
48 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 49 more queue: www.acmqueue.com

 Programming

GREGORY V. WILSON,
UNIVERSITY OF TORONTO

Is an open, more flexible
programming environment
just around the corner?

Extensible

Programming
LanguagesFO

CU
S

48 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 49 more queue: www.acmqueue.com

IIn his keynote address at OOPSLA ’98 (Object-Oriented
Programming, Systems, Languages, and Applications),
Sun Microsystems Fellow Guy L. Steele Jr. said, “From
now on, a main goal in designing a language should be to
plan for growth.” Functions, user-defined types, opera-
tor overloading, and generics (such as C++ templates)
are no longer enough: tomorrow’s languages must allow
programmers to add entirely new kinds of information to
programs, and control how it is processed.

This article argues that next-generation programming
systems can accomplish this by combining three specific
technologies:
• Compilers, linkers, debuggers, and other tools that are

frameworks for plug-ins, rather than monolithic appli-
cations.

• Programming languages that allow programmers to
extend their syntax.

• Programs that are stored as XML documents, so pro-
grammers can represent and process data and meta-data
uniformly.

These innovations will likely change programming
as profoundly as structured languages did in the 1970s,
objects in the 1980s, and components and reflection in
the 1990s. To see why, we must first examine the short-
comings of the systems that programmers use today. Let’s
begin with two of the most popular: the Unix command
line and Microsoft’s COM (component object model).

 Programming
for the 21st Century

Extensible

50 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 51 more queue: www.acmqueue.com

FRAMEWORKS
If success is measured by longevity, the Unix command
line is the most successful programming system in his-
tory. Now more than 30 years old, it is still the favorite
environment of many developers.

Conventional wisdom attributes its power to its “lots
of little tools” philosophy: instead of writing everything
from scratch, programmers can create complex data-pro-
cessing pipelines with just a few keystrokes by combin-
ing wc, grep, and their kin. This is possible because these
tools use a common data format and communication
protocol. The format is a list of newline-terminated
strings; the protocol is standard input, standard output,
and exit(rc). Together, these conventions define a simple
component model; any program that respects them can
work with any other, no matter what language each is
written in.

The Unix model works well for systems administration
and simple text processing. It cannot, however, reliably
handle data that isn’t representable as a stream of records.
In particular, programs, which are inherently tree-struc-
tured, can’t accurately be parsed using regular expressions
(the biggest guns in the command-line arsenal). Standard
Unix tools therefore can’t do things as simple as changing
the names of variables.

The second weakness of command-line tools is that
command-line flags are clumsy ways of specifying control
flow. Everyone agrees that one-line programs are bad
(well, everyone except die-hard Perl fans), but that is
effectively what tools such as find require users to write.
What is worse, every tool’s command-line mini-language
is different from every other’s. Attempts to stick to simple
on or off options lead to monsters like gcc, which now
has so many flags that programmers are using genetic
algorithms to explore them.1

Rather than abandon line-oriented tools, many
programmers have turned their backs on problems they
can’t handle. Others have turned instead to component
systems, such as Microsoft’s COM. Rather than requiring
programmers to represent everything as lists of strings,
COM lets them pass data structures in memory. Instead

of squeezing their intentions through the narrow filter of
command-line mini-languages, programmers can then
specify their desires using loops, conditionals, method
calls, and all the other features of familiar languages.
The result is that today’s Windows developers can write
programs in Visual Basic, C++, or Python that use Visual
Studio to compile and run a program, Excel to analyze its
performance, and Word to check the spelling of the final
report.

Crucially, developers can also extend these products by
writing plug-ins. For example, Visual Studio interacts with
version control systems through a well-defined API. So
long as someone cares enough to write the bridging code,
any version control system that runs on Windows can be
driven directly from Visual Studio’s buttons and menus.
A similar API allows the popular memory-checking tool
Purify to be used in place of Visual Studio’s own debugger,
and so on.

Pluggability lies at the heart of most of today’s sophis-
ticated applications. Take Apache: everyone knows it’s a
Web server that sends HTML pages in response to HTTP
requests. What is less widely known is that its plug-in sys-
tem allows it to be a platform for other applications. By
writing modules that inspect and modify requests as they
pass through the server, developers can make Apache
provide authentication services, version control, online
games, and much more.

