
Semi-supervised data organization for interactive anomaly analysis.

Javed Aslam Sergey Bratus Virgil Pavlu
College of Computer Science Computer Science Dept. College of Computer Science

Northeastern University Dartmouth College Northeastern University
Boston, MA 02115 Hanover, NH 03755 Boston, MA 02115

Abstract

We consider the problem of interactive iterative analysis
of datasets that consist of a large number of records repre-
sented as feature vectors. The record set is known to con-
tain a number of anomalous records that the analyst desires
to locate and describe in a short and comprehensive man-
ner. The nature of the anomaly is not known in advance (in
particular, it is not known, which features or feature val-
ues identify the anomalous records, and which are irrele-
vant to the search), and becomes clear only in the process
of analysis, as the description of the target subset is gradu-
ally refined. This situation is common in computer intrusion
analysis, when a forensic analyst browses the logs to locate
traces of an intrusion of unknown nature and origin, and
extends to other tasks and data sets.

To facilitate such ”browsing for anomalies”, we pro-
pose an unsupervised data organization technique for ini-
tial summarization and representation of data sets, and a
semi-supervised learning technique for iterative modifica-
tions of the latter representation. Our approach is based on
information content and Jensen-Shannon divergence and is
related to information bottleneck methods. We have imple-
mented it as a part of the Kerf log analysis toolkit.

1 Introduction

In the following subsection we describe the class of real-
world situations that motivate our approach. It comes from
a generalization of our log analysis experience with diverse
data sets, and serves to justify the scenario that is targeted
by our data organization method.

1.1 The data and the scenario

We address the task commonly faced by analysts pre-
sented with large amounts of data that can be more or less
naturally represented in the form of a database table. Each

row in the table, represents a record of an event. The
columns of the table represent features of these events, and
the collection of values in a row forms a description of the
corresponding event. Not all columns need to be defined
for each row, because the events may be of a number of
different types (for features not applicable for an event, the
corresponding rows contain a special undefined or not appli-
cable value). Most of the features are discrete-valued, with
no meaningful order on their values. In particular, computer
activity logs are often represented in this fashion.

A certain subset of these events is of particular interest
to the analyst. These events are “anomalous” (in an activ-
ity log, they can be related to a malfunction or a malicious
intrusion), in the sense that the analyst will recognize some
of the values they are composed of as “anomalous”, once
he or she has an understanding of the overall structure of
the dataset. In practice, it is often the case that neither these
values nor the columns (features) in which to look for them
are known to the analyst at the outset. In computer forensics
this situation arises when the nature and origin of an intru-
sion are unknown, but some external evidence suggests that
it has occurred, and the investigator sets out to find what-
ever unusual traces it may have left in the regularly collected
logs.

This task of looking for unspecified anomalies is hard to
automate. Automatic detection systems based on statistical
profiling of normal behavior and flagging deviations from
the profile cannot fully solve it, for two reasons. Firstly, to
interpret the alerts resulting from such detection, the analyst
needs to understand the system’s model of normal behavior,
whereas statistically trained models are not designed for hu-
man understanding. Secondly, such systems expect to learn
their models from training data that represents normal be-
havior, whereas it is hard to guarantee that all of the actu-
ally available historical data does not include the targeted
anomaly. Indeed, Intrusion Detection systems (IDS) have
been criticized for both their high number of false positives,
and their propensity for being maliciously desensitized to
true positives.

Thus, although automatic anomaly detection can provide

1

useful starting points for analysis, it does not eliminate the
need for the interactive, iterative process that we call brows-
ing for anomalies.

As a rule, this process involves trying different summa-
rized representations of the dataset until one of those shows
some outlying records that can be investigated further, most
often to find that they are innocuous despite being statisti-
cally unusual (and need to be treated specially so that they
do not trigger further false alarms). Summarized represen-
tations are also useful for judging the significance of differ-
ences between records, especially for discrete-valued fea-
tures. The choice of the appropriate representation can be
a challenging task, a kind of iterative trial-and-error “blind
feature selection” – blind, because the nature of the sought-
after anomaly is not clear at the outset, and the analyst’s
idea about it is modified along the way.

