
32 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 33 more queue: www.acmqueue.com

New programming languages are born every day.
Why do some succeed and some fail?

JOHN R. MASHEY, TECHVISER

32 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 33 more queue: www.acmqueue.com

In 50 years, we’ve already seen numerous
programming systems come and (mostly) go,
although some have remained a long time and will
probably do so for: decades? centuries? millennia?
The questions about language designs, levels of
abstraction, libraries, and resulting longevity are
numerous. Why do new languages arise? Why is it
sometimes easier to write new software than to adapt
old software that works? How many different levels of
languages make sense? Why do some languages last in
the face of “better” ones?

We can gather insights from the last 50 years of
programming systems to the current time. For the
far future, Vernor Vinge’s fine science-fiction novel,
A Deepness in the Sky, rings all too true. The young
protagonist, Pham, has joined a starship crew and is

Languages,

Programming
LanguagesFO

CU
S

Levels, Libraries, and Longevity

34 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 35 more queue: www.acmqueue.com

learning the high-value vocation of “programmer archae-
ologist,” as the crew’s safety depends on the ability to
find needed code, use it, and modify it without breaking
something. He is initially appalled at the code he finds:

The programs were crap…Programming went back
to the beginning of time…There were programs
here that had been written five thousand years ago,
before Humankind ever left Earth. The wonder of
it—the horror of it…these programs still worked…
down at the very bottom of it was a little program
that ran a counter. Second by second, the Qeng Ho
counted from the instant that a human had first set
foot on Old Earth’s moon. But if you looked at it
still more closely… the starting instant was actually
about fifteen million seconds later, the 0-second
of one of Humankind’s first computer operating
systems…

“We should rewrite it all,” said Pham.
“It’s been done,” said Sura.
“It’s been tried,” corrected Bret…“You and a

thousand friends would have to work for a century
or so to reproduce it… And guess what—even if you
did, by the time you finished, you’d have your own
set of inconsistencies. And you still wouldn’t be
consistent with all the applications that might be
needed now and then…”

“The word for all this is ‘mature programming
environment.’”1

Any old Unix person would be amused to think that
Unix’s January 1, 1970, date would be enshrined so long.
We have begun a process in which many people’s lives
are already dependent on the correct working of software,
and likely to become even more so. Software once runna-
ble only on large systems migrates downward onto larger
numbers of smaller computers. Some current cellphones
use 300-MHz CPUs, running at a rate higher than any
CPU commercially produced by 1990. Some have 64 MB
of memory, competitive with many expensive systems
of the late 1980s. Vinge’s book extrapolates from current
small “smart dust” computers to assume that 5,000 years
from now, most computing will be done by their hyper-

powerful, barely visible descendants, containing layers of
software (and more than a few trapdoors). In the United
States, we already have approximately 100 CPUs per per-
son, and this number has traditionally increased tenfold
each decade. As wireless sensor networks proliferate, we
face a future in which most objects have CPUs and are
linked together via radio.

Software already matters, will continue to matter even
more pervasively, and language choice will always be an
important element of software quality, understandability,
and usability.

LANGUAGE WARS ARE FOREVER
Language wars seem to go on forever. Classic refer-
ences on early languages are Jean Sammet’s Programming
Languages—History and Fundamentals,2 which discussed
approximately 120 important languages as of 1969, and
Richard Wexelblat’s History of Progarmming Languages,3
which recorded a conference that chose 10 important
languages created before 1967 and still in use in 1977.
Of the 10, substantial new code is still written by many
people in Basic, Cobol, and Fortran. Others remain popu-
lar in their specific domains (Lisp, APT, and occasionally
Snobol), and some long-established IBM languages (PL/I,
GPSS) remain. Most of the 120 are gone.

Successful languages continue to arise from small
groups in industry or universities, from commercial
vendors, or via consortia. In fact, with current CPUs and
software, it is easier for individuals to create interest-
ing languages. By 2020, when those CPUs are laughably
ancient, it should become even easier.

Several Web sites extensively catalog computer lan-
guages, including http://hopl.murdoch.edu.au.

LEVELS AND LEVERAGE
Unlike computers, human beings are not easily reengi-
neered for higher performance. Programmers vary wildly
in ability, but each person has real I/O limits in reading
and writing code. Much software progress has come from
using faster computers, more efficient for people, if less so
for the computer. Dramatic increases in computer perfor-

Languages,
Levels, Libraries, and Longevity

Programming
LanguagesFO

CU
S

http://hopl.murdoch.edu.au

34 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 35 more queue: www.acmqueue.com

mance and storage are matched by the expansion of code.
In each computer class (mainframe, minicomputer,

microcomputer), people tended first to write assembly
code for performance, then use higher-level languages as
the computer class became more powerful. Commonly,
more powerful languages are later-binding, moving more
decisions closer to execution time. A typical progression
is as follows:

Assembly language is normally one-to-one with CPU
instructions.

