The complexity of distributions

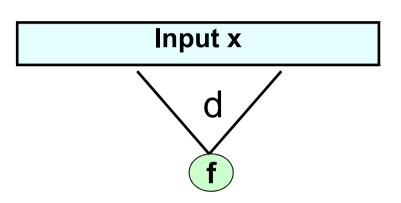
Emanuele Viola

Northeastern University

March 2011

Local functions (a.k.a. Junta, NC⁰)

f: {0,1}ⁿ → {0,1} d-local:
 output depends on d input bits



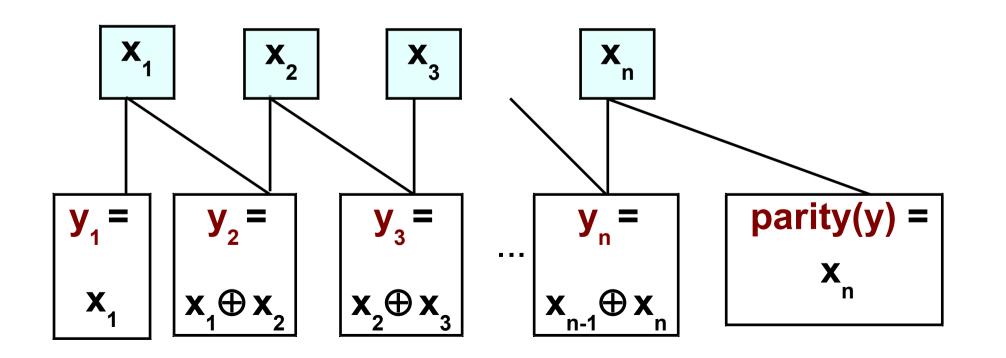
• Fact: Parity(x) = $1 \Leftrightarrow \sum x_i = 1 \mod 2$ is not n-1 local

Proof: Flip any input bit ⇒ output flips ◆

Local generation of (Y, parity(Y))

Theorem [Babai '87; Boppana Lagarias '87]

There is $f: \{0,1\}^n \to \{0,1\}^{n+1}$, each bit 2-local Distribution $f(X) \equiv (Y, parity(Y))$ $(X, Y \in \{0,1\}^n \text{ uniform})$



Our message

Complexity theory of distributions (as opposed to functions)

How hard is it to generate (a.k.a. sample)

distribution D given random bits?

E.g., D = (Y, parity(Y)), D = W_k := uniform n-bit with k 1's

Is message new?

- In addition to previous example:
- Generate Random Factored Numbers [Bach '85, Kalai]
- On the Implementation of Huge Random Objects
 [Goldreich Goldwasser Nussboim '03]
- The Equivalence of Sampling and Searching [Aaronson '10]
 (Given x, sample D_x)
- This work: first negative results (a.k.a. lower bounds) new connections

Outline of talk

Generating W_k := uniform n-bit with k 1's

Local

Decision tree

• Results for (Y, b(Y))

Bounded-depth circuit model

Our results: local

Theorem

$$f: \{0,1\}^n \longrightarrow \{0,1\}^n \qquad 0.1 \text{ log n - local}$$

$$\downarrow \downarrow$$

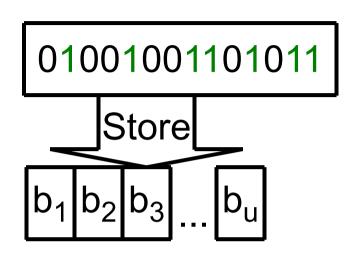
$$f(X) \text{ at Statistical Distance > 1 - n}^{-\Omega(1)}$$
 from $W_{n/2}$ = uniform w/ weight n/2

- Tight up to $\Omega()$: f(x) = x
- Extends to W_k, k≠n/2, tight?

Our results: succinct data structures

Problem:

Store $S \subseteq \{1, 2, ..., n\}$, |S| fixed in u = optimal + r bits, answer " $i \in S$?" probing d bits.



Connection:

Solution \Rightarrow generate W_{|S|} d-local, Stat. Distance < 1- 2^{-r}

• Corollary: Need $r > \Omega(\log n)$ if $d = 0.1 \log n$ First lower bound for |S| = n/2, n/4, ...