We propose a simple approach to data organization and
summarization to make this process more efficient. It is
described in the next subsection.

1.2 The proposed approach

Our approach is based on constructing a tree representa-
tion of the dataset, initially unsupervised, and adjusting it
based on markup supplied by the user. The trees are sim-
ilar to those resulting from the ID3 and C4.5 decision tree
algorithms (e.g., [10]), but, unlike these automatic classifi-
cation algorithms, we start with entirely unlabeled data, and
at each step use not only the labeled examples, but the entire
dataset, to exploit its internal structure.

Our method is designed to produce data representations
useful for the kind of browsing described above, starting
with no markup and continuing “smoothly” with very small
percentage of labeled data.

This scenario is not served well by ID3 and similar al-
gorithms. Firstly, by their very definition, they require at
least some labeled examples to start with, while in practice,
one needs a data representation to come up with meaning-
ful examples, as described above, since looking for these
in plain lists or tables is extremely inefficient. Secondly,
classification algorithms do not work well with only a small
percentage of the data labeled.

A great variety of clustering algorithms that exploit the
structure of an unlabeled dataset can be applied to initially
group the records, unsupervised. However, since we expect
to spend some time browsing the data to label the initial sub-
set of examples, we want the groupings to produce a limited
number of groups, with further hierarchical subdivision for
the larger groups. We also want the groups to have simple
descriptions that would extend naturally to labeled data. In
other words, we want a smooth transition from the results
of clustering to decision trees. We have not found an exist-
ing clustering algorithm to fit this scenario. We have thus

designed our algorithm to fill this gap.
For the purposes of estimating the efficiency of our

method, we compare it with ID3 and a simplified version of
C4.5 with respect to two parameters of the resulting trees:
their description length and the classification error of us-
ing these trees for multi-label classification. Due to the lack
of a publicly available and representative annotated dataset
of computer logs, and in order to demonstrate the general
usefulness of our approach, the comparison is made over
a subset of the UC-Irvine datasets. We also compare the
classification error of our algorithm running completely un-
supervised with that of a popular clustering algorithm.

1.3 Related work

For semi-supervised classification, [8] uses a Bayesian
framework where all possible data models (trees) are con-
sidered. The classification rule is given as a sum over all
models, approximated with Monte Carlo methods; learning
with each tree is achieved via a mutation process designed
to favor labellings that are smooth with respect to the tree.
For comparison, our method builds a deterministic, greedy,
tree by splitting each node for the data feature that mini-
mizes a local objective (Jensen-Shannon divergence).

The Scatter/Gather cluster-browse approach [6] is a well
known information retrieval system. In an iterative manner,
the algorithm presented clusters by a given criteria, then
combines back relevant (to user query) clusters, and then
changes the clustering criteria for the new (smaller) dataset.
Significant differences in our work are apriori determined
splitting possibilities (data features), non-”gathering”, and
data-mining orientation of tree-splitting criteria.

2 Making trees out of tables

In this section we detail our approach to presenting
datasets to the user. While graphical visualization tech-
niques can be very efficient in highlighting specific kinds of
anomalies, they are usually designed to fit the data source
and need to be carefully tuned. Thus in practice users have
to fall back on familiar column-sortable table views of their
data. Our approach is simple, generic and generalizes the
latter, while making “browsing for anomalies” a lot more
efficient.

