

semi-supervised data organization

Javed Aslam

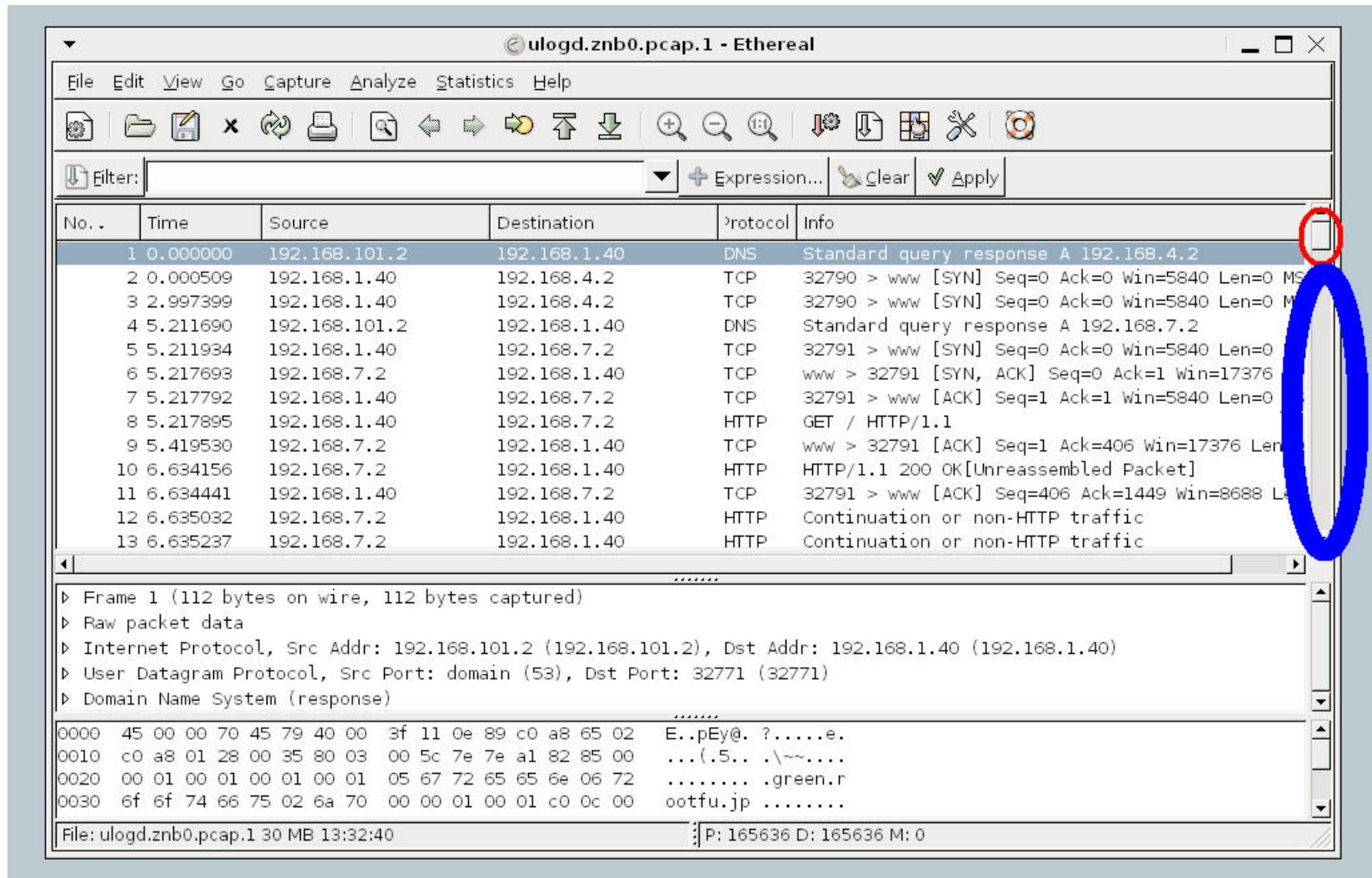
Sergey Bratus

► Virgil Pavlu

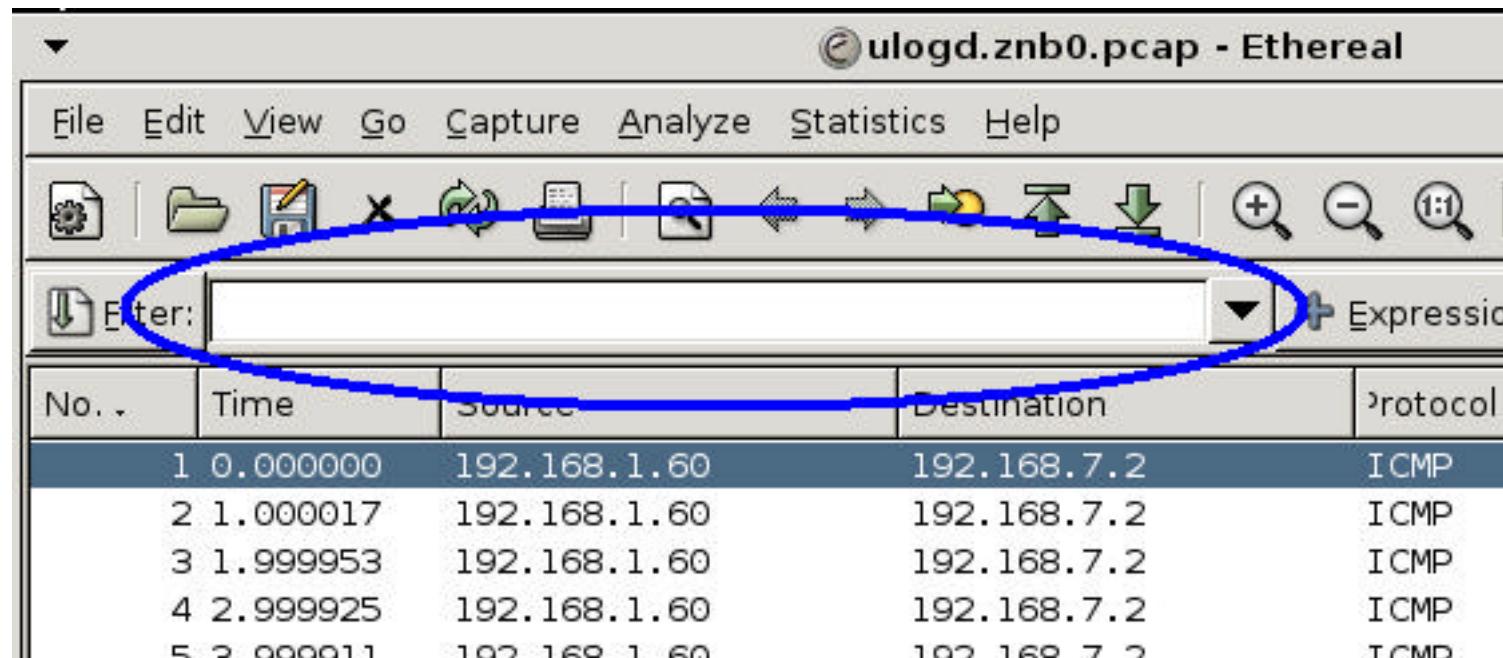
motivation : too much data

- log analysis :
 - lots of data
 - hard to search/visualize
 - very few labeled records
- but
 - easy to cluster/classify
 - interesting clusters have high density linkage
 - lots of similar records

motivation: lots of log data



Ethereal : Filter



- Filter in Ethereal :
 - if we would know what to look for....
 - similar records do not necessarily match boolean logic
 - filters get too long
 - one at a time, loses big picture
 - difficult browsing

