Why do lower bounds stop "just before" proving major results?

Emanuele Viola

Northeastern University

$$
2
$$

$$
1
$$

Outline

- History, conjectures, and upper bounds
- The lower bounds we have are best?
- A basic obstacle (what to work on tonight)
- Some recent connections and results

Multiplication of n-digit integers

- Feeling: "As regards number systems and calculation techniques,
it seems that the final and best solutions were found in science long ago"
- In 1950's, Kolmogorov conjectured time $\Omega\left(n^{2}\right)$ Started a seminar with the goal of proving it

- Feeling: "As regards number systems and calculation techniques,
it seems that the final and best solutions were found in science long ago"
- In 1950's, Kolmogorov conjectured time $\Omega\left(n^{2}\right)$ Started a seminar with the goal of proving it
- One week later, $\mathrm{O}\left(\mathrm{n}^{1.59}\right)$ time by Karatsuba

- [..., 2019] Harvey \& van der Hoeven $O(n \cdot \log (n))$

Multiplication of nxn matrices

1968 Strassen working to prove $\Omega\left(n^{3}\right)$

Multiplication of nxn matrices

1968 Strassen working to prove $\Omega\left(n^{3}\right)$

1969: Volker Strassen.
Gaussian elimination is not optimal.
Numer. Math., 13:354-356, 1969. $O\left(n^{2.81}\right)$ algorithm

Proving lower bounds for linear transformations

Problem: Give explicit $n \times n$ matrix such that
linear transformation requires $\omega(n)$ size circuits

1970 Valiant:
Fourier transform matrix is a super-concentrator

Conjecture: Super-concentrators require $\omega(n)$ wires

Proving lower bounds for linear transformations

Problem: Give explicit $n \times n$ matrix such that
linear transformation requires $\omega(n)$ size circuits

1970 Valiant:
Fourier transform matrix is a super-concentrator

Conjecture: Super-concentrators require $\omega(n)$ wires

Later, Valiant: Super-concentrators with $O(n)$ wires exist

Space-bounded

Finite-state automata read input left to right

Theorem: Can't recognize palindromes

Let's allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul] Can't compute majority efficiently

Space-bounded

Finite-state automata read input left to right

Theorem: Can't recognize palindromes

Let's allow them to read bits multiple times

Conjecture 1983 [Borodin, Dolev, Fich, Paul] Can't compute majority efficiently

Mix Barrington 1989: Can compute Majority (and $N C^{1}$)

Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]
Require super-linear size circuits

Boolean circuits

Universal hash functions [Carter Wegman 79]

Conjecture 1990 [Mansour Nisan Tiwari]
Require super-linear size circuits

Theorem 2008 [Ishai Kushilevitz Ostrovsky Sahai]
Linear-size suffices

Conjecture $P \neq N P$

Outline

- History, conjectures, and upper bounds
- The lower bounds we have are best?
- A basic obstacle (what to work on tonight)
- Some recent connections and results

$A C^{0}$ circuits

- Depth-d, And-Or-Not circuits $\left(A C^{0}\right)$

- $2^{n^{\Omega\left(\frac{1}{d}\right)}}$ lower bounds [80's: Furst Saxe Sipser, Ajtai, Yao, Hastad,...]
- Why not stronger bounds?

$A C^{0}$ circuits

- Depth-d, And-Or-Not circuits $\left(A C^{0}\right)$

- $2^{n^{\Omega\left(\frac{1}{d}\right)}}$ lower bounds [80's: Furst Saxe Sipser, Ajtai, Yao, Hastad,...]
- Why not stronger bounds?
- Logarithmic space (L) has circuits of size $2^{n^{\mathrm{O}\left(\frac{1}{d}\right)}}$
$\Rightarrow 80$'s bounds are best without proving major result $(P \neq L)$
- Improvement for $d=3$ already implies new results for space

Similar phenomenon

- Similar situation in many other models, for example:
- Threshold circuits:
[90's Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds
[Allender Koucky, 2018 Chen Tell]: best without major result ($N C^{1} \neq T C^{0}$)
- Algebraic complexity
[2013 Gupta Kamath Kayal Saha Saptharishi]
$n^{\Omega(\sqrt{n})}$ lower bounds for depth-4 homogeneous circuits
[Agrawal Vinay, Koiran, Tavenas] best without major result ($V P \neq V N P$)

Why do current bounds stop "just before" proving major results?

