
CS6200: Information Retrieval
Slides by: Jesse Anderton

Crawling

Internet crawling is discovering web
content and downloading it to add to
your index.

This is a technically complex, yet often
overlooked aspect of search engines.
“Breadth-first search from
facebook.com” doesn’t begin to
describe it.

Motivating Problem

http://xkcd.com/802/

The first goal of an Internet crawler is to provide adequate coverage.
Coverage is the fraction of available content you’ve crawled.

Challenges here include:

• Discovering new pages and web sites as they appear online.

• Duplicate site detection, so you don’t waste time re-crawling content
you already have.

• Avoiding spider traps – configurations of links that would cause a
naive crawler to make an infinite series of requests.

Coverage

Coverage is often at odds with freshness. Freshness is the recency of the
content in your index. If a page you’ve already crawled changes, you’d like
to re-index it.

Freshness challenges include:

• Making sure your search engine provides good results for breaking news.

• Identifying the pages or sites which tend to be updated often.

• Balancing your limited crawling resources between new sites (coverage)
and updated sites (freshness).

Freshness

Crawling the web consumes resources on the servers we’re visiting.
Politeness is a set of policies a well-behaved crawler should obey in
order to be respectful of those resources.

• Requests to the same domain should be made with a reasonable
delay.

• The total bandwidth consumed from a single site should be limited.

• Site owners’ preferences, expressed by files such as robots.txt,
should be respected.

Politeness

Aside from these concerns, a good crawler should:

• Focus on crawling high-quality web sites.

• Be distributed and scalable, and make efficient use of server
resources.

• Crawl web sites from a geographically-close data center (when
possible).

• Be extensible, so it can handle different protocols and web content
types appropriately.

And more…

CS6200: Information Retrieval
Slides by: Jesse Anderton

HTTP Crawling
Web crawling requires attending to many details. DNS responses
should be cached, HTTP HEAD requests should generally be sent
before GET requests, and so on.

Extracting and normalizing URLs is important, because it dramatically
affects your coverage and the time wasted on crawling, indexing, and
ultimately retrieving duplicate content.

A crawler maintains a frontier – a collection
of pages to be crawled – and iteratively
selects and crawls pages from it.

• The frontier is initialized with a list of
seed pages.

• The next page is selected carefully, for
politeness and performance reasons.

• New URLs are processed and filtered
before being added to the frontier.

We will cover these details in subsequent
sessions.

A Basic Crawler

Requesting and downloading a URL
involves several steps.

1. A DNS server is asked to translate
the domain into an IP address.

2. (optional) An HTTP HEAD request is
made at the IP address to
determine the page type, and
whether the page contents have
changed since the last crawl.

3. An HTTP GET request is made to
retrieve the new page contents.

HTTP Fetching
Crawler Web ServerDNS Server

Request IP for
 www.wikipedia.org

IP is:
208.80.154.224

Connect to:
208.80.154.224:80

HTTP HEAD /

<HTTP headers for />

HTTP GET /

<HTML content for />

Request process for http://www.wikipedia.org/

http://www.wikipedia.org
http://www.wikipedia.org/

The HTTP request and response take
the following form:

A. HTTP Request: 
<method> <url> <HTTP version> 
[<optional headers>]

B. Response Status and Headers: 
<HTTP version> <code> <status> 
[<headers>]

C. Response Body

HTTP Requests
GET / HTTP/1.1
!
HTTP/1.1 200 OK
Server: Apache
Last-Modified: Sun, 20 Jul 2014 01:37:07 GMT
Content-Type: text/html
Content-Length: 896
Accept-Ranges: bytes
Date: Thu, 08 Jan 2015 00:36:25 GMT
Age: 12215
Connection: keep-alive
!
<!DOCTYPE html>
<html lang=en>
<meta charset="utf-8">
<title>Unconfigured domain</title>
<link rel="shortcut icon" href="//
wikimediafoundation.org/favicon.ico">
...

A.

B.

C.

HTTP Request and Response

http://wikimediafoundation.org/favicon.ico

Downloaded files must be parsed according to their content type
(usually available in the Content-Type header), and URLs extracted for
adding to the frontier.