Proof

• Theorem: Let $f: \{0,1\}^n \to \{0,1\}^n: d=0.1 \text{ log } n\text{-local.}$ There is $T \subseteq \{0,1\}^n: | \Pr[f(x) \in T] - \Pr[W_{n/2} \in T] | > 1 - n^{-\Omega(1)}$

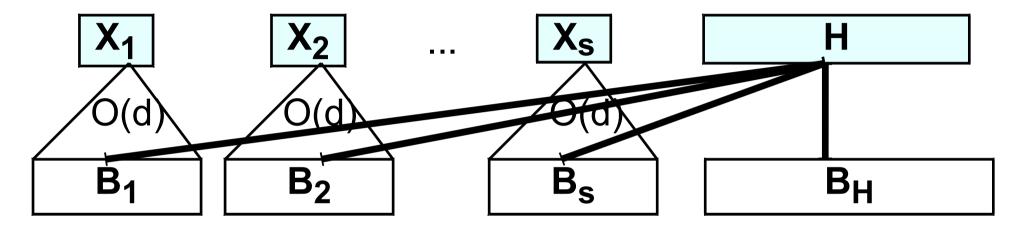
Warm-up scenarios:

•
$$f(x) = 000111$$
 Low-entropy $T := \{ 000111 \}$
 $Pr[f(x) \in T] - Pr[W_{n/2} \in T] = 1 - |T| / (n choose n/2) |$

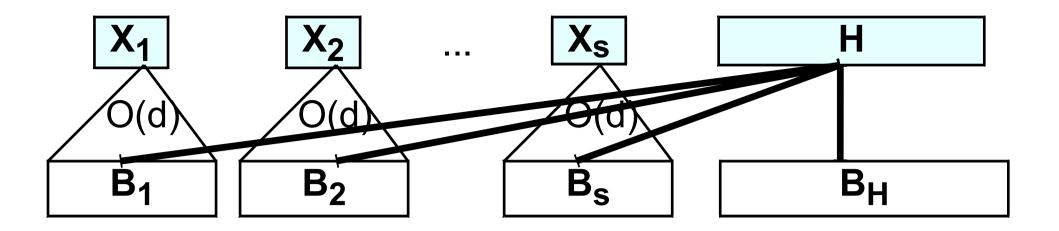
• f(x) = x "Anti-concentration" $T := \{ z : \sum_i z_i = n/2 \}$ $\left| Pr[f(x) \in T] - Pr[W_{n/2} \in T] \right| = \left| \Theta(1)/\sqrt{n-1} \right|$

Proof

• Partition input bits $X = (X_1, X_2, ..., X_s, H)$



- Fix H. Output block B_i depends only on bit X_i
 - Many B_i constant (B_i(0,H) = B_i(1,H)) ⇒ low-entropy
 - Many B_i depend on X_i (B_i(0,H) ≠ B_i(1,H))
 Idea: Independent ⇒ anti-concentration: can't sum to n/2

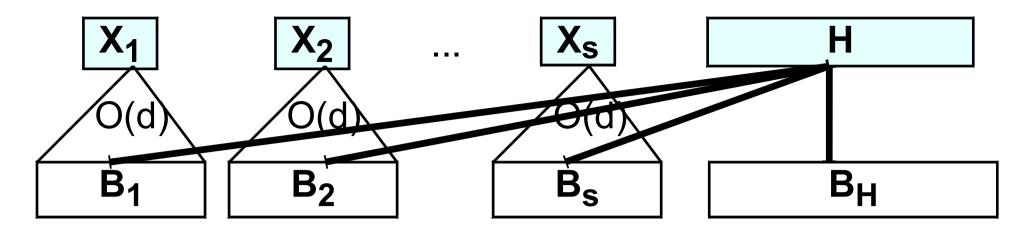


• If many B_i(0,H), B_i(1,H) have different sum of bits, use

Anti-concentration Lemma [Littlewood Offord]

For
$$a_1, a_2, ..., a_s \neq 0$$
, any c, $\Pr_{X \in \{0,1\}^S} \left[\sum_i a_i X_i = c \right] < 1/\sqrt{n}$

- Problem: $B_i(0,H) = 100$, $B_i(1,H) = 010$ high entropy but no anti-concentration
- Fix: want many blocks 000, so high entropy ⇒ different sum



• Test $T \subseteq \{0,1\}^n$: $\Pr[f(X_1,...,X_s,H) \in T] \approx 1$; $\Pr[W_{n/2} \in T] \approx 0$

$$z \in T \Leftrightarrow$$

 \exists H : \exists X₁,...,X_s w/ many blocks B_i fixed : $f(X_1,...,X_s,H) = z$ OR

