CS1800

Discrete Structures Fall 2017

Lecture 17 10/16/17

Last time

- Finish sets \&

Set operations

- Basic rules for counting
- product rule
- sum rule
- principle of
inclusion-exclusion

Today
Next time

- Prem hole Principle
- Permutations \& Combinations
- Balls - in - bins
- Binomial Theorem

Announcement

- Lecture Videos
- Lecture Notes

Pigeonhole Principle
If place $n+1$ (or more) objects in n boxes, then at least one box has 2 or more objects.

Claim: Every integer n has a multiple that contanis only i's $\& 0$'s in decimal.
es. $2 \rightarrow 10$ $4 \rightarrow 100$ $5 \rightarrow 10$ $3 \rightarrow$?

$$
\text { es. } 3
$$

$$
\begin{aligned}
& 4\left\{\begin{aligned}
11 \text { mod }\} & =1 \\
11 \text { mod } 3 & =2 \\
111 \text { mod }\} & =0 \\
1111 \text { mod } 3 & =1
\end{aligned}\right. \\
& 1111=370.3+1 \\
& -1=0.3+1 \\
& 1110=370.3
\end{aligned}
$$

Pf: Consider the following \#'s

$$
1,11,111,1111,11111, \cdots, \underbrace{111-1}_{n+1}
$$

consider them all mod n n
\Rightarrow there are ally n unique mod n values

$$
(0,1,2, \ldots, n-1)
$$

\Rightarrow by PHP, some nod value occurs at least twice.
< \& b

$$
a=q_{1} \cdot n+r \quad b=q_{2} \cdot n+r
$$

$a-b=\left(q_{1}-q_{2}\right) \cdot n \rightarrow$ a multivle of n.

Generalized PHP: Put n objects into k boxes, then at least one box has at least $\lceil n / k\rceil$ objects.
$\lceil x\rangle=$ "ceiling" of x
= smallest integer at least as large as x.
e.9. 25 objects in 10 boxes,

$$
\Rightarrow\lceil 25 / 10\rceil=\lceil 2.5\rceil=3
$$

non-negative
The: Let $x_{1}, x_{2} \ldots x_{k}$ be k integers where $n=x_{1}+x_{2}+\ldots+x_{k}$ and $\bar{x}=\frac{n}{k}=\frac{x_{1}+x_{2}+\cdots+x_{k}}{k}$ is their average.
Then at least one x_{i} must be at least as large as \bar{x}; i.e., $x_{i} \geq \bar{x}$.
Pf: Assume for the sake of contradiction that no $x_{i} \geq \bar{x}$. Then all $x_{i}<\bar{x}$.

$$
\begin{aligned}
& x_{1}<\bar{x} \\
& x_{2}<\bar{x} \\
& \vdots \\
& x_{k}<\bar{x}
\end{aligned} \Rightarrow x_{1}+x_{2}+\cdots+x_{k}<k \cdot \bar{x} \Rightarrow \bar{x}>\frac{x_{1}+x_{2}+\cdots x_{k}}{k} \Rightarrow
$$

Permutations \& combinations
Traveling Salesman Problem: 10 cities to visit, how may y ways?

$$
\begin{aligned}
10!= & 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdots 3 \cdot 2 \cdot 1 \quad \text { "10 factorial" } \\
& \uparrow \text { 个 } 9 \text { for } \\
& 10 \text { chotecs }{ }^{\text {secund }}=3,628,800
\end{aligned}
$$

for fintrity

$$
25!\approx 1.55 \times 10^{25}
$$

\Rightarrow examine 37.6 millie possibilities every second s incl beginning of time
10^{80} atoms in universe $4,12 \times 10^{17}$ seconds since beginning of universe

- \# ways to order n objects is n !
- each ordering is retemed to as a permutation,
\# permutations $=n$!

How many ways to visit 3 out of 10 cities?

$$
10 \cdot 9 \cdot 8=\frac{10!}{7!}=\frac{10!}{(10-3)!}
$$

Def: Permutation: \# permutations of n objects is

$$
n!=n \cdot(n-1) \cdot(n-2) \cdot-3 \cdot 2 \cdot 1
$$

Def: r-Permutation: \# r-permutations of n objects is

- hoo many ways? $10!=3,628,800$
. 7 out of $10 ? \frac{10!}{(10-7)!}=\frac{10!}{3!}=\frac{10 \cdot 9.8 \cdot-4}{7}=604,800$
- 6 m north side - together 4 on south side-fogether 2. 4!.6!

刀
south or
north first

Combinations: a_{n} unordered subset of r out of n object.
\# Combinations $={ }^{n} C_{r}=C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
pf:

$$
\begin{gathered}
P(n, r)=C(n, r) \cdot r! \\
\uparrow \quad \uparrow \\
\text { Solve } \quad C(n, r)=\frac{P(n, r)}{r!}=
\end{gathered}
$$