Macro-assembler is one-to-many with CPU instruc-
tions, good for parameterized expansion of standard code
sequences. Humans are still burdened with substantial
work in arranging data storage, allocating registers, and
choosing efficient instruction sequences. These first
two levels have mostly (and thankfully) disappeared for
most programmers, but some small embedded micros
and many DSPs (digital signal processors) are still pro-
grammed this way.

Higher-level algorithmic languages such as Fortran
and C automate much low-level detail so the human can
concentrate on algorithms. Object orientation, inspired
by Simula and Smalltalk, and found widely in C++, Java,
and C#, improves code and eases maintenance with bet-
ter data structures.

Domain-specific languages such
as APT (Automatically Programmed
Tools) aim at a target domain, and
so can supply specific operations
needed there and ignore everything
else. Text-processing languages, such
as roff, troff, SGML, Scribe, TeX, Post-
script, and HTML, are familiar mem-
bers of this group, some of which are
powerful programming languages in
their own right.

Very high-level languages such
as APL, Mathematica, and computer
spreadsheets let people perform
extensive calculations with minimal
programming. APL was first imple-
mented in the late 1960s, with strong
leverage for many kinds of problems,
but was loved or hated because it was
deemed write-only. Many spreadsheet
users do not think of themselves as
programmers, but they do the same
work as would have required much
Fortran years ago.

Scripting languages such as Perl,

PHP, Javascript, and Python are widely used where code
need not be so efficient, but where human efficiency, ease
of expression, and maintenance are the highest priorities.
Sometimes a change in computing environment requires
new types of languages to allow widespread use. Program-
ming distributed applications was for decades a difficult
task that could be handled only by experts, despite
repeated attempts to write better languages or toolkits for
creating them. The Web changed that substantially.

As an example of the evolution of different levels of
languages, let’s go to the Bell Laboratories of the 1970s,
one of several environments that helped create important
foundations of current computing. Of course, its roots go
even further back.

In 1970, “real computers” were still mainframes,
although minicomputers were seeing increasing use. The
DEC (Digital Equipment Corporation) 16-bit PDP-11 was
introduced in 1970, and of particular importance, the
PDP-11/45 appeared in 1972, with up to 248 KB of MOS
(metal-oxide semiconductor) memory. By 1975, the PDP-
11/70 allowed a huge increase to 4 MB, although each
program was still restricted to 64 KB instructions and 64
KB data. Some sites supported 16 simultaneous users on
an 11/45, and with heroic effort, 48 on an 11/70. The

VAX-11/780 was introduced in 1977
and spread lower-cost 32-bit comput-
ing more widely. By the end of the
decade, minicomputers were “real
computers,” and 32-bit microcom-
puters were beginning to appear.

In 1970, there was widespread
use of applications languages such as
Fortran, Cobol, and PL/I, but many
applications’ and most systems’
codes were still written in assem-
bly language, and the idea that an
operating system would be portable
among machines was laughable. In
the end, Unix was ported to many
systems, C was widely used, and
applications were being written with
various combinations of higher-level
tools.

In 1973, the PWB (Programmer’s
Workbench) began in a Bell Labs
software tools department.4 It sup-
ported a 1,000-person division that
produced database and communica-
tions application software products
that ran on various mainframes and

In 1970, the idea that
an operating
system would
be portable
among machines was
laughable.

36 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 37 more queue: www.acmqueue.com

minicomputers. It wished to move many programming
activities off expensive mainframes onto a common Unix-
based development environment to avoid the creation of
unique support software for each target system. Program-
ming departments needed to be convinced to change
their ways, that Unix was a good thing, that minicomput-
ers were not toys, and that they should transfer budget to
the tools department for more PDP-11s.

In 1973, most of the several dozen existing Unix
systems were the property of individual departments,
used by small numbers of people for their own projects
and administered informally, sometimes with minimal
security. The PWB site was the first in Bell Labs to run a
“Unix computer center” for shared general use among
departments, including typing pools. For years it was
the largest single Unix site, and it often endured early
encounters with problems of scalability, system adminis-
tration, charging, security, automation, and usability for
nontechnical users.

In 1973, Ken Thompson’s Unix shell was primarily
used as an interactive interpreter, but had some rudi-
mentary scripting ability, including separate IF and GOTO
commands. In 1974, I used shell scripts to build a small
document management package for a potential client
department and found this to be a great way to build
such software quickly, but with awkward restrictions.
In 1975 and 1976 the PWB’s shell got simple variables,
better control structures (IF-THEN-ELSE-ENDIF, SWITCH,
WHILE), and interrupt-catching. The variables that later
became $HOME (home directory) and $PATH (variable
search path for commands) date from this effort.