One of the great ironies of the early 21st century is
that the programmers who build component systems for
others are strangely reluctant to componentize their own
tools. Compilers and linkers are still monolithic com-
mand-line applications: files go in, files come out, and the
only way to control what happens in between is through
command-line flags or embedded, vendor-specific direc-
tives. Programmers cannot invoke parsers, analyzers, or
code generators selectively, or insert custom modules to
change how programs are processed. (This is not an open
source versus closed source issue: GCC, the GNU Com-
piler Collection, is no more a framework for plug-ins than
commercial compilers.)

But why would anyone want to do these things? One

Programming
LanguagesFO

CU
S

Extensible
Programming
for the 21st Century

50 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 51 more queue: www.acmqueue.com

answer is given by SUIF (Stanford University Intermedi-
ate Format), a compiler that allows users to plug in their
own optimization modules.2 Developers can add new or
improved optimizations to SUIF by writing a filter and
adding it to the compiler’s configuration. Doing so isn’t
simple, but as with Apache plug-ins, once one developer
has done it, others can immediately share the benefits.

Now, consider your favorite debugger—or rather,
compare it with your favorite editor. You can write
macros for the latter; why not for the former? And why
can’t programmers include code in libraries to control
how debuggers display the data structures those libraries
create? Almost all debuggers display structures as a tree.
This is adequate for shallow acyclic structures, but it’s
frustrating or misleading for large cyclic ones. If debug-
gers were programmable components, or if programmers
could insert display callbacks in libraries, they could
give users much more insight into what their programs
were doing. For example, one of the reasons graphical
debuggers such as DDD (Data Display Debugger, http:
//www.gnu.org/software/ddd/) have failed to catch on is
that they display all data structures in terms of allocated
blocks of memory. If graphical debuggers showed trees as
trees, and queues as queues, programmers would be more
likely to use them.

Making programming tools pluggable frameworks
would be useful across the board, and I believe it is essen-
tial for supporting extensible languages. To see why, we
must look at what extensibility means, and where it has
been successful.

EXTENSIBLE SYNTAX
Programming languages often grow by formalizing and
generalizing the best practices of their day. Well-nested
goto statements become structured programming’s condi-
tionals and loops; records that are accessed only through
companion functions become objects; functions that are
identical except for data types become generics, and so on.

An extensible language is one that puts this power in
everyone’s hands, instead of reserving it for a standards
committee. A syntactically extensible language allows
programmers to define new forms by specifying what
the new syntax looks like, and how it maps back to the
language’s primitives. A semantically extensible language
allows programmers to define entirely new kinds of
operations, or to change the behavior of built-in ones.
C macros and C++ operator overloading are probably
the most familiar examples of each kind of extensibility,
although both are severely restricted.

Lisp and its child Scheme show how powerful whole-

hearted extensibility can be. Scheme programmers
routinely use its hygienic macros to customize it for specific
problem domains. For example, the macro definition:
(define-macro when
 (lambda (test . branch)
 `(if ,test
 (begin ,@branch))))
tells Scheme to translate:
(when (>= pressure limit)
 (open-valve 20)
 (close-valve))
into:
(if (>= pressure limit)
 (begin
 (open-valve 20)
 (close-valve)))

A less trivial example comes from the Java syntactic
extender, a hygienic macro system for Java.3 With it, pro-
grammers can define transformations to turn this:
check a.equals(b) throws NullPointerException;
into this:
try {
 logCheck(“a.equals(b) throws NullPointerException”);
 a.equals(b);
 noThrowFailure();
} catch (NullPointerException e) {
 checkPassed();
} catch (Throwable t) {
 incorrectThrowFailure(t);
}
We assert without proof that programmers would create
more unit tests if they could write them using the shorter,
more readable, form.

Language extensibility has been around for years, but
is still an academic curiosity. Three problems stand in the
way of its general adoption: its unfamiliarity, the absence
of support for it in mainstream languages, and the cogni-
tive gap between what programmers write and what they
have to debug. The first is slowly being eroded by code
generators such as XDoclet,4 and by the wizards used to
generate manifests and other boilerplate in Enterprise
JavaBeans5 and .NET.6 The second problem is a result of
the first: as programmers become more comfortable with
program transformation tools, language support should
inevitably follow. Java 1.5, for example, allows program-
mers to annotate their programs, so that:
public class CoffeeOrder {
 @Remote public Coffee [] getPriceList() {
 …
 }

52 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 53 more queue: www.acmqueue.com

