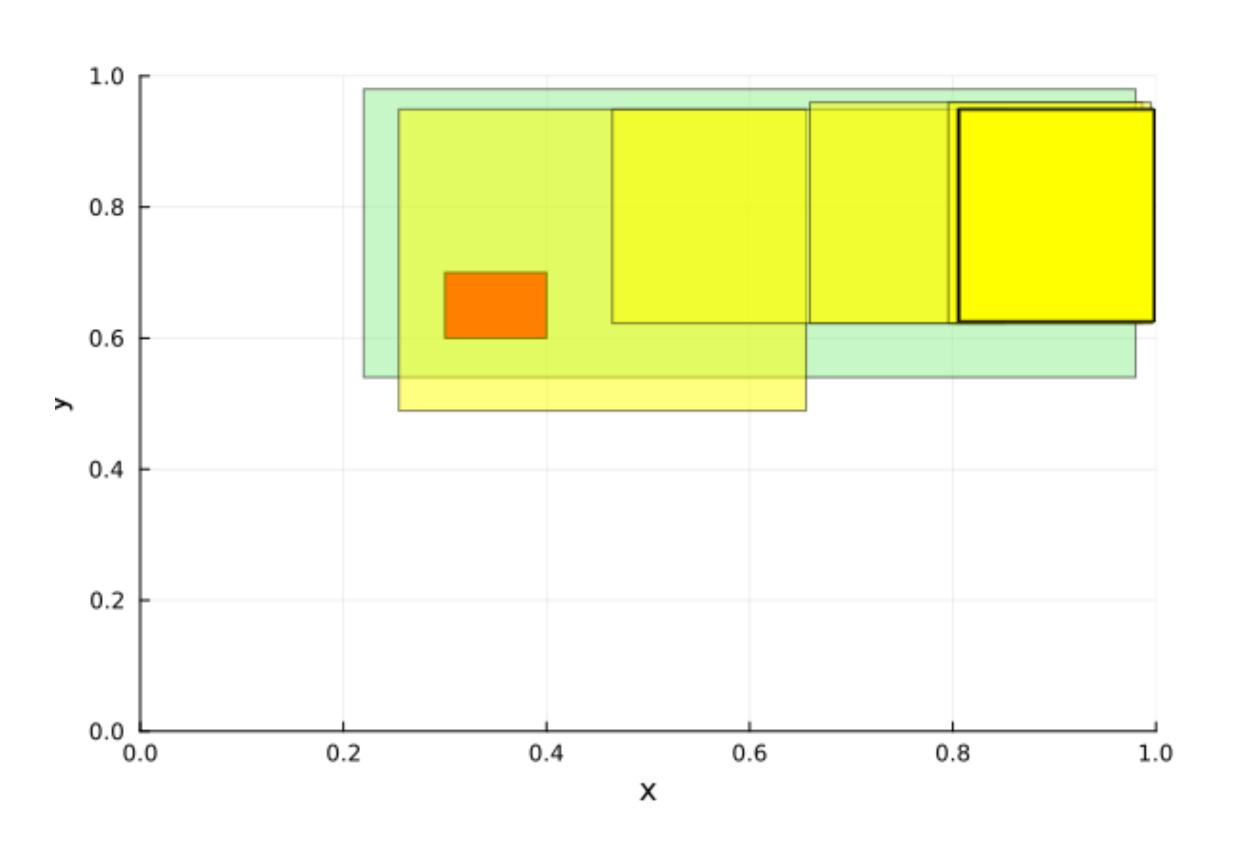
If (M) holds, then there exists Bridge such that (C1) and (C2) hold

Algorithm

Termination not guaranteed

Compare with Reachability Analysis





NNV (2 x 512)

JuliaReach (2 x 512)

I. Encode $Next_{ENV}$ into NNV Specification

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

Use NNV as black-box

NNV Specification

NN takes x, outputs y

Given P(x), guarantee Q(y)

I. Encode $Next_{ENV}$ into NNV Specification

 $(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$

not straightforward to encode, e.g. our case study

Use NNV as black-box

NNV Specification

NN takes x, outputs y

Given P(x), guarantee Q(y)

II. Encode $Next_{ENV}$ as a Part of Neural Network

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

II. Encode $Next_{ENV}$ as a Part of Neural Network

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

 $Next_{ENV}$ may contain operators that NNVs cannot handle

II. Encode $Next_{ENV}$ as a Part of Neural Network

$$(IndInv \land Next_{NNC} \land Next_{ENV}) \implies IndInv'$$

 $Next_{ENV}$ may contain operators that NNVs cannot handle

 $Next_{ENV}$ may be non-deterministic, while NNVs typically assume NN to be deterministic