Scheme@33

[Extended Abstract]

William D Clinger

Northeastern University
will@ccs.neu.edu

ABSTRACT

Scheme began as a sequential implementation of the Actor
model, from which Scheme acquired its proper tail recursion
and first class continuations; other consequences of its ori-
gins include lexical scoping, first class procedures, uniform
evaluation, and a unified environment. As Scheme devel-
oped, it spun off important new technical ideas such as de-
limited continuations and hygienic macros while enabling re-
search in compilers, semantics, partial evaluation, and other
areas. Dozens of implementations support a wide variety
of users and aspirations, exerting pressure on the processes
used to specify Scheme.

Categories and Subject Descriptors

D.3 [Programming Languages]: General

General Terms

design,languages,standardization

Keywords

Lisp,Scheme, Actor model

1. INTRODUCTION

Lisp’s notation for functions came from the lambda calcu-
lus. In 1975, Gerald Jay Sussman and Guy Lewis Steele
Jr returned to those roots by adopting the applicative (call-
by-value) lambda calculus’s semantics for Scheme, their new
dialect of Lisp.

Scheme’s foundation in the lambda calculus provides sim-
plicity and power. Scheme demonstrated elegant solutions
to several of Lisp’s outstanding problems. A few of those so-
lutions (lexical scoping and first class procedures, also known
as closures) were later adopted by Common Lisp. Scheme
contributed to the maturation and growing acceptance of
functional programming languages, and Scheme’s influence
can also be seen in languages such as Java, C#, Python,
Ruby, and Javascript/ECM Ascript.

This retrospective reviews the central ideas of Scheme, traces
some of those ideas to their origins in the lambda calculus
and the Actor model, lists some of Scheme’s many technical
contributions, and outlines the evolution of Scheme to the
present day.

2. POWER FROM SIMPLICITY

In retrospect, Scheme is the result of fusing Lisp with a
certain minimalist philosophy or attitude [12]:

Programming languages should be designed
not by piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.

For example, Scheme solved Lisp’s funarg problem [11] by
replacing dynamic scoping with lexical scoping and by re-
moving all restrictions on the dynamic extent of variables
and objects.

Scheme demonstrates that a very small number
of rules for forming expressions, with no restric-
tions on how they are composed, suffice to form
a practical and efficient programming language
that is flexible enough to support most of the
major programming paradigms in use today.

For example, there are only five distinct kinds of expression
in core Scheme:

Exp == Id
u= (lambda (Id ...) Ezp)
= (Exp ...)

w= (if Exp Exp Exp)
(set! Id Ezxp)

The first three productions are those of the lambda calculus,
extended to allow functions to accept an arbitrary number
of arguments.

(The last of the five productions is necessary because Scheme
variables are mutable. This is often regarded as a mis-
take in the design of Scheme; immutable variables combined

with mutable references (one-element vectors) would sim-
plify Scheme even further without sacrificing power.)

In addition to expressions, Scheme allows variable and macro
definitions to appear in certain contexts. In R6RS Scheme,
a library syntax allows programmers to export selected def-
initions while hiding others.

From the start, Scheme’s design has followed a simple strat-
egy:

1. Get procedures right.
2. Add macros.

3. Everything else is just a library.

Scheme’s modernization of procedures and introduction of
reliable and powerful macro technologies have been among
its main technical contributions.

Scheme’s main shortcoming has been the limited number of
portable libraries. After too many years, the SRFI process
and R6RS libraries, both discussed in a later section, began
to address this problem.

3. GETTING PROCEDURESRIGHT

Getting procedures right in Scheme was mostly a matter of
making call-by-value lambda calculus into the core of a prac-
tical programming language. That involved the abandon-
ment of several practices that had become part of Lisp’s tra-
dition: dynamic scoping, representing functions as lambda
expressions, dynamic extent for lambda-bound variables, dis-
tinct sets of rules for evaluating operators and operands
of procedure calls, a separate environment for procedure-
valued variables, and pushing a stack frame for every proce-
dure call.

More subtly, getting procedures right was also a matter of
treating continuation-passing style (CPS) as a normal, even
fundamental, style of programming, and of regarding the
more usual direct style as a kind of syntactic sugar for CPS.