Few blocks $z|_{B_i}$ are 000

OR

$$\sum_{i} z_{i} \neq n/2$$

Outline of talk

Generating W_k := uniform n-bit with k 1's

Local

Decision tree

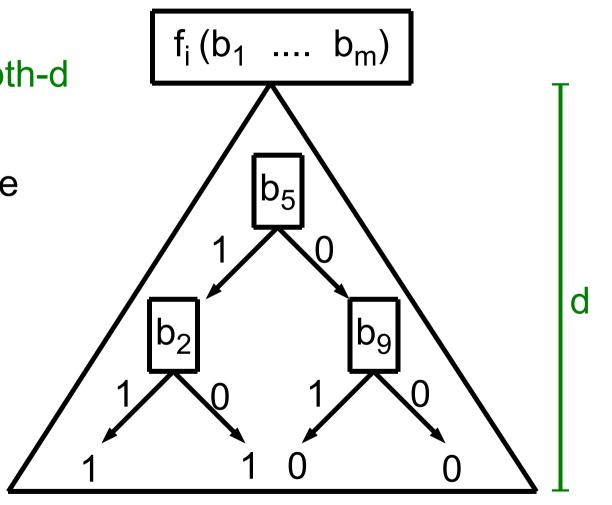
• Results for (Y, b(Y))

Bounded-depth circuit model

Decision tree model

 f: {0,1}^m → {0,1}ⁿ depth-d each output bit f_i is depth-d decision tree

d adaptive bit-probes



Depth d ⊆ 2^d local

Our results: decision trees

• Theorem $f: \{0,1\}^* \rightarrow \{0,1\}^n : depth < 0.1 log n$ Distance($f(X), W_{n/2}$) > $n^{-\Omega(1)}$

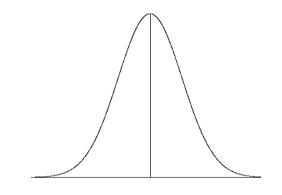
• Worse than 1 - $n^{-\Omega(1)}$ lower bound for local

Theorem building on [Czumaj Kanarek Lorys Kutyłowski]
 ∃ f : depth O(log n) and Distance(f(X), W_{n/2}) < 1/n

Tool for lower bound proof

Central limit theorem:

$$\mathbf{x_{_1}}$$
, $\mathbf{x_{_2}}$, ..., $\mathbf{x_{_n}}$ independent $\Rightarrow \sum \mathbf{x_{_i}} \approx \text{normal}$



Bounded-independence central limit theorem
 [Diakonikolas Gopalan Jaiswal Servedio V.]

$$x_1, x_2, ..., x_n \text{ k-wise independent} \Rightarrow \sum x_i \approx \text{normal}$$

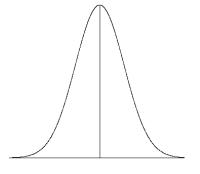
$$\forall t \mid \Pr[\sum x_i < t] - \Pr[normal < t] \mid < 1/\sqrt{k}$$

Proof

- Theorem $f: \{0,1\}^* \to \{0,1\}^n$: each bit depth < 0.1 log n Distance(f(X), $W_{n/2}$) > $n^{-\Omega(1)}$
 - Proof: Is output distribution f(X) (k = 10)-wise independent?

NO : $W_{n/2} \approx k$ -wise independent Distance(those k bits, uniform on $\{0,1\}^k$) > $2^{-k(0.1 \log n)}$ (granularity of decision tree probability)

YES: by prev. theorem $\sum f(X)_i \approx \text{normal}$ so often $\sum f(X)_i \neq n/2$



Outline of talk

Generating W_k := uniform n-bit with k 1's

Local

Decision tree

Results for (Y, b(Y))

Bounded-depth circuit model

Our results for (Y, b(Y))

Results so far: Distribution = W_{n/2}
 below: Distribution = (Y, b(Y)), b boolean

• Theorem: $f: \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ o(log n)-local \Rightarrow Distance(f(X), (Y, (Y mod p)>p/2)) > 0.49 o(log n)-depth \Rightarrow Distance(f(X), (Y, majority Y)) > $n^{-\Omega(1)}$

Outline of talk

Generating W_k := uniform n-bit with k 1's

Local

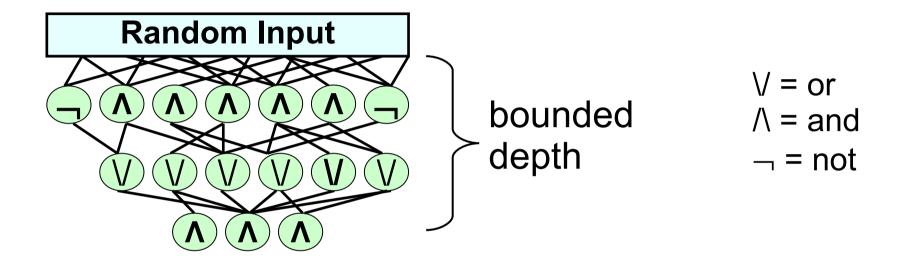
Decision tree

Results for (Y, b(Y))

Bounded-depth circuit model

Bounded-depth circuits

More general model: small bounded-depth circuits (AC⁰)



- Theorem building on [Matias Vishkin, Hagerup; '91]
 Can generate (Y, majority(Y)), error 2-|Y|
- Challenge: error 0?

