CS1800

Discrete Structures
 Fall 2019

Lecture 18
11/8/19

Last time
Finished series - telescoping

Start induction

- weak
- strong

Today

- Move induction

Next time
Finish induction
Recurrences

Q: How many bit strings of length n have no consecutive is?

$$
F_{1} F_{2} F_{3} F_{y} F_{5} F_{6} F_{7}
$$

Conjecture: \# such strives $s(n)=F_{n+2}$
Pf. Ind step: shaw if true $\forall k<n$, then true at n; i.e., $\quad s(k)=F_{i+2} \forall k<n$, then show that this implies that $s(n)=F_{n+2}$.

- Every bit string of length n who consecutive is either begin $\omega /$ a 0 or a 1
- If begins w/ 0 $0 \stackrel{\sim}{x+x--x}$
now many? $S(n-1)=F_{n+1}$
by ind. hyp.
\longrightarrow must not contain cosec. Is.
- If begin $\omega / 1$, next bit must be 0 . $10 \times \underset{x \times x \times-x}{\text { mitre }}$
remainder : no conses. is $\Rightarrow s(n-2)=F_{n}$ cosec. Is

$$
s(n)=F_{n+1}+F_{n}=F_{n+2}
$$

- need 2 bases cases, but already proven for $n=1$

Es. n limes in the plane $w /$ no 2 lies parallel and no 3 limes concurrent.
how many regions does this divide the plane into?

- try quadratic sequence, and then prone w/ induction $r_{n}=a \cdot n^{2}+b \cdot n+c$ for same a, b, c

$$
\begin{aligned}
& \begin{array}{l}
r_{1}=a \cdot 1^{2}+b \cdot 1+c=2 \Rightarrow a+b+c=2 \\
r_{2}=a \cdot 2^{2}+b \cdot 2+c=4 \Rightarrow 3 a+b=2
\end{array}>2 a=1 \Rightarrow a=1 / 2 \\
& r_{3}=a \cdot 3^{2}+b \cdot 3+c=7 \Rightarrow 9 a+3 b+c=7 \\
& \Rightarrow r_{n}=1 / 2 \cdot n^{2}+1 / 2 n+1=\frac{n^{2}+n+2}{2}
\end{aligned}
$$

- Check for $n=4 \quad r_{4}=\frac{4^{2}+4+2}{2}=\frac{16+4+2}{2}=\frac{22}{2}=11$

But what abut $n=5,6,7, \ldots$?
\Rightarrow prove by induction.

Claim: $r_{n}=\frac{n^{2}+n+2}{2}$
Pf: Induction
Base case: $n=1 \quad r_{1}=\frac{1^{2}+1+2}{2}=\frac{4}{2}=2$
Ind. step: Show that if true for $n=k, \rightarrow r_{k}=\frac{k^{2}+k+2}{2}$
then true at $n=k+1 \rightarrow r_{k+1}=\frac{(k+1)^{2}+(k+1)+2}{2}$

- For any $k+1$ lies, remove 1 of them. $=$
- What remanis is k lines and $\frac{k^{2}+k+2}{2}$ resins, by IH.
- The $k+1{ }^{\text {st }}$ line must cross all k lures at unique points $\frac{k^{2}+3 k+4}{2}$

- the $k+1^{\text {st }}$ lie crosses k lines, dividing $k+1$ regions in half, creating bal additional regions.

$$
\begin{aligned}
r_{k+1} & =r_{k}+(k+1) \\
& =\frac{k^{2}+k+2}{2}+(k+1) \\
& =\frac{k^{2}+k+2+2 k+2}{2}=\frac{k^{2}+3 k+4}{2}
\end{aligned}
$$

Ecg. Same setup: n lines in places no 2 parallel, no 3 concurrent. Claim: Con always color the regions black white sit. no 2 adjacent resins have save color.

- Proof by in duction
- BC. $n=1$
$\frac{k^{2}+k+2}{2}$
- I.S. show if true for $n=k, \leftarrow c$ can color the regions using
then true for $n=k+1 \leftarrow c$ an color the $\varepsilon^{\frac{k^{2}+3 k+4}{2}}$ resins usnig just $B \& \omega$.
For any $k+1$ lines, remove 1. Left w/ k lives and can color the regions $\omega /$ just 2 colors by IH.
- Now consider adding let ${ }^{\text {st }}$ line back in.

- every region to the left of red (new $k+1^{\text {st }}$) line is colored ok w.r.t. each other. Same istrue to the right Problem is across
- Solution: swap all new line. colors on one side only.
- preserves correctness on that side
- makes correct across lure.

