
CS6200: Information Retrieval
Slides by: Jesse Anderton

Indexing
Index Construction

• A term incidence matrix with V
terms and D documents has O(V x
D) entries.

• Shakespeare used around 31,000
distinct words across 37 plays, for
about 1.1M entries.

Motivation: Scale
Corpus Terms Docs Entries

Shakespeare’s
Plays ~31,000 37 ~1.1

million

English
Wikipedia

~1.7
million

~4.5
million

~7.65
trillion

English Web >2 million >1.7
billion >3.4x10

• As of 2014, a collection of Wikipedia
pages comprises about 4.5M pages
and roughly 1.7M distinct words.
Assuming just one bit per matrix
entry, this would consume about
890GB of memory.

• Two insights allow us to reduce this to a
manageable size:

1. The matrix is sparse – any document
uses a tiny fraction of the vocabulary.

2. A query only uses a handful of
words, so we don’t need the rest.

• We use an inverted index instead of
using a term incidence matrix directly.

• An inverted index is a map from a term
to a posting list of documents which
use that term.

Inverted Indexes - Intro

• Consider queries of the form:

 t1 AND t2 AND … AND tn

• In this simplified case, we need only
take the intersections of the term
posting lists.

• This algorithm, inspired by merge sort,
relies on the posting lists being sorted
by length.

• We save time by processing the terms
in order from least common to most
common. (Why does this help?)

Search Algorithm

• All modern search engines rely on inverted indexes in some form.
Many other data structures were considered, but none has matched
its efficiency.

• The entries in a production inverted index typically contain many
more fields providing extra information about the documents.

• The efficient construction and use of inverted indexes is a topic of its
own, and will be covered in a later module.

Motivation

A reasonably-sized index of the web contains many billions of
documents and has a massive vocabulary.

Search engines run roughly 105 queries per second over that collection.

We need fine-tuned data structures and algorithms to provide search
results in much less than a second per query. O(n) and even O(log n)
algorithms are often not nearly fast enough.

The solution to this challenge is to run an inverted index on a massive
distributed system.

Motivation

CS6200: Information Retrieval
Slides by: Jesse Anderton

Inverted Indexes
Inverted Indexes are primarily used to allow fast, concurrent query
processing.

Each term found in any indexed document receives an independent
inverted list, which stores the information necessary to process that
term when it occurs in a query.

The primary purpose of a search engine
index is to store whatever information is
needed to minimize processing at query time.

Text search has unique needs compared to,
e.g., database queries, and needs its own
data structures – primarily, the inverted index.

• A forward index is a map from documents
to terms (and positions). These are used
when you search within a document.

• An inverted index is a map from terms to
documents (and positions). These are used
when you want to find a term in any
document.

Indexes

Is this a forward or an inverted index?

Indexes are created to support
search, and the primary search task is
document ranking.

We sort documents according to some
scoring function which depends on
the terms in the query and the
document representation.

In the abstract, we need to store
various document features to
efficiently score documents in
response to a query.

Abstract Model of Ranking
Topical Features!
9.7 fish
4.2 tropical
22.1 tropical fish
8.2 seaweed
4.2 surfboards
Quality Features!
14 incoming links
3 days since last update

Document

Query!
tropical fish Scoring Function

Document Score!
24.5

More Concrete Model

In an inverted index, each term has an
associated inverted list.

At minimum, this list contains a list of
identifiers for documents which
contain that term.

Usually we have more detailed
information for each document as it
relates to that term. Each entry in an
inverted list is called a posting.

Inverted Lists

Simple Inverted Index

inverted list

posting

Document postings can store any
information needed for efficient
ranking.

For instance, they typically store term
counts for each document – tfw,d.

Depending on the underlying storage
system, it can be expensive to
increase the size of a posting. It’s
important to be able to efficiently scan
through an inverted list, and it helps if
they’re small.

Inverted Index with Counts

Inverted Index with Counts

CS6200: Information Retrieval
Slides by: Jesse Anderton

Indexing Additional Data
The information used to support all modern search features can grow quite complex.

Locations, dates, usernames, and other metadata are common search criteria,
especially in search functions of web and mobile applications.

When these fields contain text, they are ultimately stored using the same inverted list
structure.

Next, we’ll see how to compress inverted lists to reduce storage needs and
filesystem I/O.

Many scoring functions assign higher
scores to documents containing the
query terms in closer proximity.

Some query languages allow users to
specify proximity requirements, like
“tropical NEAR fish.”

