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Task:		
The	task	is	to	cluster	images	in	the	MNIST	dataset.		We	wish	to	find	one	cluster	for	each	
digit	in	an	unsupervised	manner.	For	the	purpose	of	simplicity,	we	only	consider	instances	
with	label	2,	3,	4.		So	our	task	is	to	find	3	clusters,	which	correspond	to	2,	3,	4	respectively,	
without	looking	at	training	labels.	Here	we	use	the	Bernoulli	mixtures	as	the	clustering	
algorithm.	Bernoulli	mixtures	method	assumes	feature	values	are	binary.		The	original	data	
are	represented	as	pixels	ranging	from	0	to	255.		So	we	first	normalize	features	to	numbers	
between	0	and	1	and	then	further	make	them	into	binary	values	by	thresholding	at	0.5.		
	
Model	
Bernoulli	mixture	assumes	that	each	data	point	is	generated	by	a	hidden	cluster,	and	
features	are	independent	in	that	cluster.			
Bernoulli	mixtures	have	the	following	density	form:	

𝑝 𝑥 𝝁,𝜋 =  𝜋!𝑝(𝑥|𝜇!)
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Bernoulli	mixtures	can	be	trained	by	EM	with	the	following	update	equation:	
E	step:	

𝑟(𝑧!") =
𝜋! ∗ 𝑝(𝑥!|𝜇!)

𝜋!𝑝(𝑥!|𝜇!)!
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M	step:	

𝑁! =  𝑟(𝑧!")
!
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𝜇! =  
𝑟 𝑧!" ∗ 𝑥!!
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𝜋! =
𝑁!
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Where	𝑧!" 		is	a	hidden	indicator	variable,	such	that		𝑧!" = 1,		if	𝑥!	is	generated	from	𝑘!!	
cluster.			
Derivation	of	update	equations	is	in	the	appendix.		
	
Experiments		
We	train	a	Bernoulli	mixture	with	EM	on	MNIST	digits	with	labels	2,3,4.		Each	image	is	
represented	as	a	784-bit	vector	and	there	are	20955	training	images.	We	visualize	our	
results	by	plotting	the	𝝁	of	each	cluster.	Each	𝝁	is	a	continuous	valued	vector.	We	treat	
these	values	as	pixel	values	and	draw	a	plot	using	them.	each	𝝁	can	be	interpreted	as	the	



centroid	of	the	corresponding	cluster.	We	show	how	these	three	centroids	evolve	from	
iteration	to	iteration.	Parameters	are	initialized	randomly.	
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It	is	clear	that	Bernoulli	mixture	trained	by	EM	correctly	identifies	the	three	clusters	with	
weights	[	0.37284859		0.33855085		0.28860056]	that	correspond	to	three	digits,	3,	4,	2.	
	
	
Monitor	objective	function	
To	monitor	the	progress	of	EM,	we	evaluate	the	objective	function	of	EM	after	each	
iteration.	The	actual	objective	function	is	
	ln 𝑋 𝝁,𝜋 =  ln { 𝜋!𝑝(𝑥!|𝜇!)!

!!! }!
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It	is	also	common	to	evaluate	the	lower	bound	of	objective	function.	But	for	this	problem,	
evaluating	the	original	objective	is	easier	than	evaluating	the	lower	bound	for	numerical	
reasons.		
The	plot	below	shows	the	improvement	of	the	original	objective	during	training.		



	
	
	
	
	
	
Generate	sample	digits	from	the	learned	model:		
Since	the	learned	Bernoulli	mixture	provides	a	density	estimation	for	the	given	data,	it	is	
interesting	to	test	whether	we	could	sample	digits	from	this	density	so	that	the	sampled	
ones	look	like	the	given	ones.	
	
Firstly,	we	sample	a	cluster	k	based	on	𝜋!,𝜋!,𝜋!,	and	then	we	use	corresponding	𝜇! 	to	
draw	a	digit.		For	each	pixel	independently,	we	sample	the	corresponding	pixel	value	based	
on	𝜇!" .		
	
	



	

	



	
	
	
We	can	compare	the	sampled	numbers	on	the	right	side	against	the	numbers	from	the	
training	set	on	the	left	side.		One	can	clearly	see	that	the	lack	of	smoothness	of	the	sampled	
numbers.		One	possible	reason	is	that,	for	this	model,	once	we	assign	data	points	to	a	
cluster,	we	assume	that	features	(positions)	are	independent.	Such	assumption	could	result	
in	some	isolated	points.	In	other	words,	this	assumption	reduces	the	smoothness	of	the	
graph.		
	
Classification	
We	could	also	use	the	trained	Bernoulli	mixture	model	for	classification.	The	training	is	
unsupervised.	After	training,	we	could	get	3	centroids	and	weights	corresponding	to	three	
digits.	And	we	should	look	at	the	3	centroids	and	know	which	cluster	corresponds	to	which	
digit.		
For	a	test	data	point	x,	we	could	compute	𝑝 𝑧 = 𝑘 𝑥 =  !(!!!,!)

!(!)
,	and	pick	whichever	cluster	

k	gives	the	max	probability.	Then	for	each	x,	we	can	predict	the	digit	for	cluster	k.		For	
example,	I	divided	the	dataset	60%	for	training	and	40%	for	testing,	and	got	90.5%	for	
accuracy.		It	is	pretty	satisfying	given	that	we	only	label	three	images.			
	
Clustering	with	four	components		
We	can	also	try	other	k	numbers.	For	example,	below	is	result	for	𝑘 = 4,	for	20	iterations,	
with	weights	of	[	0.34638679		0.17433678		0.29084584		0.18843059].	



	
	
We	can	see	that	there	are	two	writing	types	of	2.	If	we	want	to	know	more	types	of	drawing,	
we	could	try	different	values	for	k.	 	
	