Why do current bounds stop "just before" proving major results?

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques

Why do current bounds stop "just before" proving major results?

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques
2. Current techniques are X, for major results need Y

Why do current bounds stop "just before" proving major results?

1. No reason, it's coincidence

I would find this "strange" because same bounds proved with seemingly different techniques
2. Current techniques are X, for major results need Y
3. Major results are false

Outline

- History, conjectures, and upper bounds
- The lower bounds we have are best?
- A basic obstacle (what to work on tonight)
- Some recent connections and results

Frontier of P vs. NP

Circuit lower bounds

Frontier of P vs. NP

Circuit lower
Matrix rigidity

Frontier of P vs. NP

Circuit lower
Matrix rigidity bounds

Correlation bounds for polynomials

Frontier of P vs. NP

Circuit lower
Matrix rigidity

Multi-party
Communication complexity

Correlation bounds for polynomials

Frontier of P vs. NP

A
B means progress on A requires progress on B

Frontier of P vs. NP

A
B means progress on A requires progress on B

Frontier of P vs. NP

A
B means progress on A requires progress on B

Correlation bounds for polynomials

- Challenge: Find explicit $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for every polynomial $p(x)$ of degree $\log (n)$

$$
\operatorname{Pr}_{x}[f(x) \neq p(x)] \geq 1 / 2-1 / n
$$

- Stands in the way of progress for each box in previous slide
- Candidate: $f=$ parity

Outline

- History, conjectures, and upper bounds
- The lower bounds we have are best?
- A basic obstacle (what to work on tonight)
- Some recent connections and results

Complexity of error-correction encoding

- Asymptotically good code over $\{0,1\}$: $\mathrm{C} \subseteq\{0,1\}^{\mathrm{n}}$
rate $\Omega(1): \quad|C|=2^{k}, k=\Omega(n)$ distance $\Omega(\mathrm{n}): \forall \mathrm{x} \neq \mathrm{y} \in \mathrm{C}, \mathrm{x}$ and y differ in $\Omega(\mathrm{n})$ bits
- Consider encoding function $f:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$
k-bit message Encoding
- Want to compute f with circuits with arbitrary gates; only count number of wires

Previous work

Depth 1 Wires $\Theta\left(\mathrm{n}^{2}\right)$
Unbounded fan-in

n-bit Codeword

Depth $O(\log n)$ Wires $\Theta(n)$

Fan-in 2
[Gelfand Dobrushin Pinsker 73] [Spielman 95]

Question: How many wires for depth 2?

[Gál Hansen Koucký Pudlák V 2012]

Depth	Wires
2	$n \cdot \Theta\left(\frac{\log n}{\log \log n}\right)^{2}$
$d>2$	$n \cdot \Theta\left(\lambda_{d}(\mathrm{n})\right)$

- λ inverse Ackermann: $\lambda_{3}(n)=\log \log n, \lambda_{4}(n)=\log ^{*} n, \ldots$
- Best-known bound for linear function in NP

Probabilistic construction

Layer of $\log \mathrm{n}$ blocks

- i-th block balanced for message weight $w=\Theta\left(n / 2^{i}\right)$ Can do with wires $(n / w) \log \left(n_{w}\right)<n i$
- Total wires $=\Sigma_{i<\log n}(\mathrm{ni})+\mathrm{n} \log \mathrm{n}=n \cdot O\left(\log ^{2} n\right)$

Outline

- History, conjectures, and upper bounds
- The lower bounds we have are best?
- A basic obstacle (what to work on tonight)
- Some recent connections and results
- Circuits encoding error-correcting codes
- Data structures
- Turing machines