In the inverted lists to the right, the
word “to” has a DF of 993,427. It is
found in five documents; its TF in doc
1 is 6, and the list of positions is given.

Indexing Term Positions

Postings with DF, TF, and Positions

In proximity search, you search for
documents where terms are
sufficiently close to each other.

We process terms from least to most
common in order to minimize the
number of documents processed.

The algorithm shown here finds
documents from two inverted lists
where the terms are within k words of
each other.

Proximity Searching

Algorithm for Proximity Search

For some search applications, it’s worth storing the document’s matching score
for a term in the posting list.

Postings may be sorted from largest to smallest score, in order to quickly find
the most relevant documents. This is especially useful when you want to quickly
find the approximate-best documents rather than the exact-best.

Indexing scores makes queries much faster, but gives less flexibility in updating
your retrieval function. It is particularly efficient for single term queries.

For Machine Learning based retrieval, it’s common to store per-term scores
such as BM25 as features.

Indexing Scores

Some indexes have distinct fields with their own inverted lists. For instance,
an index of e-mails may contain fields for common e-mail headers (from,
subject, date, …).

Others store document regions such as the title or headers using extent lists.

Extent lists are contiguous regions of a document stored using term
positions.

!

Fields and Extents

extent list

As the information stored in an inverted
index grows more complex, it becomes
useful to represent it using some form of
schema.

However, we normally don’t use strict
SQL-type schemas, partly due to the
cost of rebuilding a massive index.
Instead, flexible formats such as <key,
value> maps with field names
arranged by convention are used.

Each text field in the schema typically
gets its own inverted lists.

Index Schemas

Partial JSON Schema for Tweets

CS6200: Information Retrieval
Slides by: Jesse Anderton

Index Construction
We have just scratched the surface of the complexities of constructing and updating large-scale
indexes. The most complex indexes are massive engineering projects that are constantly being
improved.

An indexing algorithm needs to address hardware limitations (e.g., memory usage), OS limitations
(the maximum number of files the filesystem can efficiently handle), and algorithmic concerns.

When considering whether your algorithm is sufficient, consider how it would perform on a
document collection a few orders of magnitude larger than it was designed for.

Given a collection of documents, how can
we efficiently create an inverted index of
its contents?

The basic steps are:

1. Tokenize each document, to convert it
to a sequence of terms

2. Add doc to inverted list for each token

This is simple at small scale and in
memory, but grows much more complex
to do efficiently as the document
collection and vocabulary grow.

Basic Indexing

Basic In-Memory Indexer

The basic indexing algorithm will fail as soon as you run out of
memory.

To address this, we store a partial inverted list to disk when it grows
too large to handle. We reset the in-memory index and start over.
When we’re finished, we merge all the partial indexes.

The partial indexes should be written in a manner that facilitates later
merging. For instance, store the terms in some reasonable sorted
order. This permits merging with a single linear pass through all partial
lists.

Merging Lists

Merging Example

An index can be updated from a new batch of documents by merging the posting
lists from the new documents. However, this is inefficient for small updates.

Instead, we can run a search against both old and new indexes and merge the
result lists at search time. Once enough changes have accumulated, we can
merge the old and new indexes in a large batch.

In order to handle deleted documents, we also need to maintain a delete list of
docids to ignore from the old index. At search time, we simply ignore postings
from the old index for any docid in the delete list.

If a document is modified, we place its docid into the delete list and place the new
version in the new index.

Result Merging

If each term’s inverted list is stored in a separate file, updating the index
is straightforward: we simply merge the postings from the old and new
index.

However, most filesystems can’t handle very large numbers of files, so
several inverted lists are generally stored together in larger files. This
complicates merging, especially if the index is still being used for query
processing.

There are ways to update live indexes efficiently, but it’s often simpler to
simply write a new index, then redirect queries to the new index and
delete the old one.

Updating Indexes

CS6200: Information Retrieval
Slides by: Jesse Anderton

Compressing Indexes
The best any compression scheme can do depends on the entropy of the
probability distribution over the data. More random data is less compressible.

Huffman Codes meet the entropy limit and can be built in linear time, so are a
common choice. Other schemes can do better, generally by interpreting the
input sequence differently (e.g. encoding sequences of characters as if they
were a single input symbol – different distribution, different entropy limit).

Inverted lists often consume a large amount of space.

