Interleaved group products

October 2017

Emanuele Viola

NEU

Joint work with Timothy Gowers

• Setup: Group G. All results asymptotic in |G|

k high-entropy distributions X_i over G

independent, later dependent

• Goal: D := $\prod_{i \leq k} X_i$ nearly uniform over G:

 $\forall \ g \in G : | \Pr[D = g] - 1/|G| | \leq \epsilon / |G| \qquad (L_{\infty} \text{ bound })$

 \rightarrow D is ϵ -close to uniform in statistical distance

• Applications: Group theory, communication complexity

• Warm-up: X, Y distributions over G.

Independent

X, Y uniform over 0.1|G| elements of G

• Question: Is X•Y nearly uniform over |G|?

$$\forall g \in G, | \Pr[X \bullet Y = g] - 1/|G| | \leq \epsilon / |G| ?$$

• Answer: ?

• Warm-up: X, Y distributions over G.

Independent

X, Y uniform over 0.1|G| elements of G

• Question: Is X•Y nearly uniform over |G|?

$$\forall \ g \in G, \ \mid \Pr[X {\scriptstyle \bullet} Y = g] - 1/|G| \mid \le \epsilon \ / \ |G| \quad ?$$

• Answer: No. Y := G - X⁻¹. Then $1_G \notin \text{Support}(X \cdot Y)$

- Question: $\forall g$, $| Pr[X \cdot Y \cdot Z = g] 1/|G| | \le \epsilon/|G|$?
- Answer: ?

- Question: $\forall g$, $| Pr[X \cdot Y \cdot Z = g] 1/|G| | \le \varepsilon/|G|$?
- Answer: Depends on the group.

Obstacles

- Question: $\forall g$, $| Pr[X \cdot Y \cdot Z = g] 1/|G| | \le \varepsilon/|G|$?
- Answer: Depends on the group.

- Question: \forall g, $| Pr[X \cdot Y \cdot Z = g] 1/|G| | \le \epsilon/|G|$?
- Answer: Depends on the group.

Obstacles $H \subseteq G, H \neq G$
dense subgroupNo. X=Y=Z=X•Y•Z=H
Second Second Second

• What about other groups?

 $\forall g$, | Pr[X•Y•Z=g] - 1/|G| | ≤ |X|₂|Y|₂|Z|₂√|G|/√d ≤ O(d^{-1/2})/|G|

d = minimum dimension of non-trivial representation of G

 $\forall g, | Pr[X \cdot Y \cdot Z = g] - 1/|G| | \le |X|_2 |Y|_2 |Z|_2 \sqrt{|G|} / \sqrt{d} \le O(d^{-1/2}) / |G|$

d = minimum dimension of non-trivial representation of G

G	d	
Abelian	1	

 $\forall g, | Pr[X \cdot Y \cdot Z = g] - 1/|G| | \le |X|_2 |Y|_2 |Z|_2 \sqrt{|G|} / \sqrt{d} \le O(d^{-1/2}) / |G|$

d = minimum dimension of non-trivial representation of G

G	d
Abelian	1
Non-abelian, simple	0.5 √ log G

 $\forall g, | Pr[X \cdot Y \cdot Z = g] - 1/|G| | \le |X|_2 |Y|_2 |Z|_2 \sqrt{|G|} / \sqrt{d} \le O(d^{-1/2}) / |G|$

d = minimum dimension of non-trivial representation of G

G	d
Abelian	1
Non-abelian, simple	0.5 √ log G
SL(2,q)	 G ^{1/3}

SL(2,q) = 2x2matrices over F_q with determinant 1

 $G=SL(2,q) \rightarrow X \cdot Y \cdot Z$ is 1/poly(|G|) close to uniform

- What if there are dependencies?
 - A, A' dependent, (A, A') uniform over $\ge 0.1 |G|^2$ elements
 - Y independent, uniform over ≥ 0.1 |G| elements of G
- Is A•Y•A' nearly uniform? ($\forall g | Pr[A•Y•A'=g]-1/|G| | \le \epsilon/|G|$)

• What if there are dependencies?