HTML documents in the wild often have formatting errors which the
parser must address. Other document formats have their own issues.
URLs may be embedded in PDFs, Word documents, etc.

Many URLs are missed, especially due to dynamic URL schemes and
web pages generated by JavaScript and AJAX calls. This is part of the
so-called “dark web.”

URL Extraction

Many possible URLs can refer to the same
resource. It’s important for the crawler (and
index!) to use a canonical, or normalized,
version of the URLs to avoid repeated
requests.

Many rules have been used; some are
guaranteed to only rewrite URLs to refer to
the same resource, and others can make
mistakes.

It can also be worthwhile to create specific
normalization rules for important web
domains, e.g. by encoding which URL
parameters result in different web content.

URL Canonicalization

http://example.com/some/../folder?id=1#anchor

http://example.com/some/../folder

http://www.example.com/folder

Conversion to Canonical URL

Here are a few possible URL canonicalization rules.

Rules for Canonicalization

Rule Safe? Example

Remove default port Always http://example.com:80 → http://example.com

Decoding octets for unreserved
characters Always http://example.com/%7Ehome → http://example.com/~home

Remove . and .. Usually http://example.com/a/./b/../c → http://example.com/a/c

Force trailing slash for
directories Usually http://example.com/a/b → http://example.com/a/b/

Remove default index pages Sometimes http://example.com/index.html → http://example.com

Removing the fragment Sometimes http://example.com/a#b/c → http://example.com/a

http://example.com

CS6200: Information Retrieval
Slides by: Jesse Anderton

Duplicate Detection
Detecting near-duplicate page content is important for conserving limited
crawling and indexing resources, and for making sure that search result lists
contain meaningfully-distinct results.

Most approaches are based on hashing algorithms for fast but approximate
similarity comparisons.

These techniques can also be readily adapted to detect plagiarism and
copyright violations in plain text and in source code. In the latter case,
document features often include syntactic parse trees rather than literal words.

There are many duplicate or near-
duplicate pages on the Internet: in a
large crawl, roughly 30% of pages
duplicate content found in the other
70%.

This happens for many reasons:
copies, mirrors, versioning, plagiarism,
spam, etc.

Exact duplicate detection is
straightforward, relying on checksums
for rapid detection.

Page De-duplication
A simple checksum: sum of bytes

Type Example Goal

Checksum MD5 Duplicate detection

Error-correcting
Checksum

Cyclic redundancy
checks

Data verification and
correction

Cryptographic
Checksum SHA-512 Non-reversible data

identifiers

Hash Function Jenkins hash
functions Hash table keys

Selected Checksum Types

Detecting near-duplicates is much harder, especially with performance
constraints.

A pairwise content comparison requires O(n) comparisons to find matches for a
single document, or O(n2) to find matches for all pairs.

We will explore two approaches here:

• Fingerprint methods generate a smaller document description which can be
used for faster approximate comparison based on ngram overlap.

• Similarity hashing efficiently calculates approximate cosine similarity between
documents.

Detecting Near-Duplicates

Fingerprints based on n-grams can be calculated and used as follows.

1. A document is converted into a sequence of words; all punctuation and
formatting is removed.

2. Words are grouped into (possibly overlapping) n-grams, for some n.

3. A subset of the n-grams are selected to represent the document.

4. The selected n-grams are hashed, and the resulting hashes stored in an
inverted index.

5. Documents are compared based on the number of overlapping n-grams.

Fingerprint Calculation

1. Original text!

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt
water species.

2. Overlapping trigrams

tropical fish include, fish include fish, include fish found, fish found in, found in tropical, in tropical environments,
tropical environments around, environments around the, around the world, the world including, world including
both, including both freshwater, both freshwater and, freshwater and salt, and salt water, salt water species

3. Hashed trigrams

938 664 463 822 492 798 78 969 143 236 913 908 694 553 870 779

4. Selected trigrams (using 0 mod 4)

664 492 236 908

Fingerprint Example

Word-based comparisons are more
effective at finding near-duplicates than
comparing n-grams, but efficiency is a
problem.

The simhash algorithm performs word-
based comparisons with a hashing
approach similar to n-gram fingerprints. It
can be run over any weighted document
features.