• e.g., 25-50% of the size of the raw documents for TREC collections
with the Indri search engine

• much more than the raw documents if n-grams are indexed

Compressing indexes is important to conserve disk and/or RAM
space. Inverted lists have to be decompressed to read them, but there
are fast, lossless compression algorithms with good compression
ratios.

Index Size

restricted variable length codes
• an extension of multicase encodings (“shift key”) where different code lengths are

used for each case. Only a few code lengths are chosen, to simplify encoding and
decoding.

• Use first bit to indicate case.

• 8 most frequent characters fit in 4 bits (0xxx).

• 128 less frequent characters fit in 8 bits (1xxxxxxx)

• In English, 7 most frequent characters are 65% of occurrences

• Expected code length is approximately 5.4 bits per character, for a 32.8%
compression ratio.

• average code length on WSJ89 is 5.8 bits per character, for a 27.9% compression ratio

restricted variable length codes: more symbols
• Use more than 2 cases.

• 1xxx for 23 = 8 most frequent symbols, and

• 0xxx1xxx for next 26 = 64 symbols, and

• 0xxx0xxx1xxx for next 29 = 512 symbols, and

• ...

• average code length on WSJ89 is 6.2 bits per

symbol, for a 23.0% compression ratio.

!

• Pro: Variable number of symbols.

• Con: Only 72 symbols in 1 byte.

restricted variable length codes : numeric data
• 1xxxxxxx for 27 = 128 most frequent symbols

• 0xxxxxxx1xxxxxxx for next 214 = 16,384 symbols

• ...

• average code length on WSJ89 is 8.0 bits per symbol, for a 0.0%
compression ratio (!!).

• Pro: Can be used for integer data

• Examples: word frequencies, inverted lists

restricted variable –length codes : word based
encoding

• Restricted Variable-Length Codes can be used on words (as opposed to symbols)

• build a dictionary, sorted by word frequency, most frequent words first

• Represent each word as an offset/index into the dictionary

!

• Pro: a vocabulary of 20,000-50,000 words with a Zipf distribution requires 12-13
bits per word

• compared with a 10-11 bits for completely variable length

• Con: The decoding dictionary is large, compared with other methods.

restricted variable-length codes: summary 

• Four methods presented. all are

• simple

• very effective when their assumptions are correct

• No assumptions about language or language models

• all require an unspecified mapping from symbols to numbers (a
dictionary)

• all but the basic method can handle any size dictionary

The entropy of a probability
distribution is a measure of its
randomness.

!

The more random a sequence of data
is, the less predictable and less
compressible it is.

The entropy of the probability
distribution of a data sequence
provides a bound on the best possible
compression ratio.

Entropy and Compressibility

*(R) = �
�

K

RK log RK

Entropy of a Binomial Distribution

In an ideal encoding scheme, a symbol
with probability pi of occurring will be
assigned a code which takes log(pi) bits.

The more probable a symbol is to occur,
the smaller its code should be. By this
view, UTF-32 assumes a uniform
distribution over all unicode symbols;
UTF-8 assumes ASCII characters are more
common.

Huffman Codes achieve the best possible
compression ratio when the distribution is
known and when no code can stand for
multiple symbols.

Huffman Codes
Symbol p Code 𝔼[length]

a 1/2 0 0.5

b 1/4 10 0.5

c 1/8 110 0.375

d 1/16 1110 0.25

e 1/16 1111 0.25

Plaintext:! ! aedbbaae (64 bits in UTF-8)
Ciphertext:! 0111111101010001111

Huffman Codes are built using a binary tree
which always joins the least probable
remaining nodes.

1. Create a leaf node for each symbol,
weighted by its probability.

2. Iteratively join the two least probable
nodes without a parent by creating a
parent whose weight is the sum of the
childrens’ weights.

3. Assign 0 and 1 to the edges from each
parent. The code for a leaf is the
sequence of edges on the path from the
root.

Building Huffman Codes

a: 1/2 b: 1/4 c: 1/8 d: 1/16 e: 1/16

1/8

1/4

1/2

1

0

1

0

0

0

1

1

1

0 10 110 1110 1111

Huffman codes achieve the theoretical limit for compressibility, assuming
that the size of the code table is negligible and that each input symbol
must correspond to exactly one output symbol.

Other codes, such as Lempel-Ziv encoding, allow variable-length
sequences of input symbols to correspond to particular output symbols
and do not require transferring an explicit code table.

