The complexity of distributions:

boolean average-case lower bounds

Emanuele Viola

Northeastern University

April 2018

The complexity of distributions:

boolean average-case low bounds

Classical talk at

 quantum workshop
The complexity of distributions

- Leading goal of computational complexity: lower bounds for computing a function on a given input
- Since 2009 have advocated lower bounds for sampling distributions, given uniform bits
- Several papers, connections, still uncharted

Bounded-depth circuits (AC0)

- AC^{0} cannot compute parity [1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad,]

Sampling ($\mathrm{Y}, \operatorname{parity}(\mathrm{Y})$)

- Theorem [Babai '87; Boppana Lagarias '87]

There is $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}+1}$, in AC^{0}
Distribution $f(X) \equiv(Y$, parity $(Y)) \quad\left(X, Y \in\{0,1\}^{n}\right.$ uniform $)$

AC^{0} can sample

- (Y, Inner-Product(Y)) [Impagliazzo Naor]
- Permutations
(error 2 ${ }^{-\mathrm{n}}$) [Matias Vishkin, Hagerup]
- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$, any symmetric f (error $2^{-\mathrm{n}}$) e.g. $\mathrm{f}=$ Majority, Mod-3, \ldots
AC^{0} cannot sample

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
$Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$
$A C^{0}$ circuit $C:\{0,1\}^{\mathrm{L}} \rightarrow\{0,1\}^{\mathrm{n}}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
$Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$
$A C^{0}$ circuit $C:\{0,1\}^{L} \rightarrow\{0,1\}^{n}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$
- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$ for bit-block extractor $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) >0
[V 2011]

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
$Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$
$A C^{0}$ circuit $C:\{0,1\}^{L} \rightarrow\{0,1\}^{n}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$
- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$ for bit-block extractor $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) >0

$$
>1 / 2-1 / n^{\omega(1)} \quad[V \text { now }]
$$

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

AC^{0} cannot sample

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
$Z=$ uniform on good binary code $\subseteq\{0,1\}^{n}$
$A C^{0}$ circuit $C:\{0,1\}^{L} \rightarrow\{0,1\}^{n}$
\rightarrow Statistical-Distance $(Z, C(X)) \geq 1-\exp \left(-n^{0.1}\right)$

Next

- $(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$ for bit-block extractor $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) >0

$$
>1 / 2-1 / n^{\omega(1)}
$$

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Theorem: AC^{0} circuit C min-entropy $C(X) \geq k \quad\left(\forall\right.$ a, $\left.\operatorname{Pr}[C(X)=a] \leq 2^{-k}\right)$
$\rightarrow \mathrm{C}(\mathrm{X})$ close to convex combination of bit-block sources with min-entropy $\geq k(k / n)$
- Bit-block source: each bit is either constant or literal Example: ($0,1, z_{5}, 1-z_{3}, z_{3}, z_{3}, 0, z_{2}$)
- Corollary: f bit-block extractor $\rightarrow \mathrm{C}(\mathrm{X}) \neq(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$
- Proof:
- Theorem: AC^{0} circuit C
min-entropy $C(X) \geq k \quad\left(\forall\right.$ a, $\left.\operatorname{Pr}[C(X)=a] \leq 2^{-k}\right)$
$\rightarrow \mathrm{C}(\mathrm{X})$ close to convex combination of bit-block sources with min-entropy $\geq k$ (k / n)
- Bit-block source: each bit is either constant or literal Example: ($0,1, z_{5}, 1-z_{3}, z_{3}, z_{3}, 0, z_{2}$)
- Corollary: f bit-block extractor $\rightarrow \mathrm{C}(\mathrm{X}) \neq(\mathrm{Y}, \mathrm{f}(\mathrm{Y}))$
- Proof: $\mathrm{C}(\mathrm{X})=(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \rightarrow$ min-entropy $\mathrm{C}(\mathrm{X}) \geq|\mathrm{Y}|=\mathrm{n}$
\rightarrow convex combination high min-entropy bit-block sources can fix " $f(Y)$ " bit leaving high min-entropy contradicts extractor property
- Theorem: AC min-entropy C Rules out Statistical-Distance 0, but not 0.1
$\rightarrow \mathrm{C}(\mathrm{X})$ close with min-e

Possible:
Statistical-Distance(C(X), $(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \leq 0.1$, but min-entropy $C(X)=O(1)$

- Bit-b ock sour Exa mple: (0,

Example next

- Co ollary: f bit
- $\operatorname{Proc} \mathrm{C}(\mathrm{X})=(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \rightarrow$ min-entropy $\mathrm{C}(\mathrm{X}) \geq|\mathrm{Y}|=\mathrm{n}$
\rightarrow convex comonnation nign min-entropy ont-otock sources can fix "f(Y)" bit leaving high min-entropy contradicts extractor property

Example

- Circuit C: "On input x:

If first 4 bits are 0 output the all-zero string Otherwise sample (Y, f(Y)) exactly"

- Statistical-Distance($\mathrm{C}(\mathrm{X}),(\mathrm{Y}, \mathrm{f}(\mathrm{Y})) \leq 0.1$, but min-entropy $C(X)=O(1)$
- Observation: If you fix first 4 bits, min-entropy polarizes: either zero or very large We show this happens for every AC^{0} circuit

Polarizing min-entropy

- Theorem: For every AC 0 circuit $C:\{0,1\}^{L} \rightarrow\{0,1\}^{n}$ \exists set S of $\exp \left(n-\mathrm{n}^{0.9}\right)$ restrictions such that:
(1) preserve output distribution
$\left.C\right|_{r}(X) \approx C(X)$ for uniform $r \in S$
(2) polarize min-entropy
$\forall r \in S,\left.C\right|_{r}$ has min-entropy 0 or $\mathrm{n}^{0.8}$
- Note: $|S|=\exp (n)$ useless and trivial: S := one input for each of $\leq 2^{n}$ outputs, entropy always 0

Proof steps

- $A C^{0}$

- Decision trees

Small set of restrictions that
(1) preserve output distribution
hypercontractivity +
specific concentration of measure
(2) collapse AC^{0} to decision trees switching lemma

Further restrict tree either fixed or has high min entropy

- Polarized decision trees

Conclusion

- Open problem: Statistical distance $1 / 2-\exp \left(-\mathrm{n}^{0.1}\right)$ Neither in reduction to bit-block nor entropy polarization
- Much more to chart...