This retrospective will give examples to illustrate (1) the
funarg problem, whose interest is primarily historical, and
(2) proper tail recursion, whose importance is only now be-
ginning to be appreciated by the programming languages
community at large.

3.1 TheFunarg Problem

Prior to Scheme, most dialects of Lisp tried to represent
functions as lambda expressions or other code. The values
of a lambda expression’s free variables were obtained from
a dynamic environment that mapped each variable to the
argument to which a formal parameter that happened to
share that variable’s name had most recently been bound by
a call, omitting bindings created by calls to procedures that
had already returned. That stack-like binding semantics was
easy to implement but led to the so-called funarg problem,
in which the free variables of a lambda expression would
occasionally map to the wrong value or to no value at all.

Consider, for example, the free reference to x in the lambda
expression for f below. If the function £ were represented
by its lambda expression, with the dynamic environment
supplying the value of x, then f’s reference to x would resolve
to one of the lists bound by the other lambda expression’s
formal parameter of the same name, instead of resolving
to its intended value: the scalar argument that was passed
to add-scalar-to-lists. Consequently, the + procedure
would complain that it doesn’t know to add that list to a
number.

;33 Given a scalar x and a list y of lists of
;33 numbers, returns a list that is like y except x
;33 has been added to every number. Example:

;33 (add-scalar-to-lists 10 ’((1 2) (3 4)))
;33 returns ((11 12) (13 14))

(define add-scalar-to-lists
(lambda (x y)
(let ((f (lambda (y) (+ x y))))
(map (lambda (x) (map f x))
¥))))

In Scheme, however, procedures are objects in their own
right, and are distinct from lambda expressions and other
S-expressions. Scheme’s procedures can be regarded as in-
stances of lambda expressions, and are generally represented
as closures, which are data structures that combine a proce-
dure’s code (typically a compiled form of the original lambda
expression) with its environment, which furnishes the values
of all variables that occur free within the procedure’s code.
Those free variables can be regarded as the instance vari-
ables of the procedure object.

Scheme, like most other programming languages since Algol,
is lexically (or statically) scoped, so all references to x in
the example above resolve to the intended arguments. This
provided an elegantly simple and completely general solution
to the funarg problem that had bedevilled most previous
dialects of Lisp.

3.2 Proper Tail Recursion

All of Scheme’s control structures macro-expand into a very
small core language that consists of a call-by-value lambda
calculus extended with the McCarthy conditional. Scheme’s
viability therefore depends upon the efficiency with which
loops and other common control structures can be translated
into recursion.

The key to Scheme’s efficiency is proper tail recursion, which
is an unfortunate name for the asymptotic space complexity
achieved by creating continuations intelligently. Proper tail
recursion is a simple idea, easily implemented, but almost all
implementations of almost all programming languages waste
asymptotic space by allocating continuations unnecessarily.

Allocating a continuation frame for every procedure call
wastes asymptotic space. Proper tail recursion is more effi-
cient because continuations are allocated only for statically
nested procedure calls. When a procedure’s code contains a

call that is not nested within another call, and is not nested
within any other syntactic construct for which a new con-
tinuation would have to be created, then the call occurs in
a tail context' and is said to be a tail call. The continuation
for a tail call is always equivalent to the continuation that
was passed as an implicit argument to the procedure that
contains the tail call, so it would be wasteful to allocate new
continuations for tail calls.

Scheme mandates proper tail recursion, as do most other
functional and higher order languages. Scheme was the first
dialect of Lisp to mandate proper tail recursion, and ap-
pears to have been the first programming language for which
proper tail recursion was defined with mathematical preci-
sion [9, 5].

Proper tail recursion is just as important for object-oriented
programs as for functional programs, even though few (if
any) object-oriented languages offer proper tail recursion.