The tool in which our approach is implemented presents
the records in a tree-like view, with one or more layers
of grouping. The records are leaves of the tree, and each
grouping corresponds to an intermediary node of an ID3-
like decision tree. The labels of intermediary nodes serve
as simple summarizations of the set of leaves beneath them.
Most often the grouping happens by distinct values of some
feature, so that the label shows that feature value (the same
across the group) and a summary of other feature values for

2

selected features, such as the observed range for numerical
values, the actual values if they are only a few, or simply the
number of distinct values across the group. The entropies
of induced value distributions are also an option. Figure 1
shows a screenshot of a loaded dataset.

Figure 1. TreeView screenshot

The choice and the order of groupings are chosen by the
algorithms described below so as to reduce the amount of
screen real estate taken by each view and to minimize the
amount of information that the user needs to peruse to make
the next decision – whether to mark some nodes as relevant
(“interesting”) or irrelevant (these marks can be later used
for semi-supervised learning stage to re-arrange the tree),
expand some node and consider the subset of leaves (also
possibly grouped) under it, or to discard the grouping en-
tirely and try a different one. In what follows we explain
how this representation applied to server logs improves on
the traditional heuristic browsing techniques as described,
e.g., in [5, 4, 2, 1, 3].

3 Summarization and data organization
models

Experience shows that analysts begin with simple mental
models of a dataset, to understand its overall composition.
Some features are assumed to be irrelevant and the remain-
ing differ in their relevance to the search (the choice and
ranking of these features is likely to change, but recall that
we want to deal with the situations where the choice of the
features revealing the anomaly is not initially clear).

We formalize this approach by considering a series of
simple generative models of the dataset, in the order of their
increasing “complexity” (or “information content”, to be
defined later), and for each model concentrating our atten-
tion on the records to which this model assigns its lowest
probabilities.

More formally, we start with arbitrary assumptions of
what constitutes a “relevant part” of a record, a lossy map-
ping from our dataset to some set of tuples R = {r} and
a class of models M = {M} so that we can associate a
probability of PM (r) with each r ∈ R. Then we associate
with each model M a (hopefully intuitive) measure of its
“complexity” µ(M), choose M (1) = argminM∈M µ(M)
and concentrate our attention on the records r with lower
PM(1)(r) as “anomalous”. If these prove non-interesting,
we choose the next M (1) according to µ and so on, or even
switch to a different class of models. In what follows, we
will define different classes M and their measures µ.

3.1 Simplest one–feature models

In the simplest case, the values of one feature are enough
to describe the dataset and to locate the anomalies. Thus
the simplest summarization is the specification of that fea-
ture’s distribution (e.g., its histogram). Indeed, in our tool
the dataset’s records are organized in a tree, whose first level
nodes correspond to the distinct values of the feature cho-
sen at root, sorted by the number of records in each group
and expandable to reveal further levels of grouping (see Fig-
ure 1).

More formally, consider the set of features Fi. De-
note the set of distinct values of the feature Fi on R by
Xi = {xi

1, x
i
2, . . . , x

i
|Fi|}, and write |Fi| = |Xi|. Let

pi
k = P (Fi = xi

k), i = 1, . . . , |Fi| be the probabilities with
which Fi takes these values on R. The records r ∈ R can
then be written as tuples r = (F1(r), . . . , Fm(r)).

3.1.1 Entropy as a criterion for feature ranking and
tree construction

In this subsection we explain our use of entropy in con-
structing our tree representation of the dataset.

Under our previously described assumptions, the user in
search of anomalies will consider these models in some or-
der to see if they reveal any anomalies. It would be nat-
ural to start from the simplest non-trivial models (features
that have one value across all of R are no help in locat-
ing anomalies). We propose to use the entropy H(Fi) =
−

∑|Fi|
k=1 pi

k log2 pi
k as a measure of the information content

of this model MFi .
Thus, we would start with the feature

F (1) = argmin
{Fi|H(Fi) 6=0}

H(Fi).

It should be noted that the perplexity 2H(Fi) of the dis-
tribution Fi can be interpreted as the number of the effective
values of the feature Fi, i.e. the number of distinct values
that carry the majority of weight in its distribution. Under

3

our proposed measure, this weight is concentrated in fewer
values, and vice versa.