A, A' dependent, (A, A') uniform over $\ge 0.1 |G|^2$ elements

Y independent, uniform over ≥ 0.1 |G| elements of G

• Is A•Y•A' nearly uniform? $(\forall g | Pr[A•Y•A'=g]-1/|G| | \le \varepsilon/|G|)$

No: Y uniform over 0.5 |G| elements A uniform over G A' uniform over G - Support(Y)⁻¹ A⁻¹

(A, A') uniform over 0.5 $|G|^2$ element

Interleaved mix:[Gowers V.] G = SL(2, q)

(A, A'), (B, B') uniform over $\geq 0.1 |G|^2$ elements of G^2

(A, A') independent from (B, B')

 $\forall g, | Pr[A \cdot B \cdot A' \cdot B' = g] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

• \rightarrow A•B•A'•B' is 1/poly(|G|)-close to uniform in statistical dist.

Interleaved mix:[Gowers V.] G = SL(2, q)

(A, A'), (B, B') uniform over $\geq 0.1 |G|^2$ elements of G^2

(A, A') independent from (B, B')

 $\forall g, | Pr[A \cdot B \cdot A' \cdot B' = g] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

- \rightarrow A•B•A'•B' is 1/poly(|G|)-close to uniform in statistical dist.
- → X Y Z result [G,BNP] for G=SL(2,q) (a proof without representation theory)
- Also non-trivial bounds for any non-abelian simple group

Longer mix: [Gowers V.] G = SL(2, q)

 $A=(A_1,...,A_t), B=(B_1,...,B_t)$ uniform over $\ge 0.1 |G|^t$ elements

A independent from B

 $\forall g, | \Pr[\prod_{i \le t} A_i \cdot B_i = g] - 1/|G| | \le 1/|G|^{1 + \Omega(t)}$

• $\Rightarrow \prod_{i \leq t} A_i \cdot B_i$ is $1/|G|^{\Omega(t)}$ close to uniform in statistical dist.

• Generalizes previous result, t = 2

Outline

- Introduction and our results
- Proof of interleaved mixing
- Communication complexity viewpoint, boosting independence
- Proof of boosting independence

Interleaved mix: G = SL(2, q)

(A, A'), (B, B') uniform over $\geq 0.1 |G|^2$ elements of G^2

(A, A') independent from (B, B')

 $\forall g, | \Pr[A \cdot B \cdot A' \cdot B' = g] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

• $C(g) = U^{-1}gU$ = uniform over conjugacy class of $g \in G$

• Lemma, specific to G = SL(2,q): With prob. 1-1/|G|^{$\Omega(1)$} over a, b \in G, |C(a)C(b)-U|₁ \leq 1/|G|^{$\Omega(1)$}

Claim, for any G: Main lemma → interleaved mixing

Claim: W.h.p. over a,b \in G, |C(a)C(b) - U| $\leq 1/|G|^{\Omega(1)}$

→ $| Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$ if (A, A'), (B, B') i.i.d, uniform over S ⊆ G². |S| = α |G|²

Proof: | Pr[A•B•A'•B' = 1] - 1/|G| | = Claim: W.h.p. over a,b ∈ G, $|C(a)C(b) - U| \le 1/|G|^{\Omega(1)}$ → $|Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

if (A, A'), (B, B') i.i.d, uniform over $S \subseteq G^2$. $|S| = \alpha |G|^2$

Proof:
$$|\Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G||$$

= $|E_{u,v,u',v': uvu'v'=1} S(u,u') S(v,v') - \alpha^2 | 1/(\alpha^2 |G|)$ Bayes
 $E_{v,v'}$ [$E_{u,u': uvu'v'=1} (S(u,u') - \alpha)$] • $S(v,v')$

 \leq

Claim: W.h.p. over a,b ∈ G, $|C(a)C(b) - U| \le 1/|G|^{\Omega(1)}$ → $|Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

if (A, A'), (B, B') i.i.d, uniform over $S \subseteq G^2$. $|S| = \alpha \, |G|^2$