The absence of proper tail recursion in object-oriented lan-
guages forces programmers to write ugly code. For an exam-
ple, consider the problem of adding immutable lists, mod-
elled on those of Lisp, to a language like Java. Standard de-
sign recipes would give us an abstract base class, say FList,
with concrete subclasses Empty and Pair. To implement
a contains method modelled after the member procedure
of Lisp/Scheme, we would declare contains as an abstract
method within FList and add the following definitions to
the Empty and Pair classes:

class Empty extends FList {

boolean contains (Object x) { return false; }

}

class Pair extends FList {
Object first;
FList rest;

boolean contains (Object x) {
return first.equals(x) || rest.contains(x);

}

That simple and elegant implementation would also be ef-
ficient if Java were properly tail recursive. Since Java cur-
rently makes no provision for proper tail recursion, however,
Java programmers must rewrite the tail-recursive definition
of contains into something like

'In a conditional expression, for example, the test’s contin-
uation is not the same as the continuation for the entire
conditional expression, so the test’s context is not a tail
context. The “then” and “else” expressions have the same
continuation as the entire conditional expression, however,
so their contexts are tail contexts if and only if the entire
conditional expression is in a tail context.

boolean contains (Object x) {
FList 1lst = this;
while (1st instanceof Pair) {
if (((Pair) 1st).first.equals(x))
return true;
else 1st = ((Pair) lst).rest;
}

return false;

As can be seen, Java’s failure to guarantee proper tail re-
cursion forces programmers to write ugly code that violates
the Law of Demeter [10] and other generally accepted rules
of style.

4. ORIGIN OF SCHEME

Several of Scheme’s main ideas come from Carl Hewitt’s Ac-
tor model of concurrent computation, which made use of
continuation-passing style, proper tail recursion, and other
ideas taken from research on formal semantics and lambda
calculus.

In the fall of 1975, Guy Steele was a new graduate student
at the MIT Artificial Intelligence Laboratory, where he be-
came interested in Hewitt’s Actor model. Unfortunately, the
syntactic complexity of Hewitt’s Plasma language seemed to
obscure rather than to clarify the model’s main ideas. Pro-
fessor Gerry Sussman suggested that he and Steele could
improve their understanding of the Actor model by imple-
menting a simple interpreter for sequential actors, using a
more Lisp-like syntax. They did so. When they were done,
they noticed that the code for creating an actor looked just
like the code for lambda expressions, and the code for invok-
ing an actor looked just like the code for calling a closure.
They concluded that actors are just procedures, and that
actor scripts are just lambda expressions.

Why hadn’t that been obvious before? Because contem-
porary dialects of Lisp evaluated operators differently from
operands and did not guarantee proper tail recursion. Had
Steele and Sussman followed Lisp tradition instead of allow-
ing their interpreter’s code to be influenced by the Actor
model, the code for creating an actor would have been dif-
ferent from the code for lambda expressions, and the code
for invoking an actor would have been different from the
code for calling a closure.

Hence Steele and Sussman’s interpreter was not just Lisp:
It was Lisp done right. Uniform evaluation of operators
and operands implied a unified (Lispl) environment. The
independence of computational actors, which Hewitt had
stressed for reasons of concurrency, implied lexical (static)
scoping. The Actor model’s treatment of direct style as
syntactic sugar for continuation-passing style, with syntac-
tic operators for converting between the two styles, implied
proper tail recursion.

Following in the tradition of Planner and Conniver, Steele
and Sussman decided to call their new language Schemer.
The “r” was soon dropped because the MIT AI Lab’s Incom-
patible Timesharing System (ITS) limited file names to six
characters.

5. TECHNICAL CONTRIBUTIONS

Beginning with their original description of Scheme in De-
cember 1975, Steele and Sussman co-authored a set of about
ten “lambda papers” that explained what they had learned
from inventing, implementing, and improving the Scheme
language. These lambda papers include a revised report on
Scheme in January 1978 [8] and Steele’s master’s thesis in
May 1978, which described his innovative RABBIT compiler
that used CPS as its primary intermediate language [7].

The simplicity and power of Scheme have made it extremely
useful for research, and hundreds of technical papers that
use or describe Scheme have now been written. Jim Bender’s
excellent online bibliography of research related to Scheme
[3] lists the following major categories: the original lambda
papers by Steele and Sussman, language features and seman-
tics, macros, object-oriented programming, modules and com-

ponent-oriented programming, continuations and continuation-

passing style, XML and web programming, applications,
compiler technology and implementation techniques, dis-
tributed, parallel, and concurrent programming, partial eval-
uation, and reflection.