TreeView

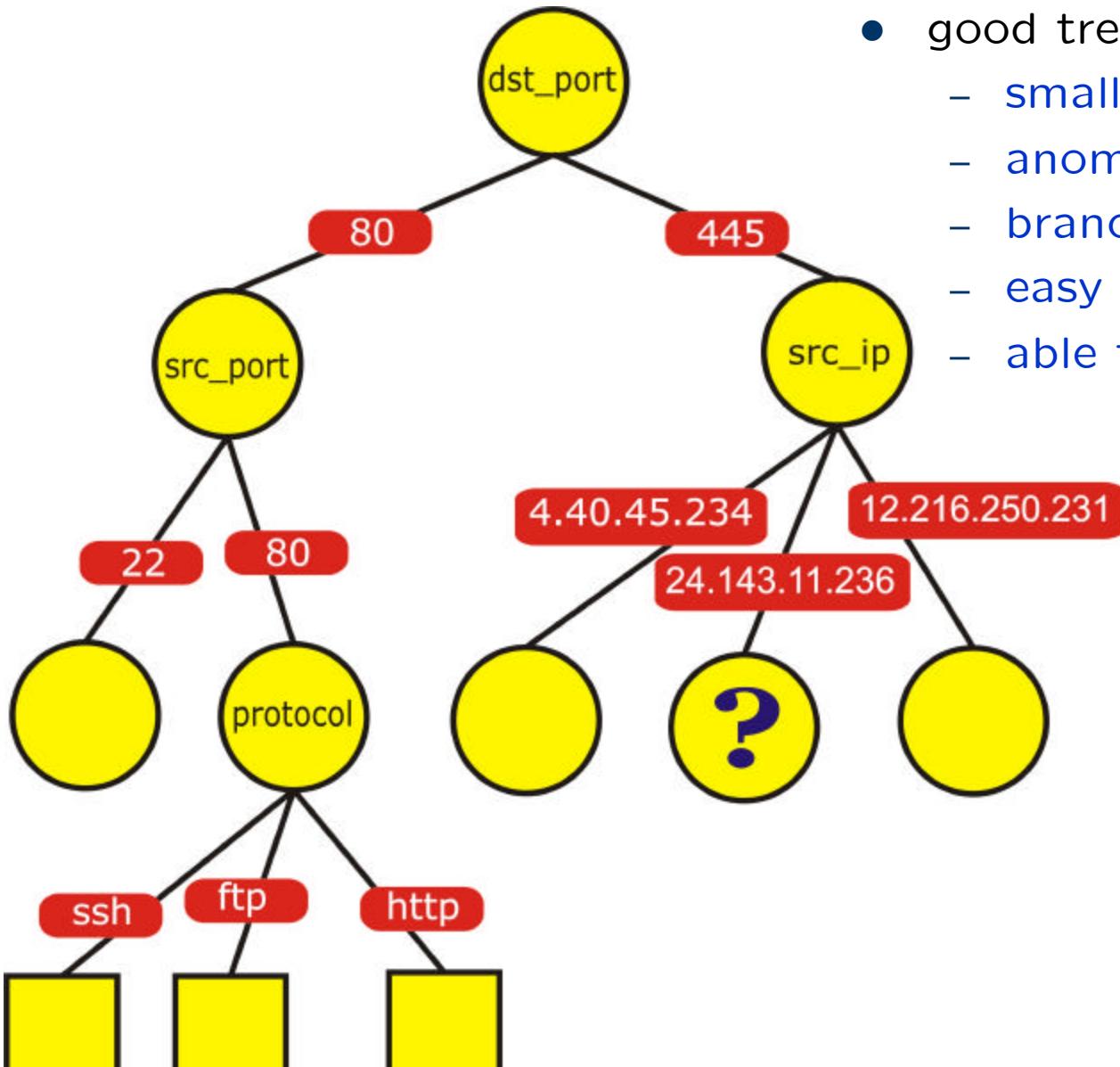
TreeView

File Edit Template

[1339] Snort portscan alerts

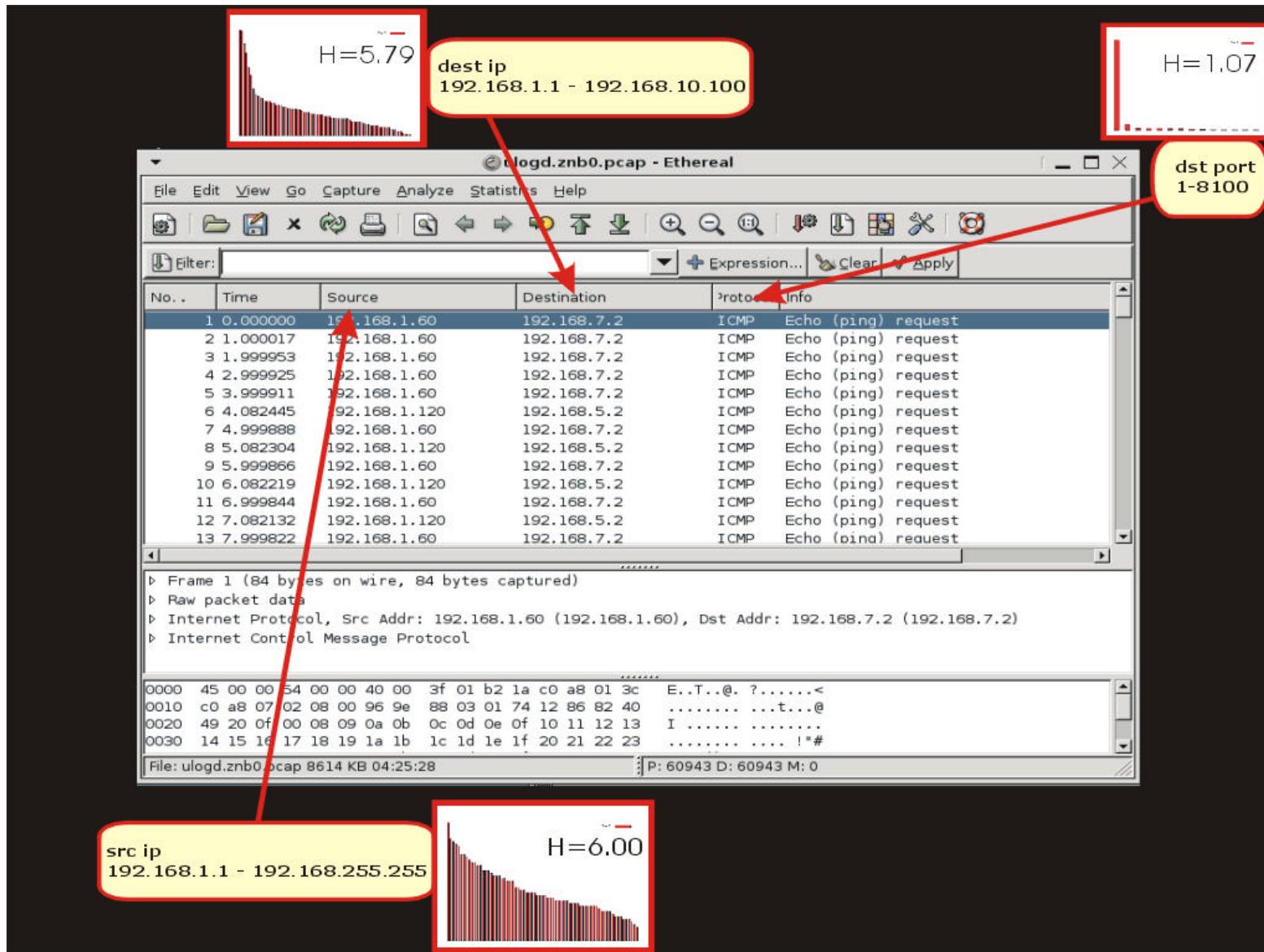
- + [1135] dst_port: 445 src_ip: [55] dst_ip: [75]
- + [70] dst_port: 80 src_ip: [8] dst_ip: [30]
- + [26] dst_port: 21 src_ip: 80.141.141.173 dst_ip: [11]
- + [22] dst_port: 4899 src_ip: 218.103.195.242 dst_ip: [22]
- + [20] dst_port: 4000 src_ip: [2] dst_ip: [8]
- + [15] dst_port: 139 src_ip: 129.170.125.243 dst_ip: [8]
- + [15] dst_port: 443 src_ip: 211.5.239.5 dst_ip: [9]
- + [12] dst_port: 1524 src_ip: 192.139.15.34 dst_ip: [12]
- + [9] dst_port: 1 src_ip: 209.15.84.72 dst_ip: [9]
- + [3] dst_port: 8000 src_ip: 194.208.40.120 dst_ip: [2]
- + [3] dst_port: 1080 src_ip: 194.208.40.120 dst_ip: [2]
- + [3] dst_port: 3128 src_ip: 194.208.40.120 dst_ip: [2]
- + [3] dst_port: 8100 src_ip: 194.208.40.120 dst_ip: [2]
- [3] dst_port: 8080 src_ip: 194.208.40.120 dst_ip: [2]
 - [3] src_ip: 194.208.40.120 dst_ip: [2]
 - Apr 15 19:54:10 annon snort: 194.208.40.120 4743 -> 129.170.166.39
 - Apr 15 19:55:00 annon snort: 194.208.40.120 4914 -> 129.170.166.39
 - Apr 15 19:55:06 annon snort: 194.208.40.120 4914 -> 129.170.166.39