Claim: W.h.p. over a,b ∈ G, $|C(a)C(b) - U| \le 1/|G|^{\Omega(1)}$ → $|Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G| | \le 1/|G|^{1+\Omega(1)}$

if (A, A'), (B, B') i.i.d, uniform over $S \subseteq G^2$. $|S| = \alpha |G|^2$

Proof:
$$|\Pr[A \cdot B \cdot A' \cdot B' = 1] - 1/|G||$$

$$= |E_{u,v,u',v': uvu'v'=1} S(u,u') S(v,v') - \alpha^{2} |1/(\alpha^{2} |G|) Bayes$$

$$E_{v,v'} [E_{u,u': uvu'v'=1} S(u,u') - \alpha] \cdot S(v,v')$$

$$\leq \sqrt{[E_{v,v'} E^{2}_{u,u': uvu'v'=1} S(u,u') - \alpha^{2}]} \sqrt{\alpha}$$

$$E_{v,u,u', x, x': uvu' = xvx'} S(u,u') S(x,x')$$

$$= E S(u,u') S(ux, u' C(x)).$$

$$(u,u') \rightarrow (ux, u' C(x)) hits like (u,u') \rightarrow (u x y, u' C(x) C(y))$$

With prob. 1-1/ $|G|^{\Omega(1)}$ over a, b \in G, $|C(a)C(b)-U|_1 \leq 1/|G|^{\Omega(1)}$

- Large literature on products of conjugacy classes.
- Actually for all other results need a stronger condition (For a ∈ G, the distribution C(ab⁻¹)C(b) for uniform b is close to uniform in 2-norm)
- The proof we show gives the stronger condition

With prob. 1-1/ $|G|^{\Omega(1)}$ over a, b \in G, $|C(a)C(b)-U|_1 \leq 1/|G|^{\Omega(1)}$

Observation: for every a, b: C(a)C(b) = C(C(a) C(b)).

Proof: $U^{-1}aUV^{-1}bV = W^{-1}U^{-1}aUWW^{-1}V^{-1}bVW$

• Suffices to show C(a) C(b) hits every class with right prob.

SL(2,q)= group of 2 x 2 matrices over F_q with determinant 1
 a b
 c d
 : ad - bc = 1

• q^3 - q elements. q+O(1) conjugacy classes

All but O(1) classes have size = $q^2 + \Theta(q)$

Uniform element → uniform class

• Almost 1-1 correspondence between classes and Trace $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a + d \in F_q$, invariant under conjugation

• Show: a, b typical \rightarrow |Trace C(a)C(b) - U_q |₁ \leq 1/q^{$\Omega(1)$}

• Show: a, b typical \rightarrow |Trace C(a)C(b) - U_a |₁ \leq 1/q^{$\Omega(1)$}

• Proof

Trace C(a)C(b) = Trace a C(b)
= Trace
$$\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} \begin{vmatrix} u_1 & u_2 \\ u_3 & u_4 \end{vmatrix} - \begin{vmatrix} -1 \\ b_1 & b_2 \\ b_3 & b_4 \end{vmatrix} \begin{vmatrix} u_1 & u_2 \\ u_3 & u_4 \end{vmatrix}$$

= polynomial in u_1 , u_2 , u_3 , u_4 subject to $u_1 u_4 - u_2 u_3 = 1$

 $u_4 = (1 + u_2 u_3)/u_1$, multiply by $u_1^4 \rightarrow polynomial g(x,y,z)$

Need: $|g(x, y, z) - U_q|_1 \le 1/q^{\Omega(1)}$ for uniform x, y, z

Need: $|g(x, y, z) - U_q|_1 \le 1/q^{\Omega(1)}$ for uniform x, y, z

 Lemma: [Weil, Lang Weil '54] f(x, y, z) irreducible over any field extension, low-degree

• Prove for q-O(1) values $s \in F_q$, g(x, y, z) - s irreducible.