Those research results include the discovery of delimited
continuations, efficient strategies for implementing first class
continuations, formal specifications of Scheme’s core seman-
tics, rigorous proofs of compiler correctness, development
and practical applications of CPS and A-normal form, higher-
order and object-oriented flow analysis (kCFA), soft typing,
contracts, accurate conversions between binary and decimal,
and hygienic macro expansion.

6. EVOLUTION OF SCHEME

Scheme became popular among educators and researchers
in the early 1980s, and was being used as a general purpose
programming language by the late 1980s. Scheme’s simplic-
ity soon contributed to an abundance of implementations,
creating portability issues that have been addressed, with
varying degrees of success, by the standardization efforts
outlined below.

Standardization has been impeded by the competing needs
and desires of researchers (who insisted upon keeping the
core simple), educators (who advocated a wide variety of fea-
tures that were believed to have pedagogical value), and pro-
grammers, whose own needs were quite diverse. Program-
mers of embedded systems wanted an extremely small lan-
guage in which even floating point arithmetic would be op-
tional; those who were using Scheme for prototyping wanted
fancy programming environments and large libraries; those
who were using Scheme for scripting prized access to exter-
nal resources; and those who used Scheme for systems pro-
gramming often valued efficiency to a degree that mystified
prototypers and script-writers.

6.1 TheRnRS Authors

By the early 1980s, Hal Abelson and Gerry Sussman were
using Scheme to teach the freshman CS course at MIT. Their
textbook [2] and the MIT implementation of Scheme had
already diverged from Steele and Sussman’s revised report
of January 1978 [8].

Meanwhile at least five other implementations of Scheme

were well under way: T, Scheme 84, PC Scheme, Mac-
Scheme, and Chez Scheme. As these implementations con-
tinued to diverge, their implementors and users began to
find it difficult even to read Scheme code written for other
implementations. In October 1984, fifteen representatives of
the then-major implementations met at Brandeis University
to work toward a better and more widely accepted standard
for Scheme. Their report, the Revised Revised Report on
Scheme, was published in the summer of 1985 [6]. Another
round of revision resulted in the Revised® Report on the Al-
gorithmic Language Scheme in 1986 [12].

The authors of these reports, known as the R*RS (or RnRS)
authors, continued to propose and to debate potential changes
by electronic mail and at occasional meetings. In 1988, the
R*RS authors met again at the ACM Conference on Lisp
and Functional Programming, just a few days before the first
meeting of the working group that developed the IEEE-1178
standard discussed below. This and other meetings resulted
in the Revised® Report [4], which was developed in parallel
with the IEEE standard.

The rule of consensus that had been agreed upon at Bran-
deis soon morphed into a rule of unanimity: no significant
changes could be made unless all of the self-selected and self-
perpetuating R*RS authors agreed to the change. By the
time the Revised® Report was published in 1998 [9], it was so
hard to secure unanimous agreement for new proposals that
few authors felt it was worthwhile to agitate for change.

6.2 |EEE Standard 1178-1990

The Scheme Working Group of the Microprocessor and Mi-
crocomputer Standards Subcommittee of the IEEE began
its work in 1988. The working group was chaired by Pro-
fessor Chris Haynes of Indiana University. IEEE Standard
1178-1990 was edited by David H Bartley, Chris Hanson,
and Jim Miller, and “drew heavily” on the Revised® Report
and drafts of the Revised* Report [1].

IEEE Standard 1178-1990 became an ANSI standard via a
routine process whose announcement in an obscure ANSI
publication went entirely unnoticed.

6.3 Recent Developments

A new standardization process began in 2003, under a Scheme
Language Steering Committee whose original members were
Alan Bawden, Guy Steele, and Mitch Wand. That com-
mittee selected a committee of seven editors (later reduced
to five, and then temporarily reduced to four) that began
work on two documents that were ratified in August 2007
by 65.7% of an electorate consisting of about 100 voters.

These new standards are the Revised® Report on the Algo-
rithmic Language Scheme and the Revised® Report on the
Algorithmic Language Scheme — Standard Libraries [13].
Two auxiliary documents were produced by the editors but
were not subject to ratification.

