Extractors for circuit sources

Emanuele Viola

Northeastern University

October 2011

Randomness extractors

• Want: turn weak randomness (correlation, bias, ...) into close to uniform

• Extractor for sources (distributions) S on {0,1}ⁿ

Deterministic, efficient map : $\{0,1\}^n \rightarrow \{0,1\}^m$

 $\forall D \in S$, Extractor(D) ε -close to uniform

• Starting with [Von Neumann '51] major line of research

Sources

- Independent blocks [Chor Goldreich 88, Barak Bourgain Impagliazzo Kindler Rao Raz Shaltiel Sudakov Wigderson ...]
- Some bits fixed, others uniform & indep.

[Chor Friedman Goldreich Hastad Rudich Smolensky '85, Cohen Wigderson, Kamp Zuckerman, ...]

- One-way, space-bounded algorithm [Blum '86, Vazirani, Koenig Maurer, Kamp Rao Vadhan Zuckerman]
- Affine set [BKSSW, Bourgain, Rao, Ben-Sasson Kopparty, Shaltiel]
- This work: first extractor for circuit sources: local, NC⁰, AC⁰

• Extractors and the complexity of distributions

- Bounded-depth circuit (AC⁰) sources
 - Sampling lower bound

Trevisan Vadhan; 2000

 Sources D with min-entropy k (Pr[D = a] < 2^{-k} ∀ a) sampled by small circuit C: {0,1}^{*} → {0,1}ⁿ given random bits.

- Extractor ⇒ Lower bound for C (even 1 bit from k=n-1)

This work

Extractor \Leftrightarrow Sampling lower bound (1 bit from k=n-1)

f: $\{0,1\}^n \rightarrow \{0,1\}$ (balanced) \iff small circuits cannot sample f⁻¹(0) (uniformly, given random bits)

Sampling lower bounds advocated in [V], more in [Lovett V]

($[V] \Rightarrow$ extract 1 bit, err. < 1, from entropy k = n-1 NC⁰ source)

• Extractors and the complexity of distributions

- Bounded-depth circuit (AC⁰) sources
 - Sampling lower bound

Extractors for local functions

- $f: \{0,1\}^* \rightarrow \{0,1\}^n$ d-local : each output bit depends on d input
- Theorem From d-local n-bit source with min-entropy k: Let T := k poly(k/nd) Extract T bits, error exp(-T)
- E.g. $T = k^{C}$ from $k = n^{1-C}$, $d = n^{C}$
- Note: always need k > d
- $d = O(1) \Rightarrow NC^0$ source. Independently [De Watson]

High-level proof

- Theorem d-local n-bit min-entropy k source (T:=k poly(k/nd))
 Is convex combination of bit-block source
 block-size = dn/k, entropy T, error exp(-T)
- Bit-block source with entropy T: (0, 1, X₁, 1- X₅, X₃, X₃, 1- X₂, 0, X₇, 1- X₈, 1, X₁) X₁, X₂, ..., X_T ∈ {0,1} 0 < occurrences of X_i < block-size = dn/k

- Special case of low-weight affine sources
 Use [Rao 09]

Proof

d-local n-bit source min-entropy k: convex combo bit-block

- Output entropy > k $\Rightarrow \exists y_i$ with variance > k/n
- Isoperimetry $\Rightarrow \exists \mathbf{x}_i$ with influence > k/nd
- Set uniformly N(N(x_j)) \ {x_j} (N(v) = neighbors of v) with prob. > k/nd, N(x_j) non-constant block of size nd/k
- Repeat k / $|N(N(\mathbf{x}_i))| = k k/nd^2$ times, expect k k^2/n^2d^3 blocks

• Extractors and the complexity of distributions

- Bounded-depth circuit (AC⁰) sources
 - Sampling lower bound

Bounded-depth circuits (AC⁰)

Theorem From AC⁰ n-bit source with min-entropy k:
 Extract k poly(k / n^{1.001}) bits, error 1/n^{ω(1)}

High-level proof

• Apply random restriction [Furst Saxe Sipser, Ajtai, Yao, Hastad]

 Switching lemma: Circuit collapses to d=n^ɛ-local apply previous extractor for local sources

• **Problem**: fix 1-o(1) input variables, entropy?

The effect of restrictions on entropy

• Theorem f : $\{0,1\}^* \rightarrow \{0,1\}^n$, f(X) min-entropy k

R random restriction, Pr[*] = p

W.h.p., $f|_{R}(X)$ min-entropy pk

Proof builds on [Lovett V]

• Extractors and the complexity of distributions

- Bounded-depth circuit (AC⁰) sources
 - Sampling lower bound

Bounded-depth circuits (AC⁰)

• Corollary to AC⁰ extractor

Explicit boolean f : AC⁰ cannot sample (Y, f(Y))

f := 1-bit affine extractor for min-entropy $k = n^{0.99}$

 Note: For k > 1/2, Inner Product 1-bit affine extractor, and AC⁰ can sample (Y, InnerProduct(Y)) [Impagliazzo Naor]

• Explains why affine extractors for k < 1/2 more complicated

Summary

• First extractors for circuit sources: local, NC⁰, AC⁰

local \rightarrow convex comb. bit-block, use affine extractor for AC⁰ also bound entropy loss in restrictions

- Extractor <=> Circuit lower bound for sampling (1 bit from k=n-1) [V 2010]
- Corollary Explicit boolean f : AC⁰ cannot sample (Y, f(Y))

MANY NEW PROBLEMS AND DIRECTIONS!