Lecture III: The Lempel-Ziv Algorithms

- A family of data compression algorithms presented in

- Many desirable features, the conjunction of which was unprecedented
 - simple and elegant
 - universal for individual sequences in the class of finite-state encoders
 - convergence to the entropy rate
 - string matching and dictionaries, no explicit probability model
 - very practical, with fast and effective implementations applicable to a wide range of data types

Two Main Variants

[LZ77] and [LZ78] present different algorithms with common elements
- The main mechanism in both schemes is pattern matching: find string patterns that have occurred in the past, and compress them by encoding a reference to the previous occurrence

- Both schemes are in wide practical use
 - many variations exist on each of the major schemes
 - we focus on LZ78, which admits a simpler analysis with a stronger result. Our proof follows [CT91]. It differs from the original proof in [LZ78]
 - we will also describe the [LZ77], and see a fundamental result of [Wyner&Ziv] providing insight into its workings
 - the scheme is based on the notion of incremental parsing

Incremental Parsing and the LZ78

- Parse the input sequence into phrases, each new phrase being the shortest substring that has not appeared so far in the parsing. E.g., for the string $x^n = 10110101000101$, $1, 0, 11, 010, 00, 10$.

- Each new phrase is of the form $w b$, where w is a previous phrase, $b \in \{0, 1\}$
 - a new phrase can be described as (i, b), where $i = \text{index}(w)$
 - in the example: $(0, 1), (0, 0), (1, 1), (2, 1), (4, 0), (2, 0), (1, 0)$
 - let $c(n) = \text{number of phrases in } x^n$
 - a phrase description takes $\leq 1 + \log c(n)$ bits
 - here describing 13 bits took us 28 but gets better as $n \to \infty$
 - another small overhead to indicate how many bits per description of phrase (in practice use increasing length codes)
 - So, all in all, bounding generously, the compression ratio attained is
 \[c(n) (\log c(n) + 2) + \log n \]

Performance Analysis

Lemma 1. The number of phrases $c(n)$ in a distinct parsing of a binary sequence satisfies

\[c(n) \leq \frac{n}{(1 - \epsilon_n) \log n}, \]

where $\epsilon_n \to 0$ as $n \to \infty$.

Proof Idea: Letting n_k denote the sum of lengths of all distinct strings of length $\leq k$ and $k(n)$ denote the distinct value of k such that $n_k \leq n < n_{k+1}$, we show that for any distinct parsing

1. $c(n) \leq n/(k(n) - 1)$.
2. $k(n) = (1 \pm \epsilon_n)(\log n)$.
Ziv’s Inequality

For fixed k let $P(\cdot|\cdot)$ be an arbitrary conditional distribution of X_0 given $X_{-(k-1)}$. Define the probability distribution Q_k on X^n conditioned on $X_{-(k-1)}$ by

$$Q_k(x^n|x_{-(k-1)}) = \prod_{j=1}^n P(x_j|x_{j-1}^{j-k}).$$ \hspace{1cm} (2)

Suppose now that x^n is parsed into c distinct phrases y_1, y_2, \ldots, y_c.

Let ν_i be the index of the start of the i-th phrase, i.e., $y_i = x_{\nu_i+1}^{\nu_i+1}$

For each $i = 1, 2, \ldots, c$, define $s_i = x_{\nu_i-k}^{\nu_i-1}$

Thus s_i is the k bits of x preceding y_i.

Let c_{ls} be the number of phrases y_i with length l and preceding state $s_i = s$ for $l = 1, 2, \ldots$ and $s \in X^k$. So

$$\sum_{l,s} c_{ls} = c \text{ and } \sum_{l,s} lc_{ls} = n. \hspace{1cm} (3)$$

Maximum-Entropy Lemma

Lemma 3. Let Z be a positive integer valued random variable with mean μ. Then

$$H(Z) \leq (\mu + 1) \log(\mu + 1) - \mu \log \mu. \hspace{1cm} (4)$$

Proof: The maximum-entropy distribution over the positive integers under a constraint on the mean is the geometric one. The right hand side of (4) is readily checked to be the entropy of the geometric distribution with mean μ. \hfill \Box

Ziv’s Inequality (another one)

Lemma 2. [Ziv’s inequality] For any distinct parsing of the string x^n

$$\log Q_k(x^n|x_{-(k-1)}) \leq - \sum_{l,s} c_{ls} \log c_{ls}.$$

Note right side does not depend on $P(\cdot|\cdot)$ through which Q_k was defined.

