The multiparty communication complexity of interleaved group products

October 2016

Emanuele Viola

NEU

Joint work with Timothy Gowers

Number-on-forehead communication [Yao, Chandra Furst Lipton '83]

- k parties wish to compute function of k inputs
- Party i knows all but i-th input (on forehead)
- Fascinating, useful, and challenging model

Interleaved products in group G

 [Miles V]- Alice: $a_{1}, a_{2}, \ldots, a_{t} \in G$ Bob: $b_{1}, b_{2}, \ldots, b_{t} \in G$ Clio: $c_{1}, c_{2}, \ldots, c_{t} \in G$

- Decide if $a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \cdots a_{t} b_{t} c_{t}=1_{G}$ or $=h$
- Communication:

G abelian:

Interleaved products in group G

 [Miles V]- Alice: $a_{1}, a_{2}, \ldots, a_{t} \in G$ Bob: $b_{1}, b_{2}, \ldots, b_{t} \in G$ Clio: $c_{1}, c_{2}, \ldots, c_{t} \in G$

- Decide if $a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \cdots a_{t} b_{t} c_{t}=1_{G}$ or $=h$
- Communication:

G abelian: $\quad \mathrm{O}(1)$
reduce to equality
G non-solvable: ???

Interleaved products in group G

 [Miles V]- Alice: $a_{1}, a_{2}, \ldots, a_{t} \in G$ Bob: $b_{1}, b_{2}, \ldots, b_{t} \in G$ Clio: $c_{1}, c_{2}, \ldots, c_{t} \in G$

- Decide if $a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \cdots a_{t} b_{t} c_{t}=1_{G}$ or $=h$
- Communication:

G abelian: $\quad \mathrm{O}(1) \quad$ reduce to equality
G non-solvable: $\Omega\left(\mathrm{t} / 2^{\mathrm{k}}\right)$, k parties [Babai Nisan Szegedy Barrington]

- Question: Improve for large $|\mathrm{G}| ? \Omega\left(\mathrm{t} / 2^{\mathrm{k}}\right) \log |\mathrm{G}|$?

Previous work for $k=2$ parties [Gowers V]

- Alice: $a_{1}, a_{2}, \ldots, a_{t} \in G$ Bob: $b_{1}, b_{2}, \ldots, b_{t} \in G$
- Decide if $a_{1} b_{1} a_{2} b_{2} \cdots a_{t} b_{t}=1_{G}$ or $=h$
- Theorem: Communication complexity
$-\Omega(\mathrm{t}) \log |\mathrm{G}|$ for $\mathrm{G}=\mathrm{SL}(2, \mathrm{q})=2 \times 2$ matrices in F_{q}
- $\omega(1) \quad$ for G simple, non-abelian
- [Shalev] quantifies ω

This work

- Alice: $a_{1}, a_{2}, \ldots, a_{t} \in G$ Bob: $b_{1}, b_{2}, \ldots, b_{t} \in G$ Clio: $c_{1}, c_{2}, \ldots, c_{t} \in G$

- Decide if $a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \cdots a_{t} b_{t} c_{t}=1_{G}$ or $=h$
- Theorem Communication $\Omega\left(t / 2^{2^{k}}\right) \log |G|$ With k parties, $G=S L(2, q)$, and $t \geq 2^{2^{k}}$ Tight for $\mathrm{k}=\mathrm{O}(1)$

Outline

- Communication complexity
- Cryptography
- Boosting independence, proofs

Cryptographic application [Miles V 2013]

- Leakage-resilient circuits based on group products
- Secure in computationally-bounded model
- Secure in "only computation leaks" [Micali Reyzin] assuming $\Omega(\mathrm{t}) \log |\mathrm{G}|$ bound for 8 parties

Cryptographic application [Miles V 2013]

- Leakage-resilient circuits based on group products
- Secure in computationally-bounded model
- Secure in "only computation leaks" [Micali Reyzin]
-assuming $\Omega(t) \log |G|$ bound for 8 partiesusing $\Omega(\mathrm{t}) \log |\mathrm{G}|$ bound for 8 parties in this work

