The complexity of distributions:

boolean average-case lower bounds

Emanuele Viola

Northeastern University

April 2018

The complexity of distributions

- Leading goal of computational complexity: lower bounds for computing a function on a given input
- Since 2009 have advocated lower bounds for sampling distributions, given uniform bits
- Several papers, connections, still uncharted

Bounded-depth circuits (AC⁰)

AC⁰ cannot compute parity
 [1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad,]

Sampling (Y, parity(Y))

• Theorem [Babai '87; Boppana Lagarias '87]

There is $f : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$, in AC^0 Distribution $f(X) \equiv (Y, parity(Y))$ $(X, Y \in \{0,1\}^n$ uniform)

• (Y, Inner-Product(Y))

[Impagliazzo Naor]

V

Permutations (error 2⁻ⁿ) [Matias Vishkin, Hagerup]

(Y, f(Y)), any symmetric f (error 2⁻ⁿ)
 e.g. f = Majority, Mod-3, ...

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code $\subseteq \{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^L \rightarrow \{0,1\}^n$
 - → Statistical-Distance(Z, C(X)) ≥ 1 exp(-n^{0.1})

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code ⊆ $\{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^L \rightarrow \{0,1\}^n$ → Statistical-Distance(Z, C(X)) ≥ 1 - exp(-n^{0.1})
- (Y, f(Y)) for bit-block extractor f : $\{0,1\}^n \rightarrow \{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) > 0 [V 2011]

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code $\subseteq \{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^L \rightarrow \{0,1\}^n$ → Statistical-Distance(Z, C(X)) ≥ 1 - exp(-n^{0.1})
- (Y, f(Y)) for bit-block extractor f : $\{0,1\}^n \rightarrow \{0,1\}$ Statistical-Distance((Y, f(Y), C(X)) > 0 [V 2011] > 1/2 - 1/n^{$\omega(1)$} [V now]

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
 - Z = uniform on good binary code $\subseteq \{0,1\}^n$ AC⁰ circuit C : $\{0,1\}^L \rightarrow \{0,1\}^n$ → Statistical-Distance(Z, C(X)) ≥ 1 - exp(-n^{0.1})
- (Y, f(Y)) for bit-block extractor f : $\{0,1\}^n \rightarrow \{0,1\}$

Statistical-Distance((Y, f(Y), C(X)) > 0

[V 2011]

"Cannot compute f better than tossing a coin, even if you can sample the input yourself"

- Theorem: AC⁰ circuit C min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 → C(X) close to convex combination of bit-block sources with min-entropy ≥ k (k/n)
- Bit-block source: each bit is either constant or literal Example: (0, 1, z₅, 1-z₃, z₃, z₃, 0, z₂)
- Corollary: f bit-block extractor \rightarrow C(X) \neq (Y, f(Y))
- Proof:

- Theorem: AC⁰ circuit C
 min-entropy C(X) ≥ k (∀ a, Pr[C(X) = a] ≤ 2^{-k})
 → C(X) close to convex combination of bit-block sources with min-entropy ≥ k (k/n)
- Bit-block source: each bit is either constant or literal Example: (0, 1, z₅, 1-z₃, z₃, z₃, 0, z₂)
- Corollary: f bit-block extractor \rightarrow C(X) \neq (Y, f(Y))
- Proof: C(X) = (Y, f(Y)) → min-entropy C(X) ≥ |Y| = n
 → convex combination high min-entropy bit-block sources can fix "f(Y)" bit leaving high min-entropy contradicts extractor property

Example

• Circuit C: "On input x:

If first 4 bits are 0 output the all-zero string Otherwise sample (Y, f(Y)) exactly"

 Statistical-Distance(C(X) , (Y, f(Y)) ≤ 0.1, but min-entropy C(X) = O(1)

 Observation: If you fix first 4 bits, min-entropy polarizes: either zero or very large We show this happens for every AC⁰ circuit

Polarizing min-entropy

• Theorem: For every AC⁰ circuit C : $\{0,1\}^{L} \rightarrow \{0,1\}^{n}$ \exists set S of exp(n - n^{0.9}) restrictions such that:

(1) preserve output distribution $C|_{r}(X) \approx C(X)$ for uniform $r \in S$

(2) polarize min-entropy

 $\forall r \in S, C|_r$ has min-entropy 0 or n^{0.8}

• Note: |S| = exp(n) useless and trivial:

S := one input for each of $\leq 2^n$ outputs, entropy always 0

Proof steps

Further restrict tree either fixed or has high min entropy

• Polarized decision trees

Conclusion

Open problem: Statistical distance 1/2 - exp(-n^{0.1})
 Neither in reduction to bit-block nor entropy polarization

• Much more to chart...