data organization : trees

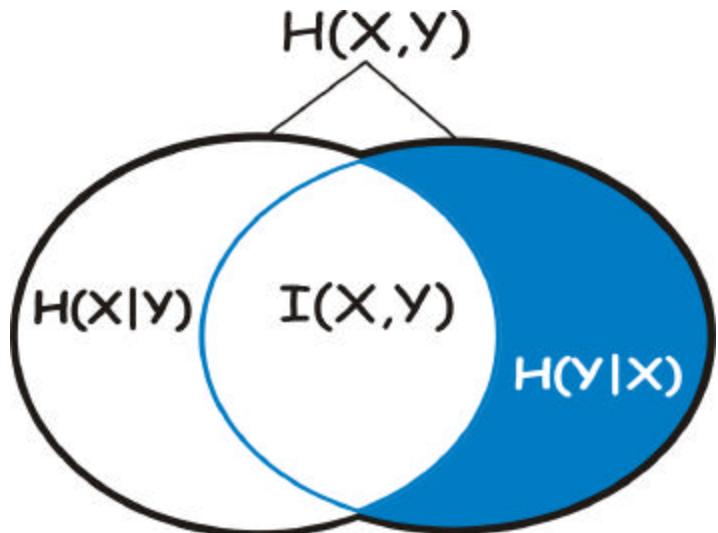


- good tree :
 - small branching factor
 - anomalies grouped together
 - branches are different
 - easy browsing
 - able to use feedback

from table to tree

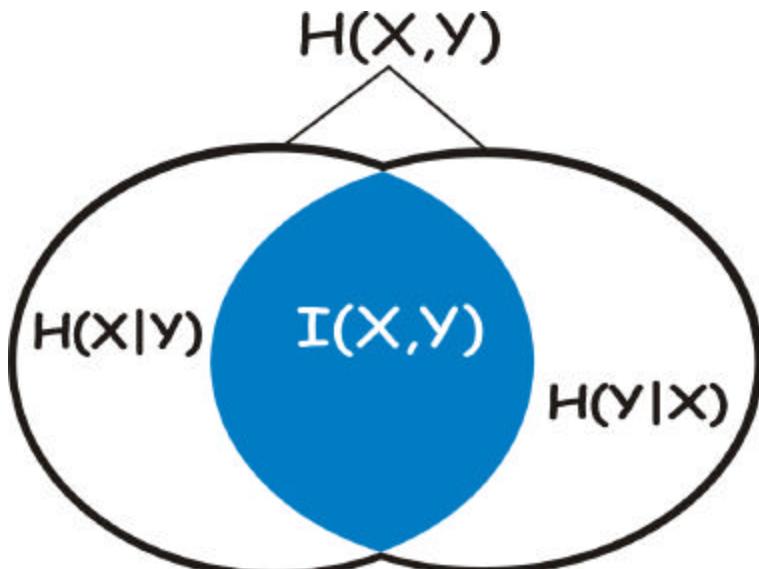


information theory



$$\begin{aligned} H(X, Y) &= H(X) + H(Y) - I(X, Y) \\ &= H(X) + H(Y|X) \end{aligned}$$

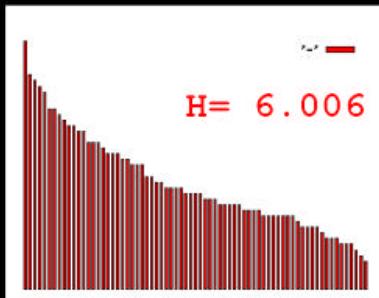
$$\begin{aligned} H(Y|X) &= H(X, Y) - H(X) = \\ &= H(Y) - I(X, Y) \end{aligned}$$