Compression schemes such as gzip are based on Lempel-Ziv encoding.
However, for encoding inverted lists it can be beneficial to have a 1:1
correspondence between code words and plaintext characters.

Can We Do Better?

Lempel-Ziv
• an adaptive dictionary approach to variable length coding.

• Use the text already encountered to build the dictionary.

• If text follows Zipf's laws, a good dictionary is built.

• No need to store dictionary; encoder and decoder each know how to build it on the fly.

• Some variants: LZ77, Gzip, LZ78, LZW, Unix compress

• Variants differ on:

• how dictionary is built,

• how pointers are represented (encoded), and

• limitations on what pointers can refer to.

Lempel Ziv: encoding
• 0010111010010111011011

Lempel Ziv: encoding
• 0010111010010111011011

!

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

Lempel Ziv: encoding
• 0010111010010111011011

!

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

!

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

Lempel Ziv: encoding
• 0010111010010111011011

!

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

!

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

!

• encode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

Lempel Ziv: encoding
• 0010111010010111011011

• break into known prefixes: 0|01 |011|1 |010|0101|11|0110|11

• encode references as pointers : 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• encode the pointers with log(?)bits :

 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

• final string : 01101100101100011011110100010

Lempel Ziv: decoding
• 01101100101100011011110100010

Lempel Ziv: decoding
• 01101100101100011011110100010

!

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

Lempel Ziv: decoding
• 01101100101100011011110100010

!

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

!

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

Lempel Ziv: decoding
• 01101100101100011011110100010

!

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

!

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

!

• decode references

• 0|01 |011|1 |010|0101|11|0110|11

Lempel Ziv: decoding
• 01101100101100011011110100010!

• decode the pointers with log(?) bits : 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?!

• encode references as pointers : 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?!

• decode references : 0|01 |011|1 |010|0101|11|0110|11!

• original string : 0010111010010111011011

Lempel Ziv optimality
• LempelZiv compression rate approaches (asymptotic) entropy

!

• When the strings are generated by an ergodic source
[CoverThomas91].

!

• easier proof : for i.i.d sources

• that is not a good model for English

LempelZiv optimality
–i.i.d source

35

LempelZiv optimality –i.i.d source
• !"# x $!%!&...!n ' (")*"+," -. !"+/#0 + /"+1

"2'#"3 45 ' 663 (-*2," '+3 789: $ #0" ;2-4'1

46!6#5 #- ("" (*,0 ' (")*"+,"

• ('5 <"=;"!>6? 42"'@(6+#- c ;02'("(x $

y%y&...yc '+3 ,'!! cl $ A -. ;02'("(-. !"+/#0 l

#0"+ ! !-/Q8x: "
P

l
cl !-/cl

8;2--.:
P

|yi|$l
Q8yi: < % (-

"

|yi|$l
Q8yi: < 8

%
cl
:cl

• 6. pi 6(#0" (-*2," ;2-4'4 .-2 !i #0"+ 45 !'B

-. !'2/" +*=4"2(x B6!! 0'?" 2-*/0!5 npi -,,*21

2"+,"(-. !i '+3 #0"+

logQ8x: $! !-/
"

i
p
npi
i # n

P
pi !-/pi $ nHsource

• +-#" #0'#
P

l
cl !-/cl 6(2-*/0!5 #0" <"=;"!>6?

"+,-36+/ !"+/#0 (- #0 "6+")*'!6#5 2"'3(

nH "# LZencodingB06,0 6(#- ('5H #" LZrateC

CS6200: Information Retrieval
Slides by: Jesse Anderton

Bit-aligned Codes
Bit-aligned codes allow us to minimize the storage used to encode integers.

We can use just a few bits for small integers, and still represent arbitrarily large
numbers.

Inverted lists can also be made more compressible by delta-encoding their
contents.

Next, we’ll see how to encode integers using a variable byte code, which is
more convenient for processing.

An inverted list is generally represented
as multiple sequences of integers.

• Term and document IDs are used
instead of the literal term or
document URL/path/name.

• TF, DF, term position lists and other
data in the inverted lists are often
integers.

We’d like to efficiently encode this
integer data to help minimize disk and
memory usage. But how?

Compressing Inverted Lists

Postings with DF, TF, and Positions

The encodings used by processors for
integers (e.g., two’s complement) use a
fixed-width encoding with fixed upper
bounds. Any number takes 32 (say) bits,
with no ability to encode larger numbers.