The chosen feature F (1) will determine the branching
factor at the root of the tree in which the records are dis-
played (there will be |F (1)| branches). We call the perplex-
ity of F (1) the effective branching factor, because it gives
the number of branches that hold most of the weight of that
feature’s distribution. We choose the tree with the smallest
effective branching factor at the root.

Intuitively, statistically infrequent values are more likely
to be “anomalous”. We postulate that the simpler the distri-
bution, the more likely it is that its infrequent values will be
interesting. Consequently, we would present the user with
the simplest distribution first, raising the chance of spotting
such an anomaly.

There is also another argument for picking the low-
est entropy feature among others for splitting the records.
Namely, the child node distributions resulting from the split
are more likely to retain, on average, the mutual informa-
tion with the anomalous set. Arguably, this split gives us a
better tree for browsing down to the anomalous nodes and
leaves than other non-trivial splits.

More formally, consider the record set R with an un-
known subset of “anomalous” records, identified by an in-
dicator variable A. We assume that I(R;A) > 0, otherwise
we have no real hope of recognizing the anomalies in this
representation R.

Splitting on the |Fi| distinct values {xk|k = 1, . . . , |Fi|}
of a feature Fi will produce |Fi| distributions Rk = Rxk

.
We want to choose Fi so that this splitting is most likely

to preserve, on average, as much mutual information with
A. Averaging the mutual information over these Rxk

, we
get:

|Fi|∑
k=1

pi
kI(Rk;A) = I(R;A)− I(A;Fi) =

= I(R;A)−H(A) + H(A|Fi)

From this we can see that the smaller the entropy of Fi, the
more likely it is to increase H(A|Fi) and together with it the
entire average mutual information (from the Venn diagram
visualization of entropy, the smaller the disk representing
H(Fi), the smaller part of the fixed area representing H(A)
it is likely to overlap; the remaining area of H(A) corre-
sponds to H(A|Fi)). This justifies the choice of lower en-
tropy features for splitting the record set.

3.1.2 Jensen–Shannon divergence as a measure of dis-
similarity between subtrees

In this subsection we introduce Jensen–Shannon divergence
into the tree construction algorithm, and motivate its use.

Mere small information content of a single feature may
not qualify that feature as a good separator of records.
Should this simple model fail to reveal any interesting
anomaly, we would need to either discard it, or look fur-
ther inside one of the groups of records that the splitting
of R produces (in our tool this corresponds to expanding a
node of the tree, collapsing its siblings, and further actions
on the subtree). Consequently, we would like to modify our
criteria to increase the dissimilarity between the subtrees re-
sulting from our choice of the splitting feature.

The Jensen–Shannon divergence is a measure of dissimi-
larity between distributions. Following the information bot-
tleneck approach [7, 12], we modify our criterion for choos-
ing the one-feature model to minimize its information con-
tent, while maximizing the divergence of the resulting dis-
tributions. More precisely,

F (1) = argmin
{Fi|H(Fi) 6=0}

H(Fi)− β · JSπi(R1, . . . ,R|Fi|),

where JSπi is the weighted Jensen–Shannon divergence be-
tween the joint distributions of the remaining features, in-
duced by partitioning the set R according to the unique val-
ues of the feature Fi and weighted by the probabilities of
Fi’s distribution. More precisely,

JSπi
(R1, . . . ,R|Fi|) = H

(|Fi|∑
k=1

pi
kRk

)
−

|Fi|∑
k=1

pi
kH(Rk),

and the coefficient β (a Lagrange multiplier) expresses the
trade-off between the two goals, and Rk is the joint distri-
bution of the tuples all features remaining after the choice
of Fi.