 @Remote public String orderCoffee(String name,
int quantity) {

 …
 }
}
can be transformed into:
public interface CoffeeOrderIF extends java.rmi.Remote {
 public Coffee [] getPriceList()
 throws java.rmi.RemoteException;
 public String orderCoffee(String name, int quantity)
 throws java.rmi.RemoteException;
}
public class CoffeeOrderImpl implements CoffeeOrderIF {
 public Coffee [] getPriceList() {
 …
 }
 public String orderCoffee(String name, int quantity) {
 …
 }
}

This leaves the third, and thorniest, problem: the
cognitive gap between what programmers write and what
they have to debug. This gap is why so many program-
mers dislike wizards and other code generators. If the
generated code misbehaves, the programmer must:
• Abandon it and write the code by hand (just as if the

high-level generator didn’t exist).
• Edit and debug the code generated by the wizard (which

is invariably more convoluted than what the program-
mer would have written).

• Tweak the source code blindly in the hope of producing
the output that does what the programmer originally
wanted.

The first option leads many programmers to believe
that code generators are a waste of time; the second, to
unmaintainable spaghetti; and the third, to despair.

The only scalable way to bridge this gap is to let pro-
grammers control how linkers, debuggers, and other tools
handle generated code. When programmers add some-
thing to a language, they should be able to plug a module
into the compiler to tell it how to generate code for the

new feature, and another module into the debugger to
tell it how to display uses of that feature.

Rather than today’s “passive” libraries, containing only
code and data for the final program, tomorrow’s program-
mers will work with active libraries.7 These will contain
not only content to be included in the final application,
but also instructions telling processing tools how to
analyze, optimize, and debug that content. As already
mentioned, only a small minority of programmers will
need to create such libraries to make everyone else more
productive, just as only a few need to create plug-ins for
Apache and Visual Studio today.

Pluggable frameworks and active libraries will help
make extensibility accessible, but they will not be enough
on their own. To see why, we must take a closer look at
why extensibility has been so successful in Lisp and its
offspring, but have failed to catch on elsewhere.

MODELS AND VIEWS
Programmers have been joking for decades that Lisp
stands for “lots of irritating single parentheses.” Behind
those jokes lies a profound idea: in Lisp, programs and
data are both represented as nested s-expressions. This
encourages Lisp programmers to think of programs as
data and to manipulate them the same way they manipu-
late everything else.

Most programmers turned up their noses at Lisp’s pre-
fix notation and parentheses. Those same programmers,
however, have raced to adopt XML. Originally intended
for representing data, XML has been pressed into service
as a medium for programs as well. The best-known
example of this is probably JSPs (Java server pages), which
allow programmers to embed fragments of Java programs
in HTML. When a user requests a JSP from a Web server,
the server compiles the JSP into a pure Java servlet, then
compiles and runs the servlet and sends its output to the
user. For example:
<HTML>
<BODY>
<TABLE BORDER=2>
<%

Programming
LanguagesFO

CU
S

Extensible
Programming
for the 21st Century

52 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 53 more queue: www.acmqueue.com

 for (int i = 1; i<=10; i++) {
%>
 <TR>
 <TD><%= i %></TD>
 <TD><%= i*i %></TD>
 </TR>
<%
 }
%>
</TABLE>
</BODY>
</HTML>
becomes:
class MyPage extends Servlet {
 public String handleRequest(
 ServletContainer sc,
 Request req,
 Response res
) {
 PrintWriter out = res.getWriter();
 out.println(“<HTML>”);
 out.println(“<BODY>”);
 out.println(“<TABLE BORDER=2>”);
 for (int i=1; i<=10; i++) {
 out.println(“<TR>”);
 out.println(“<TD>” + (i) + “</TD>”);
 out.println(“<TD>” + (i*i) + “</TD>”);
 out.println(“</TR>”);
 }
 out.println(“</TABLE>”);
 out.println(“</BODY>”);
 out.println(“</HTML>”);
 }
}

This approach has much to recommend it, but it also
has some serious weaknesses. On the positive side, JSPs
allow programmers and graphic designers to see their
code in situ. JSPs also support extensibility: JSP libraries
predefine many tags for common actions, but users can
extend these libraries by defining custom tags, and telling
the JSP system which methods of which classes to invoke
when those tags are used.8

On the negative side, JSPs are a prime example of the
cognitive gap discussed earlier. If something goes wrong
in a complex JSP, its author must wade through pages of
machine-generated Java, or reverse engineer the transla-
tion process to come up with a fix.