Shell programming rapidly became a widespread
mechanism for PWB users to help automate their work.5
Substantial CPU time was consumed by shell procedures,
to the point where previously separate commands,
such as IF, GOTO, and SWITCH, were moved into the
shell itself with substantial performance improvements.
Steve Bourne was then working on a brand-new shell in
Computing Research and, after much discussion, evolved
a fresh design whose performance and features were
interesting enough to eventually replace the PWB shell.

The variables got generalized into the “environment vari-
ables” designed for 7th Edition Unix.

Al Aho, Peter Weinberger, and Brian Kernighan had
written awk, the philosophical ancestor of some popular
current scripting languages. In the 1970s, Bell Labs was
busily constructing computer systems to improve Bell
System operations, and many were built on Unix and
even used scripting languages in delivered software. CRAS
(Cable Repair Adminstrative System) was a data-mining
software package that integrated data from several other
systems, was distributed between IBM mainframes and
Unix minicomputers, had to be deployed quickly, and
was sensitive to organization-dependent requirements in
a time of major reorganization.6 The first version included
10 KLOC (thousands of lines of code) of C plus 15 KLOC
of shell+awk scripts and was modified quickly in the
field to adapt to newly revealed customer requirements.
A large listing of these scripts appeared on Kernighan’s
desk—to his great surprise, as the awk writers had never
expected such extensive use in production.

Shell scripting used late-binding, high-level inter-
pretation to combine higher-performance, compiled
components. Awk gave us a more flexible language above
C, although we sometimes later converted heavily used
awk to C for performance, after requirements had settled.
We sometimes wished for an awk compiler. Raising the
language level enabled vast improvements in productiv-
ity in that decade, as C replaced assembly language, and
script-level languages greatly augmented C.

LIBRARIES
It is preferable to reuse existing code rather than to write
new code. Subroutine libraries that enable such reuse go
back at least to David Wheeler on EDSAC in 1947.

A partner to the level issue is the “programming-in-
the-large” problem. It is all too easy to write code, then
fail to organize and document it well enough that some-
one else can find and reuse it, or even harder, modify it.
This was the problem of Vinge’s protagonist, and some-
times the problem of “write-only” APL. There has been
substantial progress over the years—from simple libraries,

Languages,
Levels, Libraries, and Longevity

Programming
LanguagesFO

CU
S

36 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 37 more queue: www.acmqueue.com

to software development environment systems, to today’s
Web-based tools for sharing and searching—but improve-
ments must continue.

Bell Labs’s Doug McIlroy’s 1969 words remain relevant
to this day:

“Software components (routines), to be widely
applicable to different machines and users, should
be available in families arranged according to
precision, robustness, generality, and time-space
performance.… We undoubtedly produce software
by backwards means. We undoubtedly get the short
end of the stick in confrontations with hardware
people because they are the industrialists and we are
the crofters.” 7

ACCEPTANCE AND LONGEVITY
Many people have proposed, and even implemented,
good languages that were never widely accepted. To gain
widespread support, a new language needs to achieve one
of several goals.

First, it might effectively address some new problem
domain. If it’s early, if people tolerate its flaws, if it gains
support, and if the flaws keep getting fixed, then it may
be difficult for a successor to supplant, even if successors
are more elegant.

Second, it might substantially raise the level of
abstraction, greatly ease some programming task, and
appear at a time when additional performance consump-
tion is acceptable. Some fine ideas have simply appeared
too early. Some other ideas proved surprisingly difficult
to implement on most hardware, such as Algol’s “call-
by-name.” C raised the level compared with assembly
language, offered facilities that were close to efficiently
implementable hardware, and compiler optimization
kept improving fast enough to fend off lower-level com-
petitors.

Third, it might handle new data types poorly
addressed by existing languages. Features such as vector-
ization, parallelization, or parallel multimedia demand
language extensions and sometimes new languages, as
old ones may have difficulty adapting. Interesting experi-
mentation is happening in the use of C for describing the
wild profusion of new features being created in embed-
ded processors, as C’s normal data types deal poorly with
hardware that is efficient for mixtures of 10-, 12-, and
24-bit packed data items. Extensions such as SystemC are
used for hardware description. C was a strong influence
on the design of RISC processors in the 1980s, and now it
appears that current hardware innovations may influence
variations of C.

Finally, it might be supported by a large consortium or
a strong vendor, and thus might persist a long time.

Anyone who is tempted to create a new language
esthetically cleaner than, but incompatible with, some
existing, widely used language, and 10 percent better,
should resist temptation. In an existing domain, a new
language needs to be much better on important metrics
to have any chance. The best opportunities happen with
big performance jumps or with major changes in applica-
tions, such as the Web.

