Activation Functions in Neural Networks

This handout presents common activation functions with their formulas, conceptual motivation, pros/cons, computational aspects, and typical use cases.

Table 1: Common Activation Functions in Neural Networks

Activation	Formula / Concept	Motivation (Conceptual)	Advantages	Disadvantages	Computational
Sigmoid	$f(x) = \frac{1}{1 + e^{-x}}$	Encodes "probabilistic firing" with smooth saturation; bounded output aids probability interpretation.	 Bounded in (0,1) Probabilistic interpretation 	• Vanishing gradients for large $ x $ • Not zero-centered	• Uses exp; mod
Tanh	$f(x) = \tanh(x)$	Center outputs at zero to speed optimization; antisymmetric.	 Zero-mean activations Smoother than sigmoid	• Still saturates \Rightarrow vanishing gradients	• Similar cost to
ReLU	$f(x) = \max(0, x)$	Mimics neuron firing only for positive signals; encourages sparsity.	 Simple and very fast Avoids saturation for x > 0 	 "Dying ReLU" for persistently negative inputs Unbounded output	• Branch/compa
Leaky ReLU	$f(x) = \max(\alpha x, x), \ \alpha \approx 10^{-2}$	Preserve gradient flow for negative region to avoid dead units.	• Mitigates dying ReLU	• Small bias for $x < 0$	• One multiply : ReLU
PReLU	$f(x) = \max(\alpha x, x), \ \alpha \text{ learned}$	Learn slope for negatives from data to adapt nonlinearity.	Adaptive capacity can improve accuracy	• Extra parameters; mild overfitting risk	• Slightly higher pute/memory
ELU	$f(x) = \begin{cases} x, & x > 0\\ \alpha (e^x - 1), & x \le 0 \end{cases}$	Push activations' mean toward zero; smooth negative branch.	Faster convergence in some settingsAvoids dead neurons	• Requires exp; sensitive to α	• Higher cost th
SELU	$ SELU(x) = \lambda \cdot \begin{cases} x, & x > 0 \\ \alpha(e^x - 1), & x \le 0 \end{cases} $	Self-normalizing activations that keep layer activations near zero mean/unit variance.	• Stable activations without Batch- Norm	• Requires LeCun normal init; architectural constraints	• Slightly costlie
Swish	$f(x) = x \sigma(x) = \frac{x}{1 + e^{-x}}$	Smooth gating of input magnitude; continuous ReLU alternative.	• Smooth gradients; strong empirical results	• Slower than ReLU; requires sigmoid	• Multiply + ex
Mish	$f(x) = x \tanh(\ln(1 + e^x))$	Smooth, robust ReLU-like activation with improved gradient flow.	• Good stability and propagation	• Higher cost; less standardized	• Uses tanh and
GELU	$f(x) = x \Phi(x) \approx \frac{x}{2} \left(1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right)$	Probabilistic "gating by magnitude"; smooth ReLU-like behavior.	• Smooth; strong results in Transformers	• Slightly slower; derivative more complex	• Uses erf/norm
Softmax	$f_i(\mathbf{x}) = \frac{e^{x_i}}{\sum_j e^{x_j}}$	Convert logits to a categorical probability distribution.	• Interpretable probabilities that sum to 1	• Sensitive to large logits; numerical overflow	• Vector exp +
Linear	f(x) = x	Preserve numeric information without distortion.	• Simple; suitable for regression	 No nonlinearity ⇒ limited expressivity 	Minimal cost (mapping)

Pedagogical Notes. Nonlinearity is essential (without it, deep stacks collapse to an affine map). ReLUfamily dominates CNN/MLP hidden layers; GELU/Swish are common in Transformers; tanh/sigmoid remain in RNN gates; SELU expects LeCun-normal initialization. Output activations depend on the task: Linear (regression), Sigmoid (binary), Softmax (multiclass). BatchNorm and initialization strongly interact with activation choice.