Proof:

$$\log Q_k(x^n|x_{-(k-1)}) = \sum_{i=1}^c \log Q_k(y_i|s_i)$$

$$= \sum_{i,s} \sum_{\nu_i:y_i=x_{\nu_i}} \log Q_k(y_i|s_i)$$

$$= \sum_{i,s} c_{ls} \sum_{\nu_i:y_i=x_{\nu_i}} \frac{1}{c_{ls}} \log Q_k(y_i|s_i)$$

$$\leq \sum_{i,s} c_{ls} \log \left(\sum_{\nu_i:y_i=x_{\nu_i}} \frac{1}{c_{ls}} Q_k(y_i|s_i) \right). \Box$$

Lemma 4. [Ziv’s Inequality] For all $x \in \{0, 1\}^\infty$

$$\frac{c(n) \log c(n)}{n} \leq -\frac{1}{n} \log \max_{P \in \mathcal{P}_k} Q_k(x^n|x_{-(k-1)}) + \epsilon_k(n),$$

where $\epsilon_k(n) \to 0$ as $n \to \infty$ (uniformly in $x \in \{0, 1\}^\infty$).

Proof: Fix $P \in \mathcal{P}_k$ through which $Q_k(x^n|x_{-(k-1)})$ is defined. By Ziv’s inequality

$$\log Q_k(x^n|x_{-(k-1)}) \leq -\sum_{l,s} c_{ls} \log \frac{c_{ls} \epsilon^{c_{ls} \epsilon}}{c}$$

$$= -c \log c - c \sum_{l,s} \frac{c_{ls}}{c} \log \frac{c_{ls}}{c}. \hspace{1cm} (5)$$

Denoting $\pi_{ls} = \frac{c_{ls}}{c}$, we have

$$\sum_{l,s} \pi_{ls} = 1, \sum_{l,s} l \pi_{ls} = \frac{n}{c}.$$ \hspace{1cm} (7)

Thus, defining the random variables U, V such that

$$\Pr(U = l, V = s) = \pi_{ls}$$

we have

$$EU = \frac{n}{c}.$$ \hspace{1cm} (9)

and, by (6),

$$-\frac{1}{n} \log Q_k(x^n|x^n_0|(k-1)) \geq \frac{c}{n} \log c - \frac{c}{n} H(U, V).$$ \hspace{1cm} (10)

Now

$$H(U) \leq (EU + 1) \log(EU + 1) - EU \log EU \leq EU + 1 \log EU + 1 - EU \log EU.$$ \hspace{1cm} (11)

Note, in particular, that

$$\epsilon_k(n) = O\left(\frac{\log \log n}{\log n}\right),$$

independently of x^n and $P \in \mathcal{P}_k$.

Thus

$$\frac{c}{n} H(U, V) \leq \frac{c}{n} (H(U) + H(V)) \leq \frac{c}{n} \log \frac{n}{c} + \frac{c}{n} \log \left(\frac{c}{n} + 1\right) + \frac{c}{n} k.$$ \hspace{1cm} (14)

and

$$\frac{c}{n} H(U, V) \leq \frac{c}{n} \log \frac{n}{c} + \frac{c}{n} \log \left(\frac{c}{n} + 1\right) + \frac{c}{n} k.$$ \hspace{1cm} (15)

where (17) follows from Lemma 1 upon denoting

$$\epsilon_k(n) = -\frac{1}{n} \log \frac{1}{(1 - \epsilon_n) \log n} - \frac{1}{n} \log \frac{1}{(1 - \epsilon_n) \log n}$$

and

$$\epsilon_k(n) = -\frac{1}{n} \log \left(\frac{1}{(1 - \epsilon_n) \log n} + 1\right) \log \left(\frac{1}{(1 - \epsilon_n) \log n} + 1\right) + \frac{k}{(1 - \epsilon_n) \log n}.$$ \hspace{1cm} (19)

The Key Result

Theorem 1. Let $l(x^n)$ denote the Ziv-Lempel codeword length associated with x^n. Then, for all $x \in \{0, 1\}^\infty$,

$$\limsup_{n \to \infty} \frac{1}{n} l(x^n) \leq \lim_{k \to \infty} \limsup_{n \to \infty} \left[-\frac{1}{n} \log \max_{P \in \mathcal{P}_k} Q_k(x^n|x^n_{(k-1)}) \right].$$ \hspace{1cm} (21)

Proof: The result is a direct consequence of the fact that

$$l(x^n) \leq c(n)(\log c(n) + 2) + \log n,$$ combined with Lemma 1 and Lemma 4.