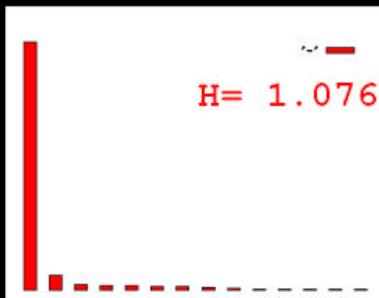
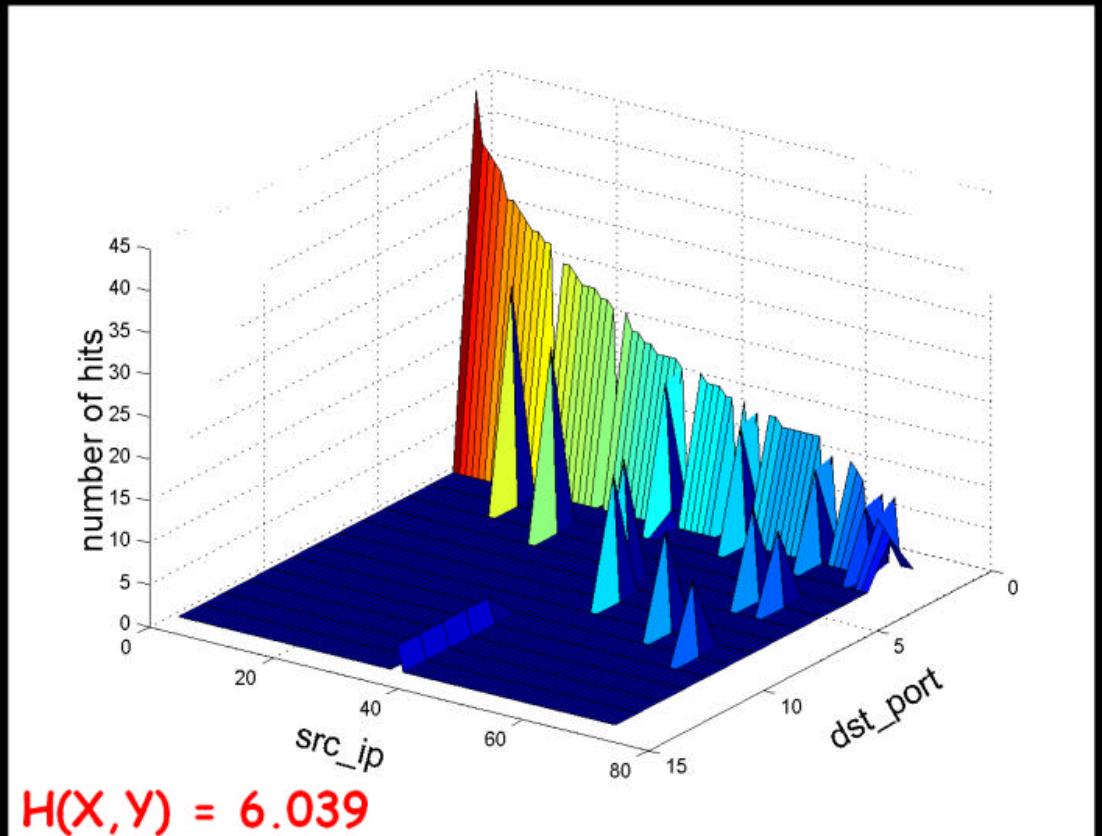
$$\begin{aligned} I(X, Y) &= H(X, Y) - H(X|Y) - H(Y|X) \\ &= H(X) - H(Y|X) \end{aligned}$$