Both properties are bad for inverted lists.
Smaller numbers tend to be much more
common, and should take less space. But
very large numbers can happen –
consider term positions in very large files,
or document IDs in a large web collection.

What if we used a unary encoding? This
encodes k by k 1s, followed by a 0.

Unary

decimal binary unary

0 00000000 0

1 00000001 10

7 00000111 11111110

13 00001101 11111111111110

Unary is efficient for small numbers,
but very inefficient for large numbers.
There are better ways to get a variable
bit length.

With Elias-ɣ codes, we use unary to
encode the bit length and then store
the number in binary.

To encode a number k, compute:

!

Elias-ɣ Codes

MF = �log� M�
MT = M � ��log� M�

Decimal k k Code

1 0 0 0

2 1 0 10 0

3 1 1 10 1

6 2 2 110 10

15 3 7 1110 111

16 4 0 11110 0000

255 7 127 11111110 1111111

1023 9 511 1111111110
111111111

Elias-ɣ codes take bits.
We can do better, especially for large
numbers.

Elias-δ codes encode kd using an
Elias-ɣ code, and take approximately
 bits.

We split kd into:

!

Elias-δ Codes
Decimal k k k k Code

1 0 0 0 0 0

2 1 1 0 0 10 0 0

3 1 1 0 1 10 0 1

6 2 1 1 2 10 1 10

15 3 2 0 7 110 00 111

16 4 2 1 0 110 01 0000

255 7 3 0 127 1110 000
1111111

1023 9 3 2 511 1110 010
111111111

��log� M� + �

� log� log� M + log� M

MFF = �log� MF�
MFT = MF � ��log� MF�

Python Implementation

We now have an efficient variable bit
length integer encoding scheme which
uses just a few bits for small numbers,
and can handle arbitrarily large numbers
with ease.

To further reduce the index size, we want
to ensure that docids, positions, etc. in
our lists are small (for smaller encodings)
and repetitive (for better compression).

We can do this by sorting the lists and
encoding the difference, or delta,
between the current number and the last.

Delta Encoding

Raw positions: 1, 5, 9, 18, 23, 24, 30, 44, 45, 48

Deltas: 1, 4, 4, 9, 5, 1, 6, 14, 1, 3

High-frequency words compress more easily:

1, 1, 2, 1, 5, 1, 4, 1, 1, 3, ...

Low-frequency words have larger deltas:

109, 3766, 453, 1867, 992, ...

CS6200: Information Retrieval
Slides by: Jesse Anderton

Byte-Aligned Codes
In production systems, inverted lists are stored using byte-aligned
codes for delta-encoded integer sequences.

Careful engineering of encoding schemes can help tune this process
to minimize processing while reading the inverted lists. This is essential
for getting good performance in high-volume commercial systems.

Next, we’ll look at how to produce an index from a document collection.

We’ve looked at ways to encode integers with bit-aligned codes.
These are very compact, but somewhat inconvenient.

Processors and most I/O routines and hardware are byte-aligned, so
it’s more convenient to use byte-aligned integer encodings.

One of the commonly-used encodings is called vbyte. This encoding,
like UTF-8, simply uses the most significant bit to encode whether the
number continues to the next byte.

Byte-Aligned Codes

Vbyte

k Bytes Used

k 1

2 2

2 3

2 4

k Binary Hexadecimal

1 1 0000001 81

6 1 0000110 86

127 1 1111111 FF

128 0 0000001 1 0000000 01 80

130 0 0000001 1 0000010 01 82

20000 0 0000001 0 0011100 1 0100000 01 1C A0

Java Implementation

Let’s see how to put together a compressed inverted list with delta encoding.
We start with the raw inverted list: a sequence of tuples containing (docid,
tf, [pos1, pos2, …]).

(1,2,[1,7]), (2,3,[6,17,197]), (3,1,[1])

We delta-encode the docid and position sequences independently.

(1,2,[1,6]), (1,3,[6,11,180]), (1,1,[1])

Finally, we encode the integers using vbyte.

81 82 81 86 81 82 86 8B 01 B4 81 81 81

Bringing It Together

Although vbyte is often adequate, we can do better for high-performance
decoding.

Vbyte requires a conditional branch at every byte and a lot of bit shifting.

Google’s Group VarInt encoding achieves much better decoding
performance by storing a two bit continuation sequence for each of the
next 4-16 bytes.

Decimal: 1 15 511 131071

Encoded: 00000110 00000001 00001111 11111111 00000001 11111111 11111111 00000001

Alternative Codes

