Block-symmetric polynomials correlate with parity better than symmetric

November 2012

Emanuele Viola
Northeastern University

Joint work with
Frederic Green (Clark University)
Daniel Kreymer (Northeastern University Undergraduate)

Correlation between polynomial f, n variables modulo p, degree d and $\bmod q$ function

$$
y=E_{x}\left[\zeta_{p}{ }^{f(x)} \zeta_{q}{ }^{|x|}\right]
$$

where $|x|=\sum_{i} x_{i}, \quad \zeta_{p}=p$-th primitive root of unity $e^{2 \pi i / p}$

Long-standing challenge (\forall co-prime p, q) Prove $|\mathrm{y}| \leq \exp \left(\mathrm{n}^{-\Omega(1)}\right)$, for $\mathrm{d}=\mathrm{n}^{0.01}$

Open even $|\mathrm{Y}| \leq 1 / \mathrm{n}$, for $\mathrm{d}=\log _{2} \mathrm{n}$
Surveyed in [V]

About challenge:

- $|\mathrm{Y}| \leq \exp \left(-n / 2^{\mathrm{d}}\right.$) [Babai Nisan Szegedy] (cf. [V] for Nisan's proof of [Bourgain] from [BNS])
$|\mathrm{Y}| \leq \mathrm{d} / \sqrt{ } \mathrm{n}$ [Razborov, Smolensky]
- So-called "barriers" not known to apply
- Progress (some distribution)
\leftrightarrow long-sought lower bounds against $\operatorname{Maj} A C^{0} \bmod p$

Question by many, including Alon and Beigel in 2001:
Is maximum correlation achieved by symmetric polynomials?

Symmetric: invariant under permutation of variables, value depends only on Hamming weight of input

- Block-symmetric polynomials (symmetric in each block)
- Theorem [This work] Polynomials mod odd p vs. parity \forall degree $\mathrm{d} \in\left[0.995 \mathrm{p}^{\mathrm{t}}-1, \mathrm{p}^{\mathrm{t}}-1\right], \forall \mathrm{t} \geq 1$
max block-symmetric correlation $n / d^{2} \log d$ $\geq \quad(1.01)$ max symmetric correlation
- Only previous case known: $d=2, p=3$ [Green '02]

Partial complements

- Theorem [This work] Symmetric correlate better than blocksymmetric with large blocks if
- $d=p^{t}$
(previous result: $d \in\left[0.995 p^{t}-1, p^{t}-1\right]$)
- Or if polynomials $p=2$, vs. the Mod $q=$ odd function (previously nothing suggested different results for different moduli)

We develop a theory we call spectral analysis of symmetric correlation

Originates in [Cai Green Thierauf]
Our results follow from a fine result about symmetric: correlation established up to exponentially small relative error

Spectral analysis

Correlation of symmetric polynomial f mod p with Mod q
$=\sum \alpha_{i}^{n} \beta_{i}$
where $\alpha_{1}>\alpha_{2}>\ldots>0$, independent from polynomial
β take finitely many values
$\rightarrow \forall \mathrm{f}, \exists \beta=\beta_{1}$: correlation $\rightarrow \alpha_{1}{ }^{n} \beta$

This work: tight bound on β
How does this matter for block-symmetric vs. symmetric?

Correlation of symmetric $=\alpha_{1}{ }^{n} \beta$
Divide up n variables in n / b blocks of b each
Correlation $=\left(\alpha_{1} b \beta\right)^{n / b}=\alpha_{1} n \beta^{n / b}$
\rightarrow block-symmetric beat symmetric if $\beta>1$
Unexpected, first observed using computer search
We advocate further use of computer search
Lack of progress provides excellent terrain
This work: Analytic proof that $\beta>1$ for $d \in\left[0.995 p^{t}-1, p^{t}-1\right]$

$$
\beta<1 \text { for } d=p^{t}
$$

Proof sketch when $d=p^{t}-1$, case of smaller d reduced to it
Lemma: $\beta=\Sigma_{k \leq d} \quad \zeta_{p}^{r(k)}(-1)^{k} \cos \left(\pi(n-2 k) / 2 p^{t}\right)$,
where $r(k)=$ value of polynomials at inputs of weight k
Fact: $\forall \mathrm{d}+1$ values $r(k), \exists$ symmetric polynomial achieving'em
How do we maximize $|\beta|$?

Proof sketch when $d=p^{t}-1$, case of smaller d reduced to it
Lemma: $\beta=\Sigma_{k \leq d} \quad \zeta_{p}^{r(k)}(-1)^{k} \cos \left(\pi(n-2 k) / 2 p^{t}\right)$,
where $r(k)=$ value of polynomials at inputs of weight k
Fact: $\forall \mathrm{d}+1$ values $\mathrm{r}(\mathrm{k}), \exists$ symmetric polynomial achieving'em
Define polynomial that agrees in sign with $X:=(-1)^{k} \cos \left(\pi(n-2 k) / 2 p^{t}\right)$ as much as possible:

$$
\begin{array}{lll}
r(k)=0 & \text { if } & X>0 \\
r(k)=(p-1) / 2 & \text { if } & X<0
\end{array}
$$

Some trigonometric sums later...

Theorem: For this choice of the polynomial, $\beta>1$
Also, $\beta \rightarrow 2 \sqrt{ } 3 / \pi=1.102 \ldots \quad$ for large d
And this is best possible

More results and open problems

- Switch-symmetric polynomials sometimes beat symm. too
- Challenge: Are symmetric polys modulo $p=2$ optimal?

We verified this for Mod 3 when $d=2, \forall n \leq 10$

$$
\mathrm{d}=3, \forall \mathrm{n} \leq 6
$$

Bonus material

[Razborov V] "Real advantage"

Consider real-valued polynomials f vs. boolean function, where $f(x) \notin\{0,1\}$ always counts as a mistake

Challenge: Prove $1 / n$ correlation with parity for