information theory

src_ip



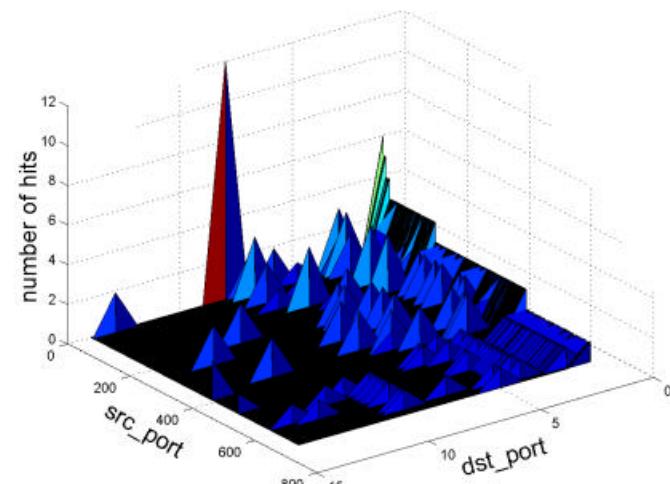
dst_port



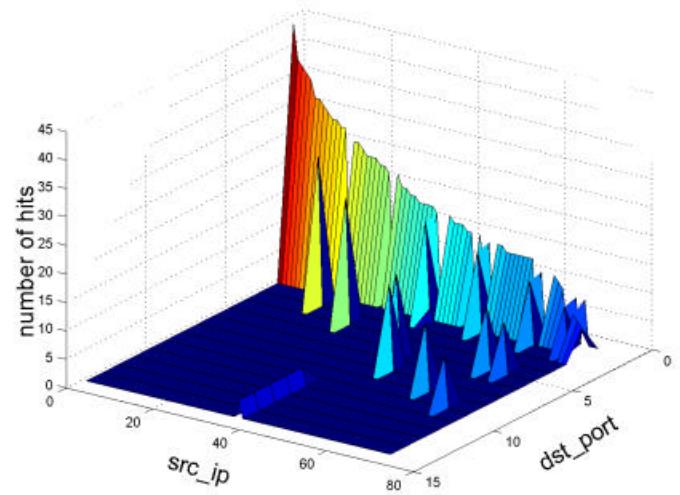
information theory



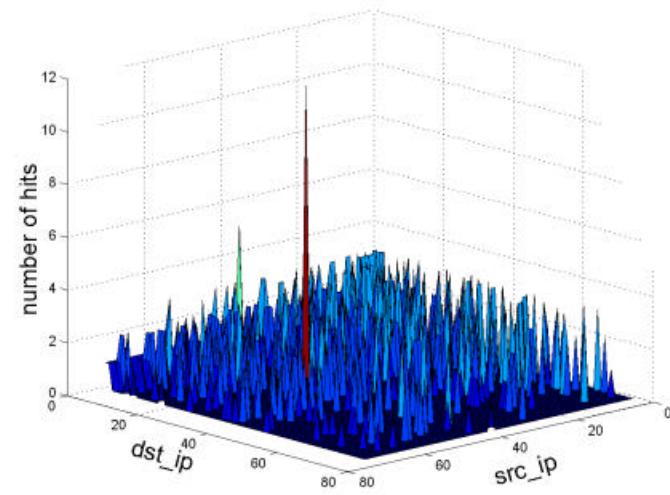
$$H(X, Y) = 6.550$$



$$H(X, Y) = 9.286$$

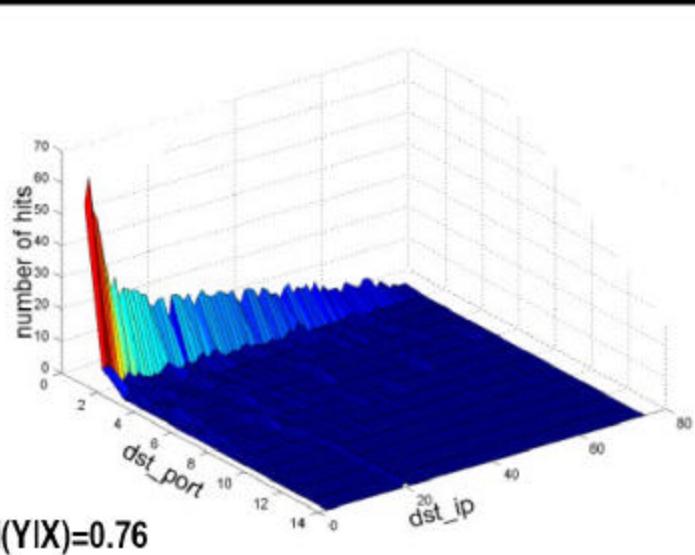
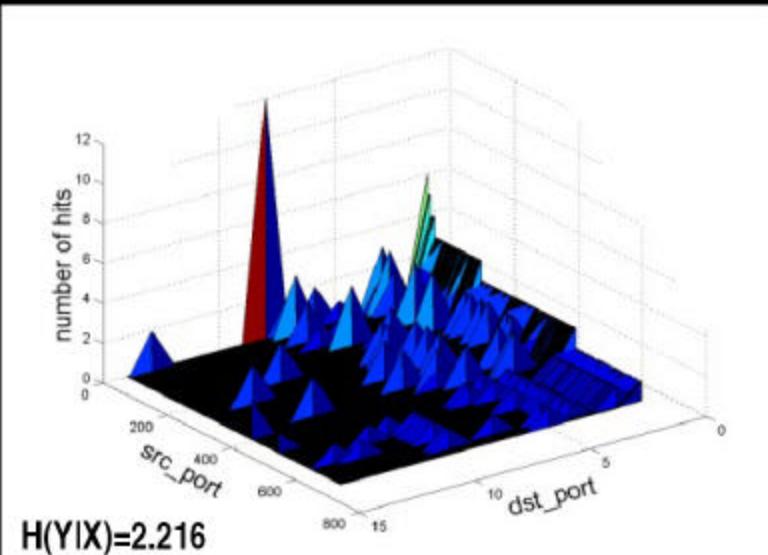
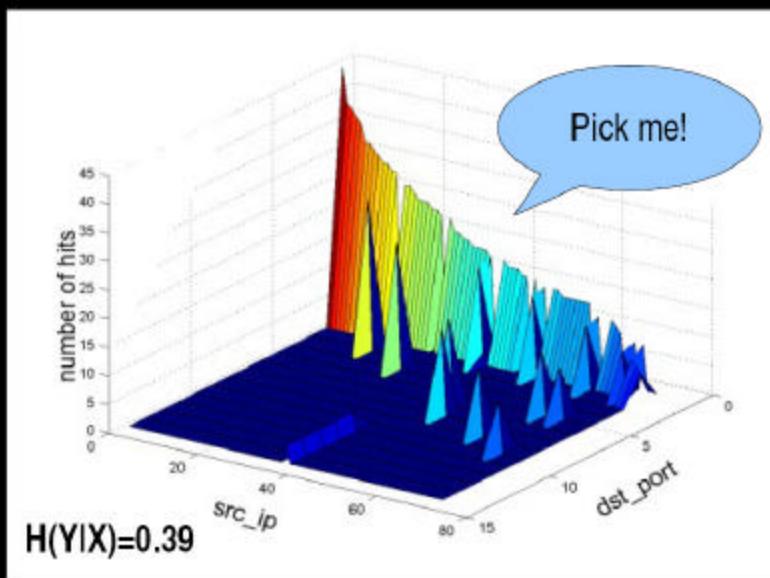
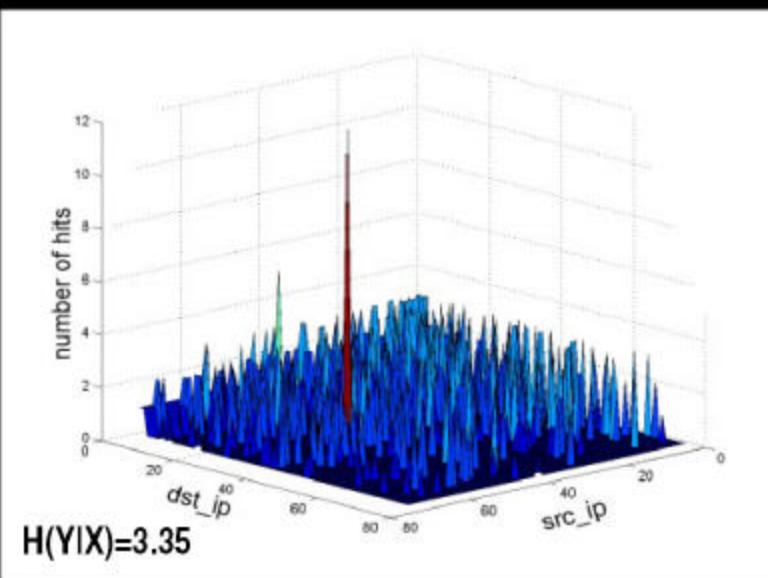


$$H(X, Y) = 6.039$$



$$H(X, Y) = 9.351$$

information theory



Jensen-Shannon divergence

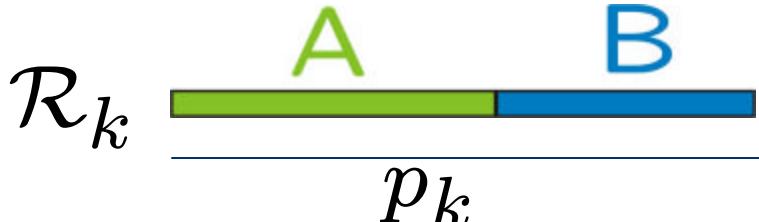
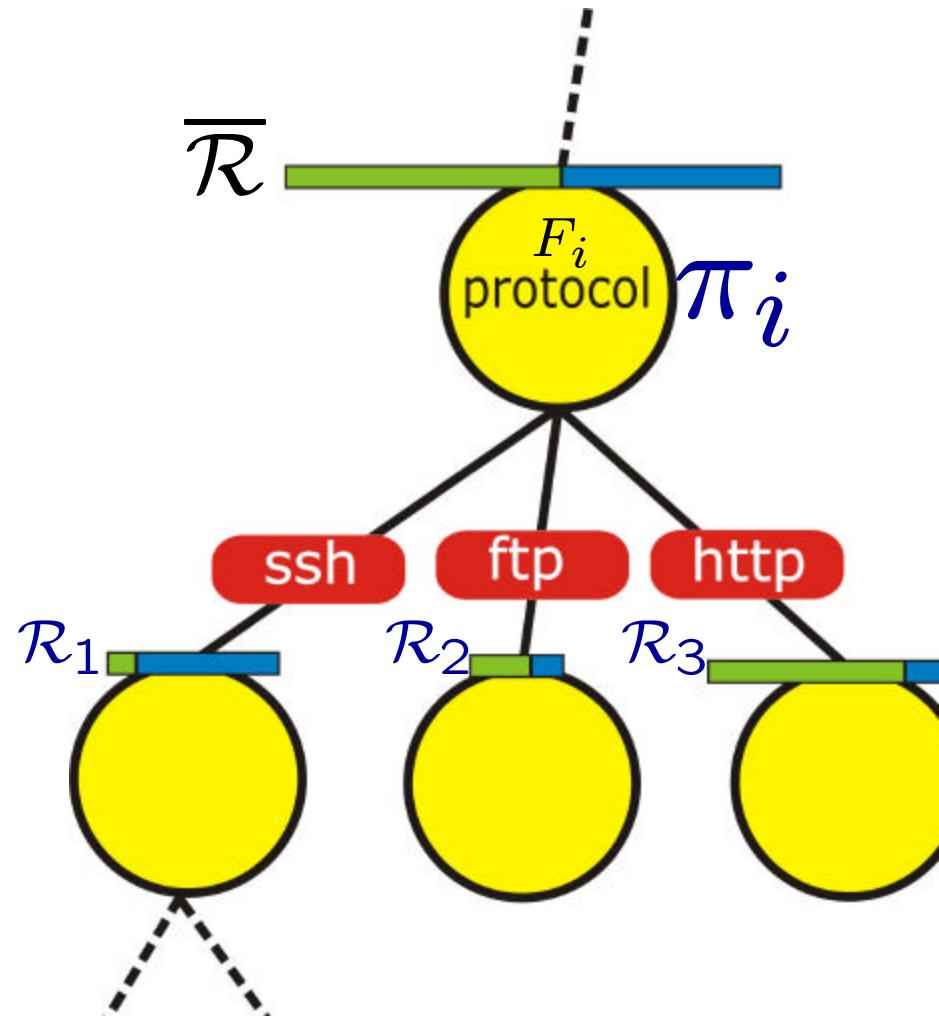
$$JS(D_1, \dots, D_n) = H\left(\sum_{k=1}^n p_k D_k\right) - \sum_{k=1}^n p_k H(D_k)$$