Our lower bound for codes

Theorem[Lovett V.] Cannot generate error-correcting code

• Code $C \subseteq \{0,1\}^n$ of size $|C| = 2^{k} = \Omega(n)$ $x \neq y \in C \Rightarrow x, y \text{ far : hamming distance } \Omega(n)$

• $f: \{0,1\}^* \to \{0,1\}^n$, $f \in AC^0$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

Warm-up

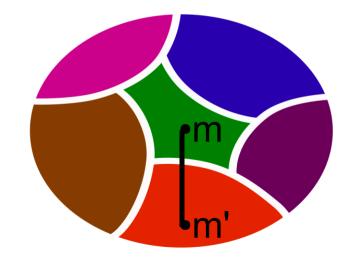
- Fact: f: {0,1}^k → {0,1}ⁿ, f ∈ AC⁰
 f cannot compute encoding function of C,
 mapping message m ∈ {0,1}^k to codeword
- Proof:
- [Linial Mansour Nisan '93, Boppana] low sensitivity of AC⁰:
 m, m' random at hamming distance 1
 ⇒ f(m), f(m') close in hamming distance.
- But $f(m) \neq f(m') \in C \Rightarrow$ far in hamming distance

Lower bound for codes

• Theorem [Lovett V.] $f: \{0,1\}^L >> k \rightarrow \{0,1\}^n$, $f \in AC^0$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

Problem: f needs not compute encoding function. Input length >> message length

Idea: Input {0,1}^L to f partitioned in |C| sets



Isoperimetric inequality [Harper, Hart]:
 Random m, m' at distance 1 often in ≠ sets ⇒ low sensitivity

Lower bound for codes

• Theorem [Lovett V.] $f: \{0,1\}^L >> k \rightarrow \{0,1\}^n$, $f \in AC^0$ Distance(f(X), uniform over C) > 1 - $n^{-\Omega(1)}$

Note: to get

 Need isoperimetric inequality for m, m' at distance >> 1

Fact[thanks to Samorodnitsky] \forall A \subseteq {0,1}^L of density α random m, m' obtained flipping bits w/ probability p:

$$\alpha^2 \le \text{Pr[both m} \in A \text{ and m'} \in A] \le \alpha^{1/(1-p)}$$

Summary

- Complexity of distributions = uncharted territory
- Lower bounds for generating W_k locally
 - \Rightarrow lower bound for storing sets of size n/2, n/4, ...
- More lower bounds:
 decision trees, generating (Y, b(Y)), AC⁰
- Tools: Anti-concentration, bounded-independence central limit theorem, isoperimetric inequalities, ...

Two open problems

- Note ∃ 2-local f : {0,1}²ⁿ → {0,1}ⁿ
 Distance(f(X), W_{n/4} = uniform w/ weight n/4) = 1 Θ(1)/√n
- Challenge: Distance $1 2^{-\Omega(n)}$ input length = H(1/4)n + o(n)

- Recall: AC⁰ can generate (Y, majority(Y)), error 2-|Y|
 Challenge: error 0?
 - Related [Lovett V.] Any bijection

has large expected hamming distortion? (n even)

- $\Sigma\Pi\sqrt{\alpha}$ using the state of the state of
- ≠≈TAΘ

- Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight

More connections

- More uses of generating W_k := uniform n-bit string with k 1's
- McEliece cryptosystem
- Switching networks, ...

Previous results

- Store S ⊆ {1, 2, ..., n}, |S| = k, in bits, answer "i ∈ S?"
 - [Minsky Papert '69] Average-case study
 - [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]
 Space O(optimal), probe O(1) when k = Θ(n)

Lower bounds for $k < n^{1-\epsilon}$

- [..., Pagh, Pătraşcu] space = optimal + o(n), probe O(log n)
- [V. '09] lower bounds for $k = \Omega(n)$, except $k = n / 2^a$