Ant, from the Apache Software Foundation, is another
hybrid system that shares these strengths and weak-
nesses. Developed as a platform-independent replace-

ment for Make, Ant has become the de facto standard
build tool for Java. Ant uses XML, rather than a custom
syntax, so off-the-shelf XML tools can be used to create,
inspect, and modify Ant build files (figure 1). However,
Ant shares a weakness with many hybrid systems: much
of what is important in an Ant file isn’t visible at the
XML level. Variable references such as ${src} and ${dist}/
lib/MyProject-${DSTAMP}.jar are much easier for human
beings to read and write than their deeply nested XML
equivalents would be, but are invisible to XML processing
tools. To analyze and manipulate Ant files, programs have
to perform a second, nonstandard round of parsing.

XSL, which is used to translate XML into HTML and
other text formats, shares this flaw. XSL is a more-or-less
declarative language, based on a match/replace execution
model with forall and conditional constructs. It is cleaner

<project name=”MyProject” default=”dist” basedir=”.”>

 <property name=”src” location=”src”/>
 <property name=”build” location=”build”/>
 <property name=”dist” location=”dist”/>

 <target name=”init” description=”setup”>
 <tstamp/>
 <mkdir dir=”${build}”/>
 </target>

 <target name=”compile” depends=”init”>
 <javac srcdir=”${src}” destdir=”${build}”/>
 </target>

 <target name=”dist” depends=”compile”>
 <mkdir dir=”${dist}/lib”/>
 <jar jarfile=”${dist}/lib/MyProject-${DSTAMP}.jar”
basedir=”${build}”/>
 </target>

 <target name=”clean”>
 <delete dir=”${build}”/>
 <delete dir=”${dist}”/>
 </target>
</project> FIG 1

Example Ant File

54 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 55 more queue: www.acmqueue.com

than alternatives (such as transforming XML in Java or
Perl), and there are even source-level debuggers, but once
again, much of what is important in an XSL program is
invisible to an XML parser. For example, consider this
simple XSL program:
<BODY bgcolor=”{/Member/FavoriteColor}”>
 Welcome <xsl:value-of select=”/Member/Name”/>!
 <xsl:if test=”/Member/@level=’gold’”>
 Our special offer to gold members today is now open.
 </xsl:if>
 Your phone numbers are:
 <TABLE border=”1” width=”25%”>
 <TR><TH>Type</TH><TH>Number</TH></TR>
 <xsl:for-each select=”/Member/Phone”>
 <TR>
 <TD><xsl:value-of select=”@type”/></TD>
 <TD><xsl:value-of select=”.”/></TD>
 </TR>
 </xsl:for-each>
 </TABLE>
</BODY>
The first if test checks an individual’s membership level.
The condition in the test is invisible to XML parsers: all
they see is a string, which has to be handed to a special-
purpose tool for analysis.

If mixed representations are so clumsy, why do lan-
guage designers perpetrate them? The answer is simple:
“pure” XML is unpleasant to read and write. The more
explicit the nesting becomes in XML, the harder it is for
people to make sense of it.

But why should they have to? Why, in the early 21st
century, do programmers still insist that their tools have
to draw exactly one glyph on the screen for each byte in
their source files? No one expects AutoCAD or Microsoft
Word to do this; even grizzled old Unix fanatics don’t
expect to be able to open a relational database with Vi or
Emacs. One of the great ironies of the early 21st century
is that secretaries can easily put organizational charts or
cubicle floor plans in e-mail messages, but the program-
mers who made that possible can’t put class diagrams in
their code.

We believe that next-generation programming systems
will most likely store source code as XML, rather than
as flat text. Programmers will not see or edit XML tags;
instead, their editors will render these models to create
human-friendly views, just like Web browsers and other
WYSIWYG editors. For example, a program stored on disk
like this:
<doc>Only replace below threshold</doc>
<cond>
 <test>
 <compare-expr operator=”less”>
 <field-expr field=”age”>
 <evaluate>record</evaluate>
 </field-expr>
 <evaluate>threshold</evaluate>
 </compare-expr>
 </test>
 <body>
 <invoke-expr method=”release”>
 <evaluate>record</evaluate>
 </invoke-expr>
 </body>
</cond>
would be viewed and edited like this:
// Only replace below threshold
if (record.age < threshold) {
 record.release();
}

Crucially, code will not be stored as uninterpreted
CDATA within XML documents and programmers will
not see (much less type in) XML tags. Such a representa-
tion would have all the disadvantages of JSPs, Ant, and
other hybrid systems, without bringing any tangible
benefits. Instead, XML will represent the program’s
deep structure. Only time and experimentation will tell
whether this turns out to be something like an annotated
syntax tree or something more abstract.