- measures (dis)similarity between several distributions
- almost a distance
- represents information reduction from encoding the distributions together rather than separately
- zero iff all distributions are identical
- better analytical properties than relative entropy

JS divergence for tree

$$JS_{\pi_i}(\mathcal{R}_1, \dots, \mathcal{R}_{|F_i|}) = H\left(\sum_{k=1}^{|F_i|} p_k^i \mathcal{R}_k\right) - \sum_{k=1}^{|F_i|} p_k^i H(\mathcal{R}_k)$$

- $\bar{\mathcal{R}} = \mathcal{R}_1 \cup \dots \cup \mathcal{R}_{|F_i|}$
- measures dissimilarities between tree branches
- bar on top of each node indicates the number of records and their class labels (unknown)

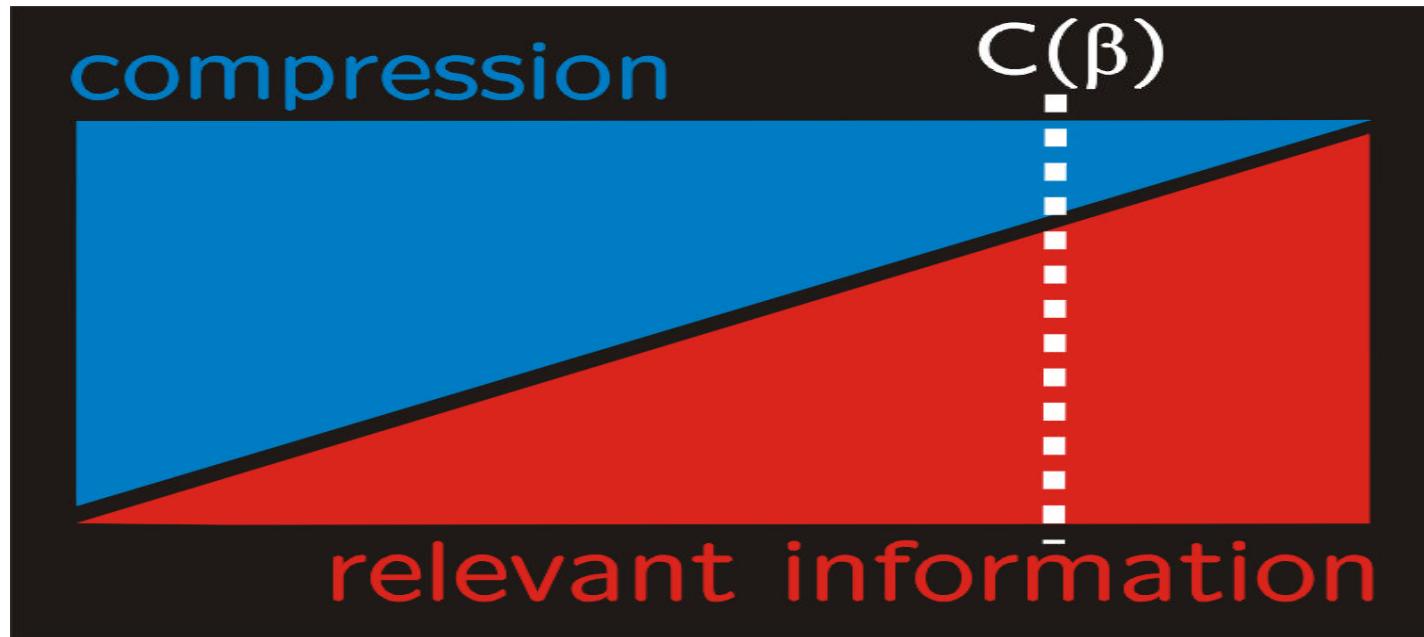


information bottleneck

- [Tishby, Pereira, Bialek]

- X is the set of objects to be clustered/compressed
 - Y = relevant feature(s)
 - find cluster C to achieve

$$\underset{C}{\operatorname{argmin}} I(X; C) - \beta I(Y; C)$$



information bottleneck and JS

- information bottleneck formula

$$\underset{C}{\operatorname{argmin}} I(X; C) - \beta I(Y; C)$$

- applied with JS divergence

$$F_{(1)} = \underset{\{F_i | H(F_i) \neq 0\}}{\operatorname{argmin}} H(F_i) - \beta \cdot JS_{\pi_i}(\mathcal{R}_1, \dots, \mathcal{R}_{|F_i|}),$$

semi-supervised

- L =set of labels provided by the user
 - Only a tiny percentage of records will be marked either way.
 - Not all copies of identical records (or very similar) records will be marked
- all quantities of interest become conditionals of L :