In any given problem area, there is room for a stack
of languages at different levels, but there is not much
room for many different competitors at the same level
in the same domain. Sometimes languages get squeezed
by combinations of competitors from above and below.
For example, once-popular languages above assembly
language but below C—such as Intel PL/M, P. J. Plauger’s
LIL, Niklaus Wirth’s PL/360, and IBM PL/S—got squeezed
out by C.

A FEW FUTURE POSSIBILITIES
First, when new hardware supports new data types, either
languages must be extended, or new ones arise. We are
in the early stages of great instruction-set innovation in
embedded CPUs. In some cases, people can invent new
instruction sets and try them out in hours. C and C++ are
either going to stretch far, or be replaced in that domain.

Second, tight-coupled parallelism keeps increasing, via
multiprocessors, increasingly on single chips, of which
some already have 100-plus CPUs. Some applications can
use ordinary sequential code, but for others to harness
this compute power, better languages will help. Of course,
people have been working on this for decades, and many
big parallel applications are still written in Fortran, and
parallel programming is still hard. Cheap on-chip multi-
processors may enable successful new languages.

Third, loose-coupled parallelism will need help, espe-
cially as the scale and nature of networks change with

In an existing domain, a new language
needs to be much better
on important metrics to have any chance.

38 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com

more smart-dust and mobile systems, in which nodes
come and go. Harnessing all this is even harder than
managing close-coupled parallelism, and there should
be language opportunities here, as has emerged with the
Internet.

Fourth, higher-performance hardware always allows
later binding time, more interpretation, or more just-
in-time compiling. The ideal for many is to write at the
highest level, with late binding, and have the software
system take care of dynamically recompiling heavily used
parts of software to make it faster, as is done in some
dynamic binary translation systems. There may be room
for new languages designed for such ideas.

BUILDING BETTER LANGUAGES
Software designers must continue to build better lan-
guages that harness increasing performance to unchang-
ing human characteristics. They must continually raise
the level of abstraction, so that humans can ignore more
details. Continual improvement is needed in tools for
organizing software, so that people can more easily dis-
cover existing code, reuse it, and adapt it.

In 50 years, we’ve seen languages come and go,
sometimes leaving behind archaeological digs of crucial
software whose original hardware has long since become
inoperative, and some writers likewise. Some languages
have shown amazing longevity, despite the later develop-
ment of much “better” ones. In practice, anything suc-
cessful seems to build such a code base that it may never
go away. We need to keep finding better ways to express
our programming ideas that let us safely rewrite old code.

Otherwise, in 7000 A.D., will Vinge’s Pham still be
puzzling over a Unix C timer routine? Quite possibly! Q

“The evil that men do lives after them. The good is oft
interred with their bones.” –William Shakespeare, Julius
Caesar, Act III, scene ii.

REFERENCES
1. Vinge, V. 1999. A Deepness in the Sky. New York: Tor,

222-228.

2. Sammet, J. 1969. Programming Languages—History and
Fundamentals. Englewood Cliffs, NJ: Prentice-Hall.

3. Wexelblat, R., ed. 1981. History of Programming Lan-
guages. New York: Academic Press. (Final proceedings
of ACM SIGPLAN History of Programming Languages
Conference, Los Angeles, CA, June 1-3, 1978.)

4. Dolotta, T., and J. Mashey. 1976. An Introduction to
the Programmer’s Workbench. Proceedings of the 2nd
International Conference on Software Engineering (October
13-15), IEEE 76CH1125-4 C: 164-168.

5. Mashey, J. 1976. Using a Command Language as a
High-level Programming Language. Proceedings of the 2nd
International Conference on Software Engineering (October
13-15), IEEE 76CH1125-4 C: 169-176.

6. Boggs, P., and J. Mashey. 1982. Cable Repair Adminis-
trative System. Bell System Technical Journal 61 (July-
August), Part 2: 1275-1291.

7. McIlroy, M.D. 1969. Mass-produced Software Compo-
nents. In Software Engineering, ed. P. Naur and B. Ran-
dell. Garmisch, Germany: NATO Report (October 7-11).

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JOHN MASHEY, a consultant for venture capitalists and
technology companies, sits on various technology advisory
boards and is a trustee of the Computer History Museum. He
spent 10 years at Bell Laboratories, working on PWB/Unix,
including text-processing (the troff MM macros), command
languages, Unix process accounting, security, and other
issues needed to help Unix become widely accessible. He
later managed development of Unix-based applications and
software development systems. He was one of the design-
ers of the MIPS RISC architecture, one of the founders of
the SPEC (Standard Performance Evaluation Corporation)
benchmarking group, and chief scientist at Silicon Graphics.
His interests have long included interactions between hard-
ware and software. He received a B.S. in mathematics and an
M.S. and Ph.D. in computer science from Pennsylvania State
University.
© 2004 ACM 1542-7730/04/1200 $5.00

Languages,
Levels, Libraries, and Longevity

Programming
LanguagesFO

CU
S

