REC6: Induction, Series

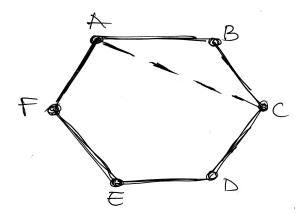
Problem 1 Multiple of 4

Prove by induction that for all n odd positive integers $1+3^n$ is divisible by 4.

Problem 2 Fibonacci numbers properties by induction

i.
$$F_1 - F_2 + F_3 - F_4 + \dots + (-1)^n F_{n+1} = (-1)^n F_n + 1$$

ii.
$$F_1F_2 + F_2F_3 + F_3F_4 + \dots + F_{2n-1}F_{2n} = F_{2n}^2$$


Problem 3 Approximation

i. Let x > -1 a real value. Prove by induction over $n \ge 0$ that $(1+x)^n \ge 1 + nx$

ii. Prove that $(\frac{n}{n+1})^n \ge \frac{1}{n+1}$ by using a particular x in the previous inequality.

Problem 4 Polygon sum of angles

Prove that the sum of the interior angles of a convex polygon with n sides is $(n-2)\pi$. You can assume known that the sum of angles of any triangle is π

Problem 5 $\star\star\star$ (optional, no credit)

Prove that the inverse- $n \log n$ series diverges : $\sum_{k=2}^{\infty} \frac{1}{n \log n} = \infty$