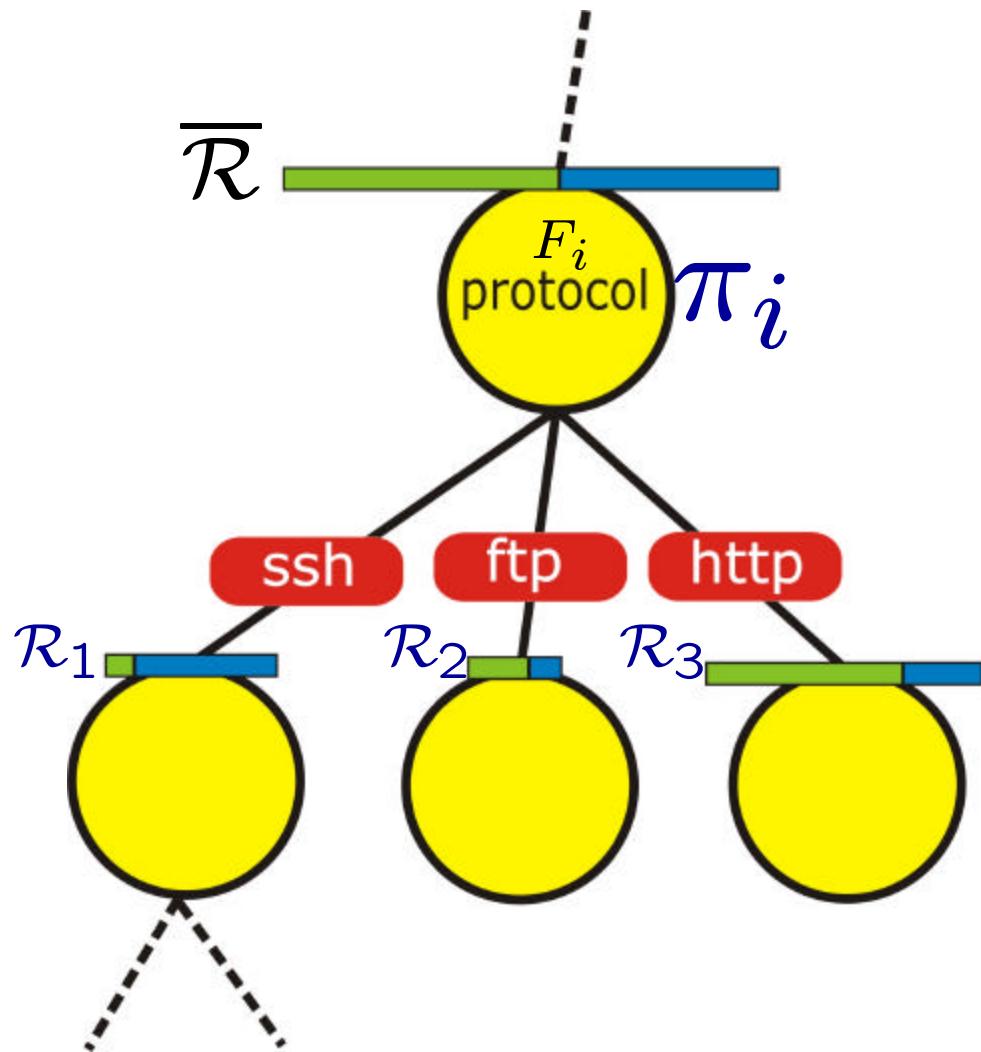
$$H(F|L) = H(F) - I(F; L)$$

$$\begin{aligned} JS_{\pi_i}(\mathcal{R}_1, \dots, \mathcal{R}_{|F_i|} | L) &= JS_{\pi_i}(\mathcal{R}_1, \dots, \mathcal{R}_{|F_i|}) \\ &- (I(\overline{\mathcal{R}}; L) - \sum_{k=1}^{|F_i|} p_k^i I(\mathcal{R}_k; L)) \end{aligned}$$

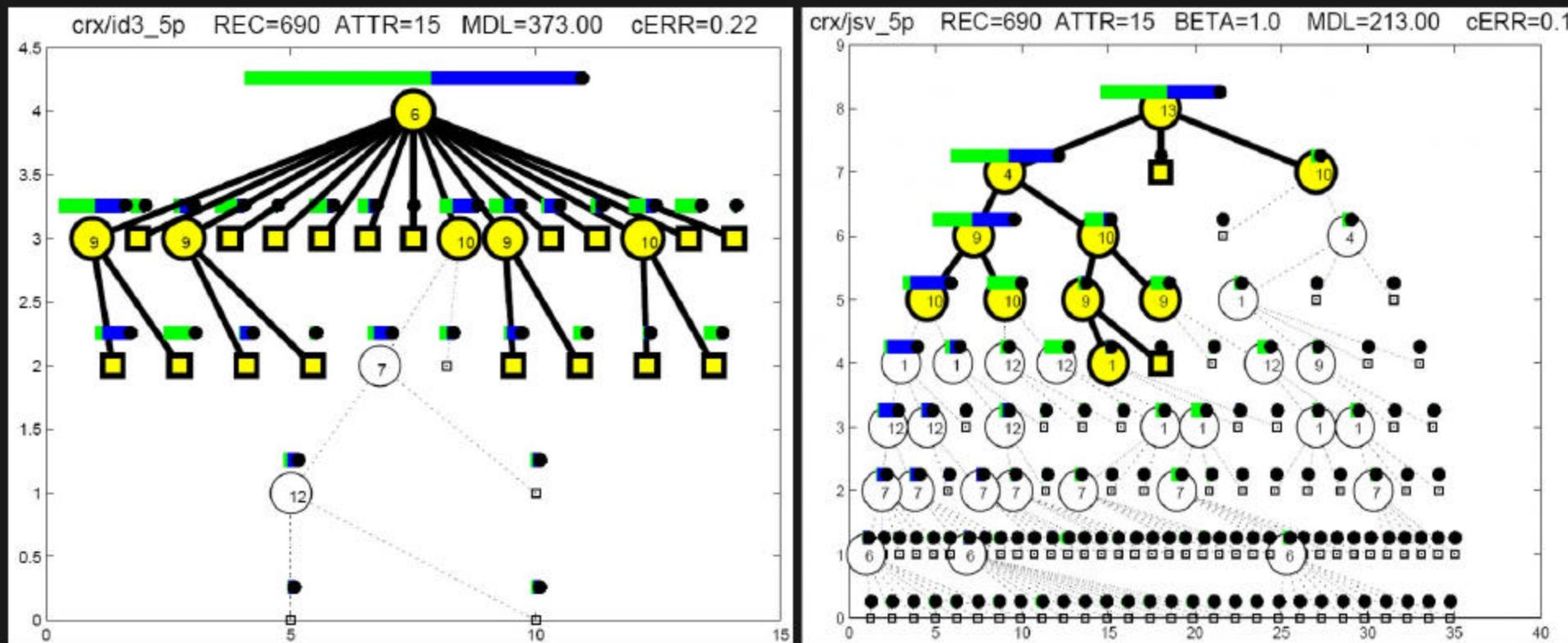
semi-supervised

$$F^{(1)} = \underset{\{F_i | H(F_i) \neq 0\}}{\operatorname{argmin}} H(F_i | L) - \beta \cdot JS_{\pi_i}(\mathcal{R}_1, \dots, \mathcal{R}_{|F_i|} | L),$$

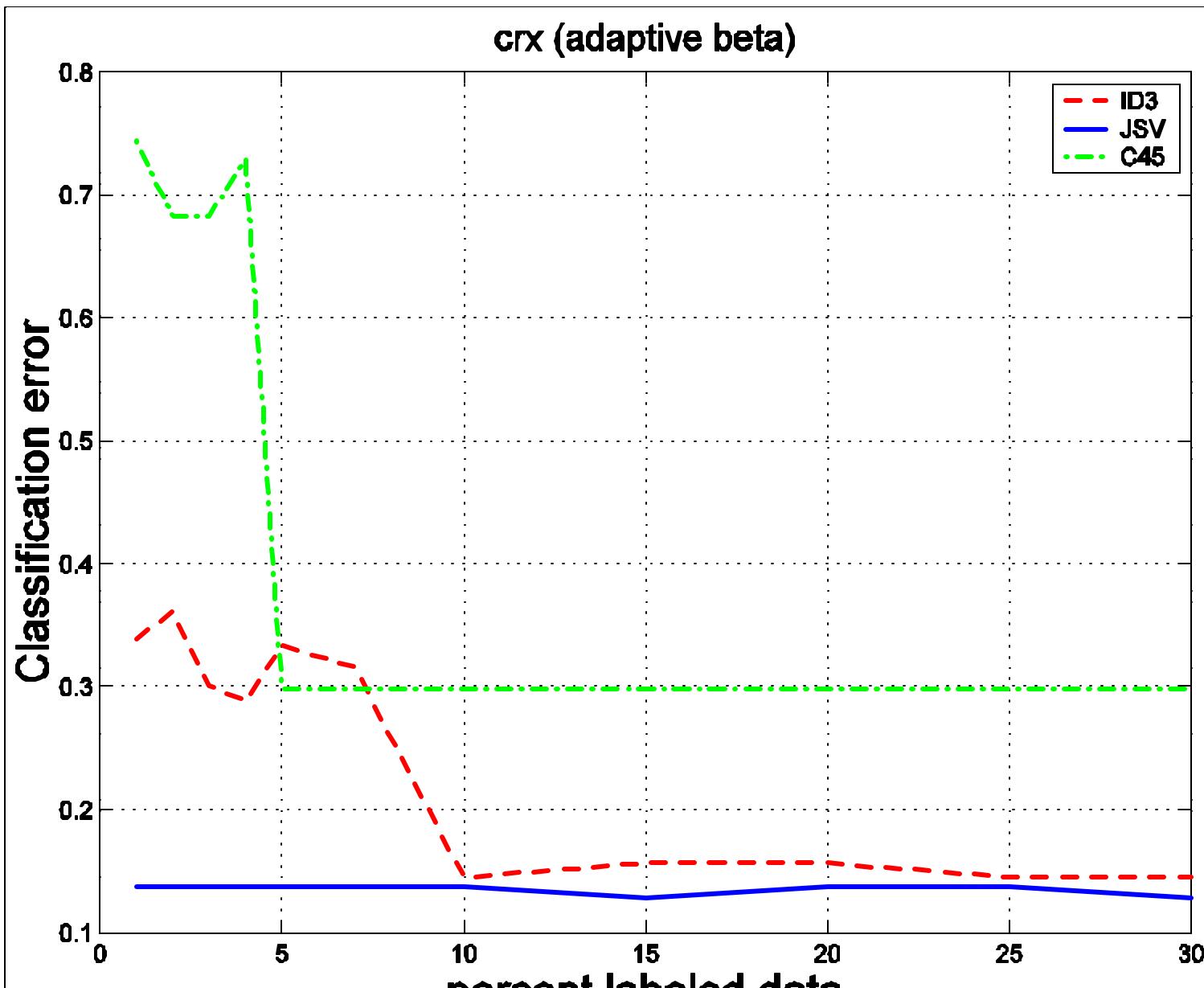
$$\overline{\mathcal{R}} = \mathcal{R}_1 \cup \dots \cup \mathcal{R}_{|F_i|}$$