Equipped with Theorem 1, the universality result in the stochastic setting is but a simple corollary:
Corollary 1. Let $X = \{X_i\}$ be a stationary ergodic source. Then the Lempel-Ziv code satisfies
\[
\lim_{n \to \infty} \frac{1}{n} l(X^n) = \overline{H}(X) \quad a.s.
\] (22)

Proof: For P denoting the true distribution of X_0 conditioned on X_{-k} we have, with probability one,
\[
\limsup_{n \to \infty} \frac{1}{n} l(X^n) \leq \limsup_{n \to \infty} \left[-\frac{1}{n} \log \max_{P \in \mathcal{P}_k} Q_k(X^n|X^{0_{(k-1)}}) \right]
\leq \limsup_{n \to \infty} \left[-\frac{1}{n} \sum_{i=1}^{n} \log P(X_i|X_i^{i-1}_k) \right]
= H(X_0|X_{-k})
\] (25)

Universality for Individual Sequences

Another easy consequence of Theorem 1 is universality in the individual sequence setting. Define the finite-memory compressibility:
\[
FM_k(x^n) = \inf_{P \in \mathcal{P}_k,s_1} \left[-\frac{1}{n} \log Q_k(x^n|s_1) \right]
\]

\[
FM_k(x) = \limsup_{n \to \infty} FM_k(x^n)
\]

\[
FM(x) = \lim_{k \to \infty} FM_k(x)
\]

Corollary 2. For all $x \in \{0, 1\}^\infty$, the LZ codeword lengths satisfy
\[
\limsup_{n \to \infty} \frac{1}{n} l(x^n) \leq FM(x).
\] (27)

[LZ78] introduces a stronger notion of finite-state compressibility and shows that the LZ scheme attains that as well.

The Parsing Tree

\[
x_i^n = 1,0,1,1,0,1,0,0,0,1,0,\ldots
\]

\[
\begin{array}{c}
\text{code} \quad \text{phrase} \\
0 & 1 \\
1 & 0,1 \\
2 & 0,0 \\
3 & 1,1 \\
4 & 2,1 \\
5 & 4,0 \\
6 & 2,0 \\
7 & 1,0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{dictionary} \\
0 & 2 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & \ldots \end{array}
\]

where the first inequality follows from Theorem 1, and the equality by ergodicity. The arbitrariness of k implies
\[
\limsup_{n \to \infty} \frac{1}{n} l(X^n) \leq \overline{H}(X) \quad a.s.,
\] (26)

which, combined with exercise 2 of HW sheet 2, completes the proof. □
Slightly different tree evolution
anticipatory parsing

A weight is kept at every node
number of times the node was
traversed through + 1

A node act as a conditioning state,
assigning to its children
probabilities proportional to their
weight

Example: string $s = 101101010$

$P(0|s) = 4/7$
$P(1|s0) = 3/4$
$P(1|s01) = 1/3$
$P(011|s011) = (4/7) \times (3/4) \times (1/3) = 1/7$

Notice 'telescoping'

In general,

$P(x^n) = \frac{1}{(c(n)+1)!}$

LZ code length!

every lossless compression algorithm defines
a prob. assignment, even if it wasn’t meant to!

Exhaustive parsing as opposed to incremental
a new phrase is formed by the longest match anywhere in a finite past
window, plus the new symbol
a pointer to the location of the match, its length, and the new symbol
are sent

Has a weaker proof of universality, but actually works better in practice

Fundamental Result in Analysis of LZ77

Wyner and Ziv, “Some asymptotic properties of the entropy of a stationary
ergodic data source with applications to data compression”, IEEE Trans.

Theorem 2. [WZ89] For stationary ergodic X

$$\frac{\log n}{L_n} \to H(X) \quad \text{in probability.}$$

Almost sure convergence in (28) was later established by:

Ornstein and Weiss, “Entropy and data compression schemes”, IEEE
Theorem 2 can be restated in terms of waiting times as

Theorem 3. [WZ89] Let X be stationary ergodic and define the random variable N_l as the smallest $N > 0$ such that

$$X_0^{l-1} = X_{-N^{l+1}}.$$

Then

$$\frac{1}{l} \log N_l \to \mathcal{H}(X) \text{ in probability.}$$

Equivalence of theorems derives from the equivalence of events

$$\{N_l > n\} = \{L_n \leq l\}.$$

Intuition behind Theorem 3

Intuition can be gained via Kac’s lemma. For stationary ergodic Y, $Y_i \in \mathcal{B}$, $|\mathcal{B}| < \infty$ let

$$Q_k(b) = \Pr(Y_k = b; Y_j \neq b, 1 \leq j \leq k-1|Y_0 = b)$$

and let

$$\mu(b) = \sum_{k=1}^{\infty} kQ_k(b)$$

denote the expected recurrence time for the symbol $b \in \mathcal{B}$.

Lemma 5. [Kac]

$$\mu(b) = 1/\Pr\{Y_0 = b\}.$$

Applied to our case Kac’s lemma implies

$$E[N_l|X_0^{l-1} = x_0^{l-1}] \approx 2^{l(\mathcal{H}(X) + \epsilon)}$$

or

$$\log E[N_l|X_0^{l-1} = x_0^{l-1}] \approx \mathcal{H}(X) \pm \epsilon$$

for all typical x_0^{l-1}, which resembles (29).

See also

and references therein for analogues of Theorem 3 when distortion is allowed.