R6RS Scheme bears approximately the same relation to R6RS
(and IEEE/ANSI) Scheme that Algol 68 bears to Algol 60:
the two languages have almost the same expressions, but
there is no overlap between programs. The semantics of
R5RS/IEEE/ANSI Scheme is designed to support interac-

tive read/eval/print loops with dynamic loading of libraries.
R6RS Scheme is designed for batch execution of whole pro-
grams, and forbids interactive read/eval/print loops by re-
quiring the entire program to pass certain static checks be-
fore any part of the program is allowed to begin its execution.

Within a year after ratification of the R6RS, two imple-
mentations of R5RS Scheme (Larceny and PLT) had added
R6RS modes to their R5RS modes of operation. Four en-
tirely new implementations of R6RS had been developed,
with no support for the R5RS or previous standards; one of
those (Ypsilon) had been completed and two others (Ikarus
and IronScheme) were complete enough to run some R6RS
programs. On the other hand, eleven implementations of
Scheme had announced their intention to remain within the
R3RS/R4RS/R5RS/IEEE/ANSI tradition. Although porta-
bility of Scheme programs was an explicit goal of the R6RS,
it is not yet clear whether its net effect will be to improve
or to degrade portability.

6.4 Libraries

Scheme’s main weakness has been a shortage of portable
libraries. Although several implementations have accumu-
lated impressive sets of libraries that work with only one
implementation, only three collections of libraries have been
successful enough to promote portability between implemen-
tations:

e SLIB: http://people.csail.mit.edu/jaffer/SLIB

e SRFI: http://srfi.schemers.org/

e R6RS: http://www.rérs.org/

Of these three, the SRFI (Scheme Request For Implemen-
tation) project has specified the most widely accepted li-
braries, but implementations vary widely in their support
for SRFI libraries. All of the core SLIB libraries are sup-
ported by every implementation that supports SLIB, and all
of the standard R6RS libraries are supported by the three
completed implementations of the R6RS.

7. CONCLUSIONS

Many of Scheme’s once-radical ideas have become influen-
tial, and Scheme remains a significant advance over several
of the languages it has influenced.

As a research language, Scheme has been wildly successful.
As a teaching language, Scheme endures. As a programming
language, Scheme has been hampered by weak standards
and inadequate libraries, and by the incompatibilities that
proliferated as each major implementation promoted its own
extensions and libraries. Despite its problems, Scheme has
been more successful and retains more vitality than most
other 33-year-old programming languages.

8. REFERENCES
[1] IEEE Standard for the Scheme Programming
Language. IEEE Standard 1178-1990. IEEE, 1991.
[2] H. Abelson and G. J. Sussman with J. Sussman.
Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA, 1985.

(3]
[4]

[5]

[10]

[11]

[12]

[13]

J. Bender. Bibliography of Scheme-related Research.
http://library.readscheme.org/

W. Clinger and J. Rees [editors]. The revised* report
on the algorithmic language Scheme. ACM Lisp
Pointers, 4(3):1-55, 1991.

W. D. Clinger. Proper tail recursion and space
efficiency. In Proceedings of the 1998 ACM Conference
on Programming Language Destgn and
Implementation, pages 174-185. ACM, June 1998.

W. Clinger [editor]. The revised revised report on
Scheme, or an uncommon Lisp. MIT AI Memo 848,
August 1985.

G. L. Steele Jr. Rabbit: a compiler for Scheme. MIT
AI Memo 474, May 1978.

G. L. Steele Jr and G. J. Sussman. The revised report
on Scheme, a dialect of Lisp. MIT AI Memo 452,
January 1978.

R. Kelsey, W. Clinger, and J. Rees [editors]. The
revised® report on the algorithmic language Scheme.
ACM SIGPLAN Notices, 33(9):26-76, September
1998.

K. J. Lieberherr. Formulations and benefits of the Law
of Demeter. ACM SIGPLAN Notices, 24(3):67-78,
March 1989.

J. Moses. The function of FUNCTION in Lisp or why
the funarg problem should be called the environment
problem. ACM SIGSAM Bulletin, 15:13-27, July 1970.
J. Rees and W. Clinger [editors]. The revised® report
on the algorithmic language Scheme. ACM SIGPLAN
Notices, 21(12):37-79, December 1986.

M. Sperber, R. K. Dybvig, M. Flatt, and

A. van Straaten [editors]. Revised® report on the
algorithmic language Scheme. http://www.r6érs.org/