At this point we must make two important compromises.
Recall that our intention is to help an interactive process,
therefore lengthy computations are undesirable. Thus we
allow two shortcuts. Firstly, when it is computationally un-
realistic to compute the full Rk, we exclude one or more
features with the highest entropy from the argmin opera-
tion. Secondly, β is left to be a user–controlled parameter,
the initial value of which was chosen to make the two parts
of the above difference commensurate, and was mostly left
at 1.0.

Our choice of the Jensen–Shannon divergence, and our
weighting of the joint distributionsRi in particular, is based
on the following coding-type consideration. Its first term
represents the average number of bits needed to encode the
averaged distribution of all Rk, and the summands of the
second term represents the average numbers of bits needed
to encode the sets Rk, which are drawn from with the prob-
abilities pi

k. The difference thus represents the information
reduction from encoding the sets Rk separately rather than
all together. The Jensen–Shannon divergence grows with
the difference between the Rk and would be 0 if these were
identical.

4

Notice that the first term of our measure represents the
average number of bits necessary to encode the distribution
of the first feature, thus our trade-off is between this number
and the average coding length win from the partitioning,
commensurable quantities.

Thus we would pass over a feature with a simpler dis-
tribution in favor of one with a somewhat more complex
one, which would give a partition into subtrees more likely
to be useful for browsing. In particular, first term favors
the choice of the most compact one-feature summarization,
and the Jensen–Shannon term is intended to serve as a tie-
breaker in case there are two features such that their en-
tropies are low and close.

Another way to interpret this measure is suggested by
the information bottleneck method ([7, 12]). Information
bottleneck can be interpreted as finding a trade-off between
a compression (in our case, summarization) level of chan-
nel information while preserving as much relevant informa-
tion as possible. In our case the role of a constrained chan-
nel is played by the user attention and the limited amount
of screen space (data displays that necessitate scrolling
through dozens of pages are virtually useless for our sce-
nario). In the unsupervised scenario, the role of relevance
is played by the divergence of the resulting partitioning of
data due to the summarization.

3.2 Multi-feature models

In the previous section we discussed the simplest way
of summarizing a dataset, based on the values of a single
feature. Essentially, our method is to look at the feature
with the simplest-looking histogram first and then, possibly,
consider other such single feature summaries in the order of
increasing information content. In this section, we extend
these representations.

Instead of using a single feature Fi for some i, we can
consider combined features Fij = (Fi, Fj) and choose the
pair with the simplest histogram in the same fashion,

F (12) = argmin
{Fij |H(Fi) 6=0,H(Fj) 6=0}

H(Fij)−

β · JSπij (R′
1, . . . ,R′

|Fij |),

where the |Fij | distinct values of the pair of features Fij

induce a different partition {R′
k}, k = 1 . . . |Fij |.

Combined with the above single-feature method, this
method would give us the pair of features whose joint distri-
bution’s histogram is one of the simplest, and whose distinct
values partition the rest of the distribution into joint distri-
butions that are dissimilar. Such a representation will high-
light anomalies in this joint distribution, i.e. any anomalies
that are described in terms of one feature’s correlation with
another.

This search is quadratic in the number of features, which
may be computationally prohibitive for an interactive iter-
ative process. Thus we propose a greedy way of modeling
the set R based on two features (and considering others as
irrelevant for the purposes of the summary).

ConsiderR as generated by drawing values from the dis-
tribution of F1 and then, based on the drawn value of F1,
by drawing values from some F2 based on the distribution
P (F2|F1). We can extend this generative model further in
the obvious way, using the Markov assumption (drawing
from some P (F3|F2) and so on).

F1

P(F)1

F2

P()F |F2 1

...

This class of generative models gives more expressive
summaries. Again, we postulate that it is natural to start
looking at the simplest summaries, as these are more likely
to reveal anomalies. These now would include values of F1

for which the character of mutual dependence between F1

and F2 is atypical (e.g., most values of F1 are good predic-
tors for the value of F2 in the pair, but some are not).