The cosine similarity between two
documents is proportional to the number
of bits in common between their simhash
fingerprints.

Similarity Hashing

1. Original text!

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

2. Weighted features (word TF scores)

tropical: 2, fish: 2, include: 1, found: 1, environments: 1, around: 1, world: 1, including: 1, both: 1, freshwater: 1, salt: 1, water: 1,
species: 1

3. 8-bit Word Hashes

tropical: 01100001, fish: 10101011, include: 11100110, found: 00011110,  
environments: 00101101, around: 10001011, world: 00101010, including: 11000000,  
both: 10101110, freshwater: 00111111, salt: 10110101, water: 00100101, species: 11101110

4. Summed feature weights

sums = [1, -5, 9, -9, 3, 1, 3, 3]

5. Document Hash

10101111

Similarity Hashing Example

CS6200: Information Retrieval
Slides by: Jesse Anderton

Politeness
It’s important to remember that we are providing web site owners with
a service, and to be mindful of the resources we consume by crawling
their sites.

Following robots.txt and using sitemaps.xml can also help the crawler
avoid pitfalls particular to the web site.

Web crawlers are generally distributed and multithreaded, and are capable of
taxing the capabilities of most web servers. This is particularly true of the crawlers
for major businesses, such as Bing and Google.

In addition, some content should not be crawled at all.

• Some web content is considered private or under copyright, and its owners
prefer that it not be crawled and indexed.

• Other URLs implement API calls and don’t lead to indexable content.

This can easily create conflict between search providers and the web sites they’re
linking to. Politeness policies have been created as a way to mediate these issues.

The need for politeness

Web site administrators can express
their crawling preferences by hosting a
page at /robots.txt. Every crawler
should honor these preferences.

These files indicate which files are
permitted and disallowed for particular
crawlers, identified by their user agents.
They can also specify a preferred site
mirror to crawl.

More recently, sites have also begun
requesting crawl interval delays in
robots.txt.

Robots Exclusion Protocol

robots.txt for http://www.wikipedia.org/ and friends

Please note: There are a lot of pages on this site, and there are
some misbehaved spiders out there that go _way_ too fast. If you're
irresponsible, your access to the site may be blocked.

!
advertising-related bots:
User-agent: Mediapartners-Google*
Disallow: /
!
[...]
!

Friendly, low-speed bots are welcome viewing article pages, but not
dynamically-generated pages please.

There is a special exception for API mobileview to allow dynamic
mobile web & app views to load section content.
These views aren't HTTP-cached but use parser cache aggressively
and don't expose special: pages etc.

User-agent: *
Allow: /w/api.php?action=mobileview&
Disallow: /w/
Disallow: /trap/
Disallow: /wiki/Special:Collection
Disallow: /wiki/Special:Random
Disallow: /wiki/Special:Search
!
[...]

Portion of http://www.wikipedia.org/robots.txt

http://www.wikipedia.org/robots.txt

It is very important to limit the rate of requests your crawler makes to the same
domain. Too-frequent requests are the main way a crawler can harm a web site.

Typical crawler delays are in the range of 10-15 seconds per request. You
should never crawl more than one page per second from the same domain. For
large sites, it can take days or weeks to crawl the entire domain – this is
preferable to overloading their site (and possibly getting your IP address
blocked).

If the site’s robots.txt file has a Crawl-delay directive, it should be honored.

In a distributed crawler, all requests for the same domain are typically sent to the
same crawler instance to easily throttle the rate of requests.

Request Intervals

In addition to robots.txt, which asks
crawlers not to index certain content,
a site can request that certain content
be indexed by hosting a file at /
sitemap.xml.

Sitemaps can direct your crawler
toward the most important content on
the site, indicate when it has changed,
etc.

Sitemaps

<?xml version="1.0" encoding="utf-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sitemaps.org/schemas/
sitemap/0.9 http://www.sitemaps.org/schemas/sitemap/0.9/
sitemap.xsd">
 <url>
 <loc>http://example.com/</loc>
 <lastmod>2006-11-18</lastmod>
 <changefreq>daily</changefreq>
 <priority>0.8</priority>
 </url>
</urlset>

Example courtesy Wikipedia