Outline

- Communication complexity
- Cryptography
- Boosting independence, proofs

Boosting independence

- Lemma: $\forall \mathrm{m} \exists \mathrm{s}: \mathrm{G}=\mathrm{SL}(2, \mathrm{q})$,
$\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{\mathrm{s}}$ independent distributions on G^{m} each D_{i} pairwise independent.

$$
\sqrt{n}
$$

$D=D_{1} \cdot D_{2} \cdots D_{s}$ close to uniform:
$\forall \mathrm{g} \in \mathrm{G}^{\mathrm{m}},\left|\operatorname{Pr}[\mathrm{D}=\mathrm{g}]-1 /|\mathrm{G}|^{\mathrm{m}}\right| \leq \varepsilon /|\mathrm{G}|^{m}$

- Can be proved using result for $\mathrm{k}=2$ parties

Boosting independence \rightarrow lower bound

- Recall $P(a, b, c)=a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \cdots a_{t} b_{t} c_{t}$

Goal: hard to tell $P(a, b, c)=1_{G}$ from $P(a, b, c)=h$

- Define $f(a, b, c)=1 /-1 / 0$ if $P(a, b, c)=1_{G} / h /$ else
- [BNS, CT, R, VW] Enough to bound, for uniform $a^{0}, a^{1}, b^{0}, b^{1}, c^{0}, c^{1} \in G^{t}$,

$$
\begin{aligned}
& E\left[f\left(a^{0}, b^{0}, c^{0}\right) \cdot f\left(a^{0}, b^{0}, c^{1}\right) \cdot f\left(a^{0}, b^{1}, c^{0}\right) \cdot f\left(a^{0}, b^{1}, c^{1}\right) \cdot\right. \\
& \left.f\left(a^{1}, b^{0}, c^{0}\right) \cdot f\left(a^{1}, b^{0}, c^{1}\right) \cdot f\left(a^{1}, b^{1}, c^{0}\right) \cdot f\left(a^{1}, b^{1}, c^{1}\right)\right]
\end{aligned}
$$

- Prove stronger: the 8 factors nearly independent

Boosting independence \rightarrow lower bound

- Recall $P(a, b, c)=a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \cdots a_{t} b_{t} c_{t}$
- Prove stronger result:
$\mathrm{D}(\mathrm{t}):=$
$\left(P\left(a^{0}, b^{0}, c^{0}\right), P\left(a^{0}, b^{0}, c^{1}\right), P\left(a^{0}, b^{1}, c^{0}\right), P\left(a^{0}, b^{1}, c^{1}\right)\right.$ $\left.P\left(a^{1}, b^{0}, c^{0}\right), P\left(a^{1}, b^{0}, c^{1}\right), P\left(a^{1}, b^{1}, c^{0}\right), P\left(a^{1}, b^{1}, c^{1}\right)\right) \in G^{8}$ is nearly uniform over G^{8}
- Proof:
$D(t)=$ product of s independent copies of $D(t / s) \in G^{8}$ each copy pairwise independent Boosting independence lemma

Future work

- Improve $\Omega\left(\mathrm{t} / 2^{2^{\mathrm{k}}}\right) \log |\mathrm{G}|$ to $\Omega\left(\mathrm{t} / 2^{\mathrm{k}}\right) \log |\mathrm{G}|$
- Conjecture [Gowers V] $\sim \Omega(\mathrm{t})$ even for $\mathrm{k}>\log \mathrm{t}$
- Tight bounds for boosting independence
- Extend to other groups

Summary

- Interleaved group products over $G=S L(2, q)$ $a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \cdots a_{t} b_{t} c_{t}$
- Communication $\Omega(t) \log |G|$ for $O(1)$ parties, tight
- [Miles V] secure even in "only-computation leaks"
- Boosting independence:

Independent distributions $D_{1}, D_{2}, \ldots, D_{s}$ in G^{m} Each D_{i} pairwise indep. $\rightarrow D_{1} D_{2} \cdot D_{s} \approx$ uniform