Using XML to separate software models from software
views would bring several benefits. First, it would make
languages more extensible. Programs stored as XML
would be easier to process than ones stored as collections

Programming
LanguagesFO

CU
S

Extensible
Programming
for the 21st Century

54 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 55 more queue: www.acmqueue.com

of arbitrary ASCII tokens.
In particular, programmers
would be able to apply XSL
and other tools to them—
tools that will be as familiar
to tomorrow’s programmers
as regular expressions are to
today’s.9

Second, it would simplify
the construction of active
libraries by letting program-
mers mark up their code to
indicate which sections are
intended for which tools,
all in one file and all using
one notation. Programmers
would also be able to embed
arbitrary content in their
code, including mathemat-
ics (using MathML), class
diagrams (using scalable
vector graphics, or SVG),
and all the meta-data that CASE (computer-aided software
engineering) tools require. Donald Knuth’s dream of “lit-
erate programming” could therefore be realized.10

Finally, programmers could stop arguing about where
curly braces should go, since they would be able to
customize their views of software without modifying the
underlying model. For example, a programmer could eas-
ily choose to view the previous code fragment as this:
28. if (record.age < threshold) /* Replace below threshold */
29. {
30. record.release();
31. }
or even this:
;;; Replace below threshold
(if (< (record ‘age) threshold)
 (record ‘release))
without altering the underlying representation. (This is
almost possible today with Microsoft .NET. As many have
observed, it is the world’s first “skinnable” programming
system: C#, VB.NET, and other languages have the same
semantics, built-in types, and libraries, and differ only in
“superficial” details of syntax.)

Yes, this could all have been done 20 years ago using
s-expressions. As attractive as parenthesized lists are,
however, they failed to win programmers’ hearts and
minds. In contrast, it has taken XML less than a decade
to become the most popular data format in history. Every
large application today can handle it; every programming

language contains libraries for manipulating it; and every
young programmer is as familiar with it as the previous
generation was with streams of strings. S-expressions
might have deserved to win, but XML has.

GETTING THERE
There are dozens of technical challenges to solve over the
next decade to make extensible programming systems a
success. The biggest challenge, though, will be social. Tell
programmers that you’re going to completely re-archi-
tect their tools, and they nod their heads. Tell them that
you’re going to store programs in something other than
flat ASCII, and they start to squawk.

Many swear they will never use a system that doesn’t
store their programs “as they really are,” conveniently
ignoring the fact that it takes several hundred thousand
lines of device drivers, operating system, and graphical
interface to turn magnetic spins on a disk into charac-
ters on a screen. Remove just one layer of interpretation,
and programs look like that shown in figure 2. Remove
another, and we would have a table of numeric character
codes; another, and we would have a stream of bits. It is
therefore hypocritical to object to adding another layer
(unless the person raising the objection still uses a text-
only Web browser such as Lynx).

It also ignores the fact that fewer and fewer documents
are stored as byte-per-character ASCII; increasingly, docu-
ments use some character encoding scheme to represent

/ * * \r \n * T h i s c l a
s s p r i n t s < e m > o d
d n u m b e r s < / e m > . \r
n * S e e t h e < a h
r e f = “ { @ d o c R o o t } /
c o p y r i g h t . h t m l “ >
C o p y r i g h t < / a > . \r \n
 * @ a u t h o r G r e g
W i l s o n \r \n * @ v e r s
i o n 1 . 2 \r \n * / \r \n \r \n
p u b l i c c l a s s O d d
s { \r \n p u b l i c s t
a t i c v o i d m a i n (S
t r i n g [] a r g s) {
 \r \n f o r (i n t
i = 0 ; i < 1 0 ; + + i)
{ \r \n i f (i
 % 2 = = 0) { \r \n
 S y s t e m . o u t
. p r i n t l n (i) ; \r \n
 } \r \n } \r \n
} \r \n } \r \n FI

G
 2

Program with One Layer of Interpretation Removed

56 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 57 more queue: www.acmqueue.com

Unicode, which editors then interpret on the fly. As Uni-
code and XML documents become ubiquitous, so too will
editors that apply style sheets and other transformations
dynamically to make heterogeneous content compre-
hensible. Eventually, these will most likely merge with
program editors, which cross-reference method calls and
critique coding style in realtime.