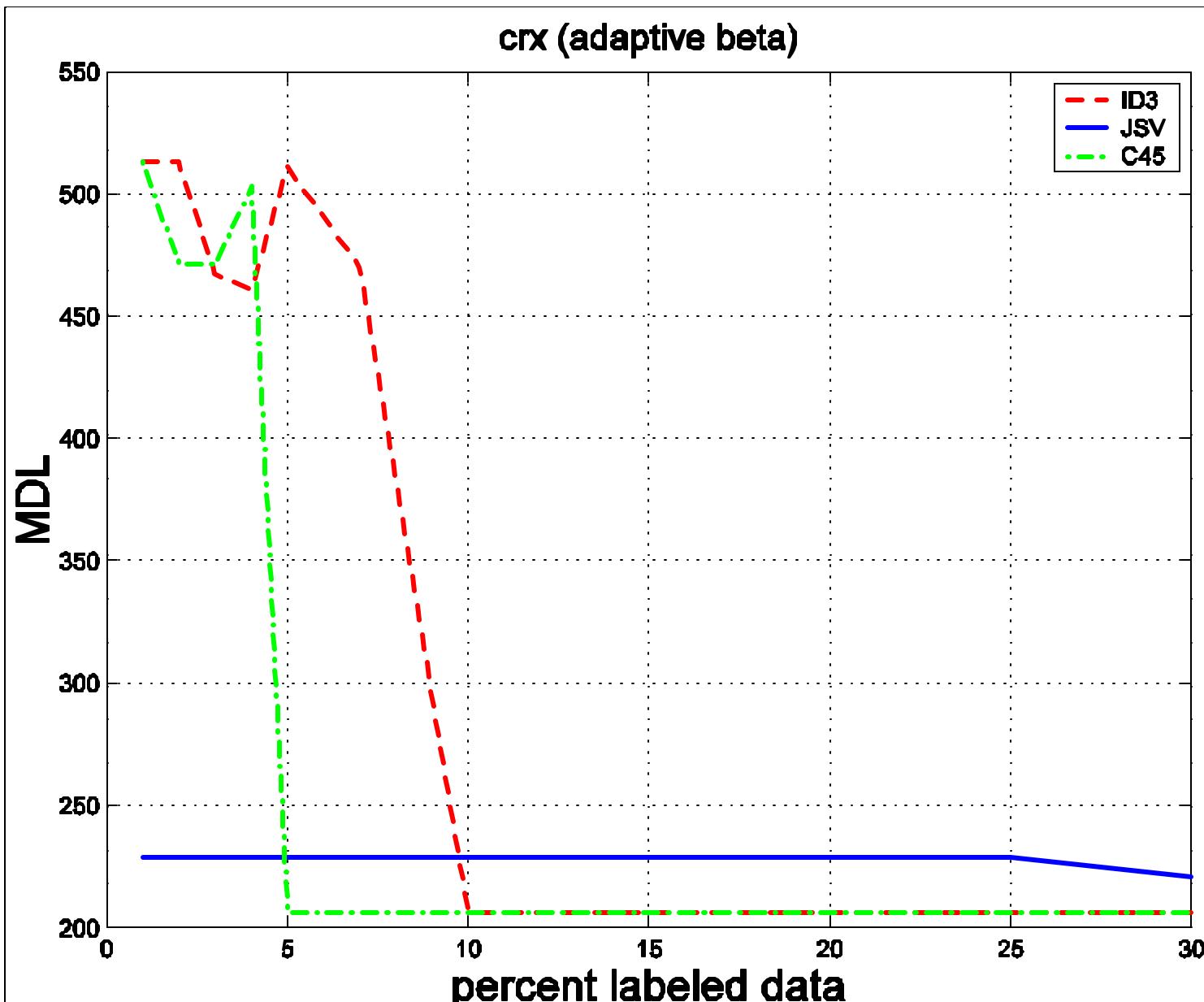
results



results



results



results

Table 1. Performance with 5% of labeling

	MDL(ID3)	MDL(JSV)	Err(ID3)	Err(JVS)
BAL	436	422	0.30	0.28
BAND	359	343	0.29	0.39
CAR	707	699	0.18	0.17
CMC	1612	1648	0.68	0.52
CRX	381	221	0.22	0.14
MONK	284	284	0.32	0.32
TIC	663	595	0.33	0.25
VOTE	119	47	0.12	0.04

Table 2. Performance with 10% of labeling

	MDL(ID3)	MDL(JSV)	Err(ID3)	Err(JVS)
BAL	431	422	0.30	0.29
BAND	346	348	0.28	0.35
CAR	630	703	0.13	0.18
CMC	1596	1638	0.60	0.53
CRX	206	221	0.14	0.14
MONK	284	284	0.32	0.32
TIC	521	589	0.29	0.24
VOTE	47	47	0.04	0.04

application: ethereal plugin

- kerf.cs.dartmouth.edu

The screenshot shows the Ethereal network traffic analyzer interface. The main window displays a list of captured network packets. The first five packets are shown in the table below:

No.	Time	Source	Destination	Protocol	HwAddr
1	0.000000	192.168.2.3	195.138.145.122	UDP	00:11:50:38:81:70
2	0.031164	192.168.2.3	195.138.145.122	UDP	00:11:50:38:81:70
3	0.061035	192.168.2.3	195.138.145.122	UDP	00:11:50:38:81:70
4	0.072645	195.138.145.122	192.168.2.3	UDP	00:0d:60:76:d9:ce

The detailed analysis pane on the right shows the "Ranges" tab for the selected packet [449/2]. It lists various TCP flags and their entropy values. The "tcp.flags.cwr" field has an entropy of 0.000000. The "tcp.analysis.zero_window" field has an entropy of 0.000000. The "tcp.flags.ecn" field has an entropy of 0.000000. The "tcp.options.sack" field has an entropy of 0.001072. The "tcp.options.sack_re" field has an entropy of 0.001072. The "image-jfif.marker" field has an entropy of 0.001072.

File: "/home/stefan/ethereal/data/data1" 5464 KB 00:04:47 P: 18944 D: 18944 M: 0

Thank You