Static data structures

- Store n bits $x \in\{0,1\}^{n}$ into $n+r$ bits so that each of m queries can be answered reading t bits
- Trivial: $\mathrm{r}=m-n, t=1$ or $r=0, t=n$
- This talk: Think $r=o(n), m=O(n)$
- Best lower bound: $\mathrm{t}=\Omega\left(\frac{\mathrm{n}}{\mathrm{r}}\right) \quad$ ['07 Gal Miltersen]

From circuits to data structures [V 2018]

- Theorem:

 If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ computable with w wires in depth d then f has data structure with space $n+r$ time $t=\left(\frac{w}{r}\right)^{d}$ for any r- Corollaries:
- $f=$ encoding $\Rightarrow \mathrm{t}=0\left(\frac{\mathrm{n}}{\mathrm{r}}\right) \log ^{3} n$ [GHKPV], matches [Gal Miltersen] $\Omega\left(\frac{\mathrm{n}}{\mathrm{r}}\right)$
- $t>\left(\frac{\mathrm{n}}{\mathrm{r}}\right)^{5}$ implies new circuit lower bounds
- [Gal Miltersen] stops "right before" proving major result

From circuits to data structures [V 2018]

- Theorem: If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ computable with w wires in depth d then f has data structure with space $n+r$ time $t=\left(\frac{w}{r}\right)^{d}$ for any r
- Proof:

Store n-bit input and values of gates with fan-in $>w / r$
Number of such gates is $\leq r$
To compute any gate: either you have it, or it depends on $\leq w / r$ gates at next layer, repeat.

Open

- Data structures lower bounds for $\mathrm{r}=n^{2}, m=r^{3}$ imply anything?

Outline

- History, conjectures, and upper bounds
- The lower bounds we have are best?
- A basic obstacle (what to work on tonight)
- Some recent connections and results
- Circuits encoding error-correcting codes
- Data structures
- Turing machines

Turing machines

1) A useless model which only has historical significance
2) A fundamental challenge which lies right at the frontier of knowledge

Turing machines

$0001110 \mid 1$...

[Hennie 65] $\Omega\left(n^{2}\right)$ time lower bounds for 1-tape machines

Turing machines

[Hennie 65] Open:
$\Omega\left(n^{2}\right)$ time lower bounds for 1-tape machines
$n^{1+\Omega(1)}$ lower bounds for 2-tape machines

Turing machines

[Hennie 65]

Open:
[Maass Schorr 87, van Melkebeek Raz, Williams]
$\Omega\left(n^{2}\right)$ time lower bounds for 1-tape machines
$n^{1+\Omega(1)}$ lower bounds for 2-tape machines
$n^{1+\Omega(1)}$ lower bounds for 2-tape machines but input tape read-only

Turing machines

[Hennie 65]

Open:
[Maass Schorr 87, $\quad n^{1+\Omega(1)}$ lower bounds for 2-tape machines but input tape read-only van Melkebeek Raz, Williams]

Question [V, Lipton, ...]: What if the machine is randomized?

Turing machines

[Hennie 65]

Open:
[Maass Schorr 87, van Melkebeek Raz, Williams]

Question [V, Lipton, ...]: What if the machine is randomized?

Turing machines

- Key step of proof:

Pseudorandom generator for 1-tape machines

- [1994 Impagliazzo Nisan Wigderson] Weaker model:
Fill the tape with bits that look random
- We can toss coins at any point! This breaks

Turing machines

- First attempt to pseudorandom generator: bounded independence [Carter Wegman]
- Does not work
- Bounded independence plus noise
flip each bit independently with probability 0.1 (And recurse)
- Theorem: [Haramaty Lee V 2017, ...]

Bounded independence plus noise fools small-space algorithms

- Essentially simulate Turing machine computation with small space

Thanks!

orecent \sum_{0} fast Dbest Circuits

History structures codes results
encoding

bounds

error-correcting
c_{0} Naturalluringcrypto
jo connections
exalntermission

Natural proofs [90's Razborov Rudich, Naor Reingold]

- If class C can compute pseudorandom functions,

Then proving lower bounds against C is "difficult"

- theory of cryptography

Candidate pseudorandom functions in classes such as $N C^{1}$
Somewhat far from state of lower bounds