• Sum over s, apply Lemma:

$$|g(x, y, z) - U_{a}|_{1} \le q O(1/q^{1.5}) \le 1/q^{\Omega(1)}$$

Outline

- Introduction and our results
- Proof of interleaved mixing
- Communication complexity viewpoint, boosting independence
- Proof of boosting independence

- Alice: a_1 , a_2 , ..., $a_t \in \text{group G}$ Bob: b_1 , b_2 , ..., $b_t \in \text{group G}$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{\cdot \cdot \cdot a}_t \mathbf{b}_t = \mathbf{1}_G$ or = h

Communication complexity: - G abelian:

- Alice: a_1 , a_2 , ..., $a_t \in \text{group G}$ Bob: b_1 , b_2 , ..., $b_t \in \text{group G}$
- Decide if $a_1 b_1 a_2 b_2 \cdots a_t b_t = 1_G$ or = h

Communication complexity: - G abelian: O(1) Equality

- G non-solvable:

- Alice: a_1 , a_2 , ..., $a_t \in \text{group G}$ Bob: b_1 , b_2 , ..., $b_t \in \text{group G}$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{\cdot \cdot \cdot a}_t \mathbf{b}_t = \mathbf{1}_G$ or = h

Communication complexity: - G abelian: O(1) Equality

G non-solvable: Ω(t)

[Barrington + Chor Goldreich]

-G = SL(2,q):

- Alice: a_1 , a_2 , ..., $a_t \in \text{group G}$ Bob: b_1 , b_2 , ..., $b_t \in \text{group G}$
- Decide if $a_1 b_1 a_2 b_2 \cdots a_t b_t = 1_G$ or = h

Communication complexity: - G abelian: O(1) Equality

- G non-solvable: $\Omega(t)$ [Barrington + Chor Goldreich]

- G = SL(2,q): $\Theta(t \log |G|)$ [This work, equivalently]

Number-on-forehead communication [Yao, Chandra Furst Lipton '83]

- k parties wish to compute function of k inputs
- Party i knows all but i-th input (on forehead)
- Fascinating, useful, and challenging model

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a_1} \mathbf{b_1} \mathbf{c_1} \mathbf{a_2} \mathbf{b_2} \mathbf{c_2} \cdot \cdot \mathbf{a_t} \mathbf{b_t} \mathbf{c_t} = \mathbf{1}_G$ or = h
- Communication:
 G abelian: ???

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot \cdot \cdot a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Communication:
 G abelian: O(1)
 G non-solvable: ???

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot \cdot \cdot a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Communication: G abelian: O(1)G non-solvable: $\Omega(t/2^k)$ G = SL(2,q):

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot \cdot \cdot a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Communication: G abelian: O(1)G non-solvable: $\Omega(t/2^k)$ G = SL(2,q): $\Omega(t/2^{k}) \log |G|$ [This work]

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot} \mathbf{\cdot} \mathbf{a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Communication: G abelian: O(1)G non-solvable: $\Omega(t/2^k)$ $G = SL(2,q): \Omega(t/2^{2^k}) \log |G|$ [This work]

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot} \mathbf{\cdot} \mathbf{a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Communication: G abelian: O(1)G non-solvable: $\Omega(t/2^k)$ $G = SL(2,q): \Omega(t/2^{2^k}) \log |G|$ [This work]

Boosting independence

- Proof of last result (multiparty lower bound) relies on
- Lemma Let G = SL(2,q), s >> m. Let D₁, D₂, ..., D_s be independent distributions on G^m. Each D_i is pairwise independent. → Component-wise product D = D₁ D₂ • • D_s close to uniform: For any g \in G^m, | Pr[D = g] - 1/|G|^m | $\leq \epsilon / |G|^m$
- False for abelian groups

Outline

- Introduction and our results
- Proof of interleaved mixing
- Communication complexity viewpoint, boosting independence
- Proof of boosting independence

• Lemma Let G = SL(2,q), s >> m.

Let D_1 , D_2 , ..., D_s be independent distributions on G^m . Each D_i is pairwise independent.

Component-wise product $D=D_1\,D_2\bullet D_s$ close to uniform: For any $g\in G^m$, $|\Pr[D=g]-1/|G|^m\,|\le \epsilon\,/\,|G|^m$

• Proof outline.

 \rightarrow

Enough to show m = 3.

Multiplying pairwise independent distributions flattens them

Unexpectedly, all we use of G is interleaved mixing.