We can consider such a sequence of features
F1, F2, . . . , Fl in some order, up to some l beyond
which the remaining features are deemed completely
irrelevant to our search for anomalies or our idea about the
data. We can expect the features whose distributions are
closer to the uniform to be further away in this sequence,
and vice versa, according to its likelihood to distinguish
between records of interest and others. In other words, we
can assume that the closer a feature to being uniform, the
less likely it is to be relevant to our search.

As before, we propose an information measure for com-
plexity of these models, namely

H(F1, F2) = H(F1) + H(F2|F1)

where H(F1|F2) is the conditional entropy of the
distribution of F2 over R given F1, H(F2|F1) =
−

∑
(f1,f2)

p(f1, f2) log p(f2|f1). From the coding per-
spective, this is the necessary average bit length for encod-
ing this model.

A greedy approximation to avoid the quadratic nature of
this measure,

F(1) = argmin
{Fi|H(Fi) 6=0}

H(Fi)− β · JSπi(R1, . . . ,R|Fi|),

F(2) = argmin
{Fi|H(Fi) 6=0}

H(Fi|F(1))

appeared to produce acceptable results, although we did not
study the performance of this method systematically. We
leave the study of this matter for future work.

5

4 Semi-supervised extension

In this section, we describe the transition from unsuper-
vised to semi-supervised data organization, based on user
labeling of nodes performed while browsing the tree. We
use labels as a side information channel, and modify our un-
supervised algorithms to take it into account and re-adjust
the tree, to bring possibly overlooked dataset structure and
“anomalies” to the user’s attention. This approach is moti-
vated by conditional bottleneck clustering [7].

We still want a concise summary of the data provided, so
we keep the requirement for the information content of the
“splitting” feature to be minimized. However, in the pres-
ence of user labels identifying the partition of records into
relevant and non-relevant, we want to take relevance with
respect to this labeling into account. Let the variable L be
the new feature with discrete values in the set of labels. We
propose to choose the summary feature for the one-feature
summary as

F (1) = argmin
{Fi|H(Fi) 6=0}

H(Fi|L)

where the conditional entropy of a feature X given Y is
defined as H(X|Y) = H(X, Y) − H(Y). Notice that for
any feature F

H(F |L) = H(F,L)−H(L) =
= H(F) + H(L)− I(F ;L)−H(L) =
= H(F)− I(F ;L)

and so by requiring to minimize the conditional entropy
H(F |L) we are actually favoring features with higher mu-
tual information with our labeling variable L.

Also, we still want the joint distributions of other fea-
tures to be divergent, so that the choice of the summarizing
feature (or pair of features) separates the rest of the data
into dissimilar groups. In order to express this trade-off, we
restore to the above measure the weighted Jensen–Shannon
divergence, also conditioned on the labeling L:

F (1) = argmin
{Fi|H(Fi) 6=0}

H(Fi|L)−β ·JSπi(R1, . . . ,R|Fi||L),

where the conditional form of JSπi is obtained by replacing
the respective entropies H(F) with H(F |L). In accordance
with the above observation about mutual information, the
resulting win in average encoding length will be adjusted
by the loss in mutual information with L:

JSπi(R1, . . . ,R|Fi||L) = JSπi(R1, . . . ,R|Fi|)

−
(
I(R;L)−

|Fi|∑
k=1

pi
kI(Rk;L)

)
The last term adjusts the divergence measure by its rele-
vance to the labeling L.

5 Results

In this section we explain our choice of metrics for com-
paring our algorithm with ID3 and describe the results of
this comparison.

We compare our algorithm to ID3 and C45 on 8 sets
from the UC-Irvine collection (bal, band, car, cmc, crx,
monk, tic, vote) using the following method. For each of
these sets, we fix a percentage of labeled records (starting
at 1% through 30%), randomly select the respective number
of records from the set and use these records and their true
labels as labeled input to our algorithm (in the subsequent
graphs and tables referred to as JSV, for “Jensen–Shannon
Visualization”) and to ID3. We then compare the classifica-
tion error and the minimal description lengths of the label-
ing using the trees output by JSV and ID3.