- [Miles V] practice of cryptography

Candidate more efficient pseudorandom functions

The SPN paradigm

[Shannon '49, Feistel-Notz-Smith '75]

S(ubstitution)-box

$$
\begin{aligned}
\mathrm{S}: \mathrm{GF}\left(2^{\mathrm{b}}\right) & \rightarrow \mathrm{GF}\left(2^{\mathrm{b}}\right) \\
\mathrm{x} & \mapsto \mathrm{x}
\end{aligned}
$$

- computationally expensive
- "strong" crypto properties

Linear transformation

$$
\mathrm{M}: \mathrm{GF}\left(2^{\mathrm{b}}\right)^{\mathrm{m}} \rightarrow \mathrm{GF}\left(2^{\mathrm{b}}\right)^{\mathrm{m}}
$$

- computationally cheap
- "weak" crypto properties

Key XOR

- only source of secrecy
- round keys = uniform, independent

round \mathbf{r}

[Miles V]

- Candidate pseudorandom function computable in quasi-linear time
- ... And in other models that will appear later in this talk
- Open: Construct more candidates from practical constructions

Threshold circuits

- $f:=$ product of n permutations on O(1) elements ($N C^{1}$ complete)
- [1997: Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds f
- [2010 Allender Koucky]: $N C^{1}=T C^{0} \Rightarrow f$ has size $n^{1+O\left(\frac{1}{d}\right)}$

Threshold circuits

- $f:=$ product of n permutations on O(1) elements ($N C^{1}$ complete)

- [1997: Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds f
- [2010 Allender Koucky]: $N C^{1}=T C^{0} \Rightarrow f$ has size $n^{1+O\left(\frac{1}{d}\right)}$
- [2015 Miles Viola]: size $n^{1+O\left(\frac{1}{d}\right)}$ candidate pseudorandom function

Threshold circuits

- $f:=$ product of n permutations on O(1) elements ($N C^{1}$ complete)

- [1997: Impagliazzo Paturi Saks] $n^{1+c^{-d}}$ lower bounds f
- [2010 Allender Koucky]: $N C^{1}=T C^{0} \Rightarrow f$ has size $n^{1+O\left(\frac{1}{d}\right)}$
- [2015 Miles Viola]: size $n^{1+O\left(\frac{1}{d}\right)}$ candidate pseudorandom function
- [2018 Chen Tell]: $N C^{1}=T C^{0} \Rightarrow f$ has size $n^{1+c^{-d}}$
$\Rightarrow 1997$ bound is best without proving major (false?) results

Proof [2018 Chen Tell]

- Recall: $\mathrm{f}=$ product of n permutations on $\mathrm{O}(1)$ elements ($N C^{1}$ complete)
- Theorem: $\exists k: f$ in size $n^{k} \&$ depth $\mathrm{k} \Rightarrow \forall d: f$ in size $n^{1+c^{-d}}$ \& depth $\mathrm{O}(\mathrm{d})$
- Proof: Build a tree. Aim for size $n^{1+\epsilon}$
$n_{i}:=$ number of nodes at level i (root level 0)
Level i fan-in: $\left(n^{1+\epsilon} / n_{i}\right)^{1 / k} \quad$ Recursion: $n_{i+1}=n_{i} \cdot\left(n^{1+\epsilon} / n_{i}\right)^{1 / k}$
Solution: $\quad n_{i}=n^{(1+\epsilon)\left(1-(1-1 / k)^{i}\right)}$
Setting $\quad i=O(k \log (1 / \epsilon)) \quad$ gives $n_{i}>n$

Algebraic complexity

- [2013 Gupta Kamath Kayal Saha Saptharishi] $n^{\Omega(\sqrt{n})}$ lower bounds for depth-4 homogeneous circuits
- Why not stronger bounds?

Algebraic complexity

- [2013 Gupta Kamath Kayal Saha Saptharishi] $n^{\Omega(\sqrt{n})}$ lower bounds for depth-4 homogeneous circuits
- Why not stronger bounds?
- [Agrawal Vinay, Koiran, Tavenas 2013] $n^{\omega(\sqrt{n})}$ lower bounds $\Rightarrow V P \neq V N P$