But if we’re going to leave flat ASCII behind, why
replace it with XML? The IL (intermediate language)
used in Microsoft .NET, Eclipse’s AST, or serialization of
the compiler’s internal data structures all have much
to recommend them. Programmers are already used to
working with XML, however, and have powerful off-the-
shelf tools to manipulate it. More important, most of the
other information they would want to put into programs
is available as XML. Like Inglish speling, XML is here to
stay.

What about security? If anyone and everyone can
inject new code into the compile/link/debug tool chain,
what’s to stop a malicious (or unlucky) developer from
creating something that generates insecure or damag-
ing code? The answer is, “Nothing.” Current research on
proving compiler optimizations or source refactorings
sound may eventually provide the kind of security that
bytecode verifiers bring to Java at runtime. Until then,
users will have to be careful about what they download
and use—just as they are with Web server extensions,
Web browser plug-ins, and expansion packs for games.

Finally, language features interact in subtle ways—if
every high school student with a bright idea is allowed
to add a pet feature to the language, won’t the result be
incomprehensible gibberish?

 “Compared with what,” you ask? Right now, pro-
grammers must mentally parse several function calls to
understand that a piece of Java is trying to match a string
with a regular expression, or adding corresponding ele-
ments of two lists. Operator overloading and other kinds
of extensibility can make these things much easier to
understand (though their abuse by some C++ program-
mers is proof that the opposite is also true); extending
extensibility’s reach might finally give us readable nota-

tions for concurrency, database access, and so on.
Most programmers won’t build extensions; they will

pick and choose among the extensions that others have
built. The resulting “free market” will give extensions that
are readable a chance to beat out those that are not. There
is no guarantee that the best will win (mostly because of
the difficulty of getting three programmers to agree on
what is best in any situation), but this approach should
prove superior to waiting for standards committees to
reach consensus, only to find that they have produced yet
another camel.

IN DEFENSE
OF MONOPOLIES
The changes proposed here could happen incrementally:
editors and compiler front ends could appear first, leav-
ing downstream tools to catch up later. None of these
advances, however, will have full impact until all of them
are in place. Given the number of players involved, it
seems impossible for such a “big bang” to happen…

…unless, of course, everything is owned by a single
vendor. Microsoft could easily have decreed that VB.NET
source files would be XML documents; Wolfram Research
or MathWorks could do the same in the next releases of
Mathematica or MATLAB, respectively, and so on.

In the case of numerical languages such as Math-
ematica and MATLAB, using XML for storage would allow
programmers to put real mathematical notation directly
into their source files. In the case of .NET, XML storage
would allow tools to embed meta-data directly in code.
Right now, half of the average .NET program is deploy-
ment descriptors, property files, and so on. Program-
mers need conditionals, for-each iteration, and reuse in
those descriptors, so their notations are slowly growing
to include everything that a real programming language
does. Sooner or later, vendors will stop trying to solve
problems with “little languages,” and start using full-
strength solutions everywhere.11

CONCLUSION
New XML-based languages are already appearing (e.g.,

Programming
LanguagesFO

CU
S

Extensible
Programming
for the 21st Century

56 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 57 more queue: www.acmqueue.com

Mozart, SuperX++, o:XML),12 but nothing is preventing
development of extensible, XML-based versions of Java,
Python, and C#. Designers are already looking at add-
ing XML to these languages as a primitive data type.13,14
It would be a natural next step to allow programmers to
embed XML documentation (instead of using pseudo-
HTML hacks such as JavaDoc), then use it for meta-data
(such as compiler directives) and so on.

These are useful innovations, but they do not necessar-
ily give programmers new ways to innovate themselves.
The changes described in this article would. Instead of
treating each new idea as a special case, they would allow
programmers to say what they want to, when they want
to, as they want to. The result would be systems that are
simultaneously more sophisticated and easier to under-
stand.

