The multiparty communication complexity of interleaved group products

October 2016

Emanuele Viola

NEU

Joint work with Timothy Gowers

Number-on-forehead communication [Yao, Chandra Furst Lipton '83]

- k parties wish to compute function of k inputs
- Party i knows all but i-th input (on forehead)
- Fascinating, useful, and challenging model

Interleaved products in group G [Miles V]

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot \cdot \cdot a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Communication:
 G abelian: ???

Interleaved products in group G [Miles V]

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot} \mathbf{\cdot} \mathbf{a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Communication:
 G abelian: O(1)
 G non-solvable: ???

reduce to equality

Interleaved products in group G [Miles V]

- Alice: a_1 , a_2 , ..., $a_t \in G$ Bob: b_1 , b_2 , ..., $b_t \in G$ Clio: c_1 , c_2 , ..., $c_t \in G$
- Decide if $\mathbf{a_1} \mathbf{b_1} \mathbf{c_1} \mathbf{a_2} \mathbf{b_2} \mathbf{c_2} \cdot \cdot \mathbf{a_t} \mathbf{b_t} \mathbf{c_t} = \mathbf{1}_G$ or = h
- Communication:
 G abelian: O(1) reduce to equality
 G non-solvable: Ω(t/2^k), k parties [Babai Nisan Szegedy Barrington]
- Question: Improve for large |G|? Ω(t/2^k)log|G|?

Previous work for k = 2 parties [Gowers V]

- Alice: $a_1, a_2, ..., a_t \in G$ Bob: $b_1, b_2, ..., b_t \in G$ $\begin{pmatrix} a \\ o & o \\ \end{pmatrix} \begin{pmatrix} b \\ o & o \\ \end{pmatrix}$
- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{\cdot \cdot \cdot a}_t \mathbf{b}_t = \mathbf{1}_G$ or = h
- Theorem: Communication complexity
 Ω(t) log |G| for G = SL(2,q) = 2x2 matrices in F_q
- $\omega(1)$ for G simple, non-abelian

[Shalev] quantifies ω

This work

- Decide if $\mathbf{a}_1 \mathbf{b}_1 \mathbf{c}_1 \mathbf{a}_2 \mathbf{b}_2 \mathbf{c}_2 \mathbf{\cdot} \mathbf{\cdot} \mathbf{a}_t \mathbf{b}_t \mathbf{c}_t = \mathbf{1}_G$ or = h
- Theorem Communication $\Omega(t / 2^{2^{k}}) \log |G|$ With k parties, G = SL(2,q), and t $\ge 2^{2^{k}}$

Tight for k = O(1)

Outline

• Communication complexity

• Cryptography

• Boosting independence, proofs

Cryptographic application [Miles V 2013]

- Leakage-resilient circuits based on group products
 - Secure in computationally-bounded model
 - Secure in "only computation leaks" [Micali Reyzin] assuming Ω(t) log |G| bound for 8 parties

Cryptographic application [Miles V 2013]

- Leakage-resilient circuits based on group products
 - Secure in computationally-bounded model
 - Secure in "only computation leaks" [Micali Reyzin]
 assuming Ω(t) log |G| bound for 8 parties using Ω(t) log |G| bound for 8 parties in this work

Outline

• Communication complexity

• Cryptography

• Boosting independence, proofs

Boosting independence

- Lemma: $\forall m \exists s : G = SL(2,q)$, D₁, D₂, ..., D_s independent distributions on G^m each D_i pairwise independent.
- $$\label{eq:constraint} \begin{split} & \bigvee \\ D = D_1 \bullet D_2 \bullet \bullet \bullet D_s \text{ close to uniform:} \\ & \forall \, g \in G^m \text{ , } | \Pr[D = g] 1/|G|^m \, | \leq \epsilon \, / \, |G|^m \end{split}$$

• Can be proved using result for k = 2 parties

Boosting independence -> lower bound

- Recall $P(a,b,c) = a_1 b_1 c_1 a_2 b_2 c_2 \cdot \cdot \cdot a_t b_t c_t$ Goal: hard to tell $P(a,b,c) = 1_G$ from P(a,b,c) = h
- Define f(a,b,c) = 1 / -1 / 0 if P(a,b,c) = 1_G / h / else
- [BNS, CT, R, VW] Enough to bound, for uniform a^0 , a^1 , b^0 , b^1 , c^0 , $c^1 \in G^t$,
 - $\begin{array}{l} \mathsf{E} \; [\mathsf{f}(\mathsf{a}^{0},\mathsf{b}^{0},\mathsf{c}^{0}) \bullet \mathsf{f}(\mathsf{a}^{0},\mathsf{b}^{0},\mathsf{c}^{1}) \bullet \mathsf{f}(\mathsf{a}^{0},\mathsf{b}^{1},\mathsf{c}^{0}) \bullet \mathsf{f}(\mathsf{a}^{0},\mathsf{b}^{1},\mathsf{c}^{1}) \bullet \\ \mathsf{f}(\mathsf{a}^{1},\mathsf{b}^{0},\mathsf{c}^{0}) \bullet \mathsf{f}(\mathsf{a}^{1},\mathsf{b}^{0},\mathsf{c}^{1}) \bullet \mathsf{f}(\mathsf{a}^{1},\mathsf{b}^{1},\mathsf{c}^{0}) \bullet \mathsf{f}(\mathsf{a}^{1},\mathsf{b}^{1},\mathsf{c}^{1}) \;] \end{array}$
- Prove stronger: the 8 factors nearly independent

Boosting independence -> lower bound

- Recall $P(a,b,c) = a_1 b_1 c_1 a_2 b_2 c_2 \cdot \cdot \cdot a_t b_t c_t$
- Prove stronger result:
 D(t) :=
 - $(P(a^{0},b^{0},c^{0}),P(a^{0},b^{0},c^{1}),P(a^{0},b^{1},c^{0}),P(a^{0},b^{1},c^{1})$ $P(a^{1},b^{0},c^{0}),P(a^{1},b^{0},c^{1}),P(a^{1},b^{1},c^{0}),P(a^{1},b^{1},c^{1})) \in G^{8}$ is nearly uniform over G^{8}

• Proof:

D(t)= product of s independent copies of D(t/s) \in G⁸ each copy pairwise independent Boosting independence lemma

Future work

• Improve $\Omega(t/2^{2^k}) \log |G|$ to $\Omega(t/2^k) \log |G|$

• Conjecture [Gowers V] $\sim \Omega(t)$ even for k > log t

• Tight bounds for boosting independence

• Extend to other groups

Summary

- Interleaved group products over G = SL(2,q)
 a₁ b₁ c₁ a₂ b₂ c₂ • a_t b_t c_t
- Communication $\Omega(t) \log |G|$ for O(1) parties, tight
- [Miles V] secure even in "only-computation leaks"
- Boosting independence:

Independent distributions D_1 , D_2 , ..., D_s in G^m Each D_i pairwise indep. $\rightarrow D_1 D_2 \cdot D_s \approx$ uniform