We chose the minimal description length as the measure
most closely related to the browsing scenario described in
section 1.1. In particular, we assume that the user will keep
expanding nodes in the branches of the tree until reasonable
separation of categories (e.g., different kinds of “normal”
and “abnormal”) is achieved. If a group has a few clearly
defined exceptions, the user is likely to accept them as such
and accept the majority category for that group. The user
will prefer more compact trees even if they have a certain
number of exceptions.

Accordingly, we use the minimal description length
(MDL) of a dataset’s labelling derived from the tree as a
quality measure of the dataset’s presentation provided by
that tree.

The MDL measure is computed as follows. We fix an
encoding scheme for the labeling of the dataset based on
the pruned tree, in the spirit of the seminal paper [11], by
encoding the pruned tree and the exceptions, and adding
these two lengths. The total corresponds to the length of
the message necessary to transmit the full labelling column
of the dataset between the two parties who both possess all
the other columns of the records (the receiver reproduces
the labelling using the decision tree and the exceptions list).
We prune the decision trees produced by ID3 and JSV to
achieve the shortest encoding under this scheme, to express
the user’s preference for the simplest tree.

Examples of such minimal tress can be seen in Figures
4 and 5. In these figures, we first plot the tree in thin lines
as constructed by the method (JSV or ID3) and then, on top
of it, the minimum MDL subtree (in bold). Leafs are repre-
sented with squares. The bar on top of each node represents
the number of labels for each class, at that node. The num-
ber inside each non-terminal node is the feature-id used to
split the data at the node.

Figures 2 and 3 show the dependence of the MDL mea-
sure and the classification error on the fraction of the la-
beled records for the dataset crx (on which JSV had the best

6

performance over ID3), and Tables 1 and 2 describe the per-
formance for other sets.

Figure 2. MDL measure

0 5 10 15 20 25 30
200

250

300

350

400

450

500

550

percent labeled data

M
DL

crx (adaptive beta)
ID3
JSV
C45

Figure 3. Classification error

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

percent labeled data

Cl
as

sif
ica

tio
n

er
ro

r

crx (adaptive beta)
ID3
JSV
C45

The results of these comparisons can be summarized as
follows. At a small fraction of labeled records, the behavior
of ID3 is quite erratic, whereas JSV performs more pre-
dictably. In the range of 1%–5%, JSV generally performs
much better than ID3. After 5% ID3 begins to catch up, and
at 30% almost uniformly outperforms it (it must be noted
that marking up a third of the data during analysis in one go
is hardly ever possible, which is why we did not continue
the comparison beyond the 30% mark).

5.1 Comparison with k-Means clustering

As a semi-supervised techniques, the performance of
JSV is compared (section 4) with that of classical clustering

Table 1. Performance with 5% of labeling
MDL(ID3) MDL(JSV) Err(ID3) Err(JVS)

BAL 436 422 0.30 0.28
BAND 359 343 0.29 0.39
CAR 707 699 0.18 0.17
CMC 1612 1648 0.68 0.52
CRX 381 221 0.22 0.14
MONK 284 284 0.32 0.32
TIC 663 595 0.33 0.25
VOTE 119 47 0.12 0.04

Table 2. Performance with 10% of labeling
MDL(ID3) MDL(JSV) Err(ID3) Err(JVS)

BAL 431 422 0.30 0.29
BAND 346 348 0.28 0.35
CAR 630 703 0.13 0.18
CMC 1596 1638 0.60 0.53
CRX 206 221 0.14 0.14
MONK 284 284 0.32 0.32
TIC 521 589 0.29 0.24
VOTE 47 47 0.04 0.04

algorithms, ID3 and C4.5. Next, we compare the classifi-
cation error of unsupervised JSV (label class determined by
majority) with that of batch k-Means, as described in [9].
Initial centroids are picked to be random K data points with
different labels, one per label class. The results can be found
in Table 3; we observe large, consistent outperformance by
JSV in terms of accuracy.