Of course, none of this is inevitable. We could still be
writing and viewing programs a byte at a time in 2010,
streaming them through command-line compilers, curs-
ing our debuggers for their recalcitrance, and scratching
our heads as we try to translate the obvious meaning of
what’s scrawled on the whiteboard into nested method
calls. But do you really believe that will happen? Do
you really believe that ours will be the only documents
that aren’t marked up, that can’t contain heterogeneous
content, that aren’t processed by extensible frameworks?
Alvin Toffler once said that the future always arrives too
soon, and in the wrong order. Speaking as someone who
has typed in a lot of bytes in the past 20 years, and cursed
a lot of debuggers, extensible programming systems are a
future that can’t possibly arrive too soon. Q

REFERENCES
1. Ladd, S. R. 2003. An evolutionary analysis of GNU C opti-

mizations; see http://www.coyotegulch.com/.
2. SUIF: see http://suif.stanford.edu/.
3. Bachrach, J., and K. Playford. 2001. The Java Syntactic

Extender; see http://www.ai.mit.edu/~jrb/jse/jse.pdf.
4. XDoclet: see http://xdoclet.sourceforge.net/.
5. Herrington, J. 2003. Code Generation in Action. Green-

wich, CT: Manning.
6. Dollard, K. 2004. Code Generation in Microsoft .NET.

Berkeley, CA: Apress.
7. Czarnecki, K., Eisenecker, U., Gluck, R. Vandevoorde,

D., and Veldhuizen, T. L. 1998. Generative program-
ming and active libraries. In Proceedings of Generic Pro-
gramming ’98, Lecture Notes in Computer Science 1766,
Springer-Verlag Telos.

8. Patzer, A. 2002. JSP Examples and Best Practices. Berkeley,
CA: Apress.

9. See reference 6 (Dollard) for a discussion of the pros
and cons of using Microsoft .NET’s CodeDom for code
generation.

10. Knuth, D. E. 1992. Literate Programming. Cambridge
University Press.

11. See CONS (http://www.dsmit.com/cons/) and SCons
(http://www.scons.org/) for examples of code-oriented
build tools. Interestingly, the creator of Ant, James
Duncan Davidson, has written: “If I knew then
what I know now, I would have tried using a real
scripting language, such as JavaScript via the Rhino
component or Python via JPython, with bindings to Java
objects which implemented the functionality expressed
in today’s tasks. Then, there would be a first-class way
to express logic and we wouldn’t be stuck with XML as
a format that is too bulky for the way that people really
want to use the tool.” http://x180.net/Articles/Java/
AntAndXML.html.

12. Mozart: see http://mozart-dev.sourceforge.net/;
SuperX++: see http://xplusplus.sourceforge.net/;
o:XML: see http://www.o-xml.org.

13. ECMA-357: ECMAScript for XML: see http://
www.ecma-international.org/publications/standards/
Ecma-357.htm.

14. Meijer, E. Schulte, W., and G. Bierman. Programming
with circles, triangles, and rectangles; see http://www.r
esearch.microsoft.com/~emeijer/Papers/XML2003/
xml2003.html.

ACKNOWLEDGMENTS
This article grew out of an earlier one I wrote for Doc-
tor Dobb’s Journal (“XML-based programming systems,”
March 2003). I would like to thank Kimanzi Mati, Simon
Peyton-Jones, Jim Larus, Mike Donat, Paul Prescod, Todd
Veldhuizen, Mathew Zaleski, and Mark Mitchell for com-
ments on it, and Ted Leung, Irving Reid, Charlie Reis,
Dave Thomas, Matt Warren, and Jim Maurer for com-
ments on the revisions.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

GREG WILSON holds a Ph.D. in computer science from the
University of Edinburgh and has worked in high-performance
scientific computing, data visualization, computer security,
and software engineering. He is the author of Practical Paral-
lel Programming (MIT Press, 1995), a contributing editor with
Doctor Dobb’s Journal, and an adjunct professor in computer
science at the University of Toronto.
© 2004 ACM 1542-7730/04/1200 $5.00

http://www.coyotegulch.com/
http://suif.stanford.edu/
http://www.ai.mit.edu/~jrb/jse/jse.pdf
http://xdoclet.sourceforge.net/
http://www.dsmit.com/cons/
http://www.scons.org/
http://x180.net/Articles/Java/AntAndXML.html
http://x180.net/Articles/Java/AntAndXML.html
http://mozart-dev.sourceforge.net/
http://www.o-xml.org
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.research.microsoft.com/~emeijer/Papers/XML2003/xml2003.html
http://www.research.microsoft.com/~emeijer/Papers/XML2003/xml2003.html
http://www.research.microsoft.com/~emeijer/Papers/XML2003/xml2003.html
 mailto:Feedback@acmqueue.com