• Lemma p and q pairwise independent over G^3 , $\theta \in [0,1]$:

 $|p|_{\infty}$, $|q|_{\infty} \le 1/|G|^{2+\theta} \rightarrow |pq|_{2}^{2} \le 1/|G|^{3} + 1/|G|^{2+\theta} + \Omega(1)$

→ $|pqpq|_{\infty} \leq 1/|G|^3 + 1/|G|^{2+\theta+\Omega(1)}$

- Proof idea: $|pq|_2^2$
- = $\sum p(x1,x2,x3) q(y1,y2,y3) p(z1,z2,z3) q(w1,w2,w3)$

over x1y1=z1w1, x2y2=z2w2, x3y3=z3w3

 $= ... \leq \sum_{xy=zw} A(x,w) B(y,z),$ for suitable A, B

Apply previous result.

Summary

- Interleaved group products over G = SL(2,q)
- A•B•A'•B' nearly uniform, if (A,A') independent from (B,B')

Product of conjugacy classes \rightarrow uniform

• Tight multiparty communication bound, for O(1) parties

Boosting independence:

Product of pairwise independent distrib. in $G^m \rightarrow$ uniform

End of talk

Next: deleted scenes

$$A(x, w) = \sum_{a} p(x1a, x2, x) q(ay1, y2, w)$$

$$\begin{split} |A|_1 &= \sum_{x,w} \sum_a p(x1a,x2,x) q(ay1,y2,w) \\ &= \sum_a \left(\sum_x p(x1a,x2,x) \right) \left(\sum_w q(ay1,y2,w) \right) \\ &= \sum_a \left(1/|G|^2 \right) \left(1/|G|^2 \right) \\ &= 1/|G|^3 \,. \end{split}$$

Assumption on $|p|_{\infty}$ and $|q|_{\infty}$ used in $|A|_2$ bound

= $\sum p(x1 a, x2, x3) q(y1, b y2, y3) p(x1, x2 b, z3) q(ay1, y2, w3)$

over a,b,x1,x2,y1,y2, x3y3=z3w3

Fix x1, x2, y1, y2 that maximize.

Let A(x, w) =
$$\sum_{a} p(x1a,x2,x) q(ay1,y2,w)$$

B(y, z) = $\sum_{b} q(y1,b y2,y) p(x1,x2 b,z)$

Then
$$|pq|_2^2 \le |G|^4 \sum_{xy=zw} A(x,w) B(y,z).$$

Apply version of previous result.

 $\sum_{xy=zw} A(x,w) B(y,z) \le |A|_1 |B|_1 / |G| + |A|_2 |B|_2 / |G|^{1+\Omega(1)}$

Assumptions \rightarrow bound on $|A|_1$, $|A|_2$, $|B|_1$, $|B|_2$.

Mixing in 4 steps implies mixing in 3: $\forall X, Y, Z, W, g : | Pr[X•Y•Z•W=g] - 1/|G| | ≤ ε/|G|$ → $\forall X, Y, Z, g : |Pr[X•Y•Z=g] - 1/|G| | ≤ (√ε)/|G|$

Proof for X=Y=Z:

S := Indicator support(X). u,v,w \in G uniform. α := E_uS(u)

$$| \Pr[X \cdot X \cdot X = g] - 1/|G| |^{2} =$$

$$= 1/(\alpha^{3} |G|) |E_{u,v,w: uvw=g} S(u)S(v)S(w) - \alpha^{3} |^{2}$$
(Bayes)
$$= 1/(\alpha^{3} |G|) |E_{u} S(u) \cdot (E_{v,w: uvw=g} S(v)S(w) - \alpha^{2})|^{2}$$

$$\le 1/(\alpha^{3} |G|) (E_{u} S(u)) E_{u} (E_{v,w: uvw=g} S(v)S(w) - \alpha^{2})^{2}$$
(C.-S.)
$$= 1/(\alpha^{2} |G|) E_{u} E_{v,w: uvw=g} S(v)S(w) - \alpha^{4}$$

$$= 1/(\alpha^{2} |G|) E_{u} E_{v,w,v',w': uvw=g, uv'w'=g} S(v)S(w)S(v')S(w') - \alpha^{4}$$

$$= 1/(\alpha^{2} |G|) E_{v,w,v',w': vw=v'w'} S(v)S(w)S(v')S(w') - \alpha^{4}$$