Table 3. Unsupervised: Comparison with k-
Means clustering classification.

Err(k-Means) Err(JVS)
BAL 0.59 0.31
BAND 0.45 0.34
CAR 0.40 0.18
CMC 0.61 0.53
CRX 0.20 0.14
MONK 0.45 0.32
TIC 0.37 0.24
VOTE 0.13 0.04

6 Conclusion

Our data organization method was designed to fit the
common data analysis scenario that can be described as
“browsing for anomalies”. In order to keep the results un-
derstandable to the human user, we limit the initial hier-

7

Figure 4. ID3 MDL Tree, 5% data labeled

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

12

7

1091099

6

crx/id3_5p REC=690 ATTR=15 MDL=373.00 cERR=0.22

Figure 5. JSV MDL Tree, 5% data labeled

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

666

7777777

1111121212

9121121211

1991010

4109

104

13

crx/jsv_5p REC=690 ATTR=15 BETA=1.0 MDL=213.00 cERR=0.13

archical data groupings to those based on decision trees. It
provides a smooth transition from this unsupervised process
to semi-supervised data organization that takes advantage of
the user markup on small amounts of data.

In the target scenario, where the percentage of labeled
records is in the low single digits, our method is more stable
than the classical decision tree methods based on informa-
tion gain and information gain ratio (ID3 and a simplified
variant of C4.5), and produces empirically useful represen-
tations. For larger fractions of labelled input, it tends to
perform somewhat worse than these methods, but its per-
formance remains generally comparable.

Informally, our experience suggests that this method al-
lows the user to significantly speed up the computer log
analysis tasks.

Acknowledgements

The Kerf project is funded under award number 2000-
DT-CX-K001 from the Office for Domestic Preparedness,
US Department of Homeland Security. Points of view in
this document are those of the authors and don’t necessar-
ily represent the official position of the US Department of
Homeland Security.

References

[1] J. Allison. Automated log processing. ;login:, 27(6):17–20,
2002.

[2] S. Barish. Windows forensics: A case study.
http://www.securityfocus.com/infocus/1672, Mar. 2003.

[3] T. Bird and M. Ranum. Log analysis resources.
www..loganalysis.org, 2004.

[4] M. Burnett. Forensic log parsing with microsoft’s logparser.
http://www.securityfocus.com/infocus/1712, July 2003.

[5] A. Chuvakin. Advanced log processing.
http://online.securityfocus.com/infocus/1613, Aug. 2002.

[6] D. R. Cutting, J. O. Pedersen, D. Karger, and J. W. Tukey.
Scatter/gather: A cluster-based approach to browsing large
document collections. In Proceedings of the Fifteenth An-
nual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 318–329,
1992.

[7] D. Gondek and T. Hofmann. Conditional information bot-
tleneck clustering. In 3rd IEEE International Conference
on Data Mining, Workshop on Clustering Large Data Sets,
2003.

[8] C. Kemp, T. Griffiths, S. Stromsten, and J. Tenenbaum.
Semi-supervised learning with trees, 2003.

[9] J. Kogan, C. Nicholas, and M. Teboulle. Grouping Multidi-
mensional Data. Springer, 2006.

[10] T. M. Mitchell. Machine Learning. McGraw-Hill, New
York, 1997.

[11] J. R. Quinlan and R. L. Rivest. Inferring decision trees using
the minimum description length principle. Information and
Computation, 80:227–248, 1989.

[12] N. Tishby, F. Pereira, and W. Bialek. The information bot-
tleneck method. In Proceedings of the 37-th Annual Aller-
ton Conference on Communication, Control and Computing,
pages 368–377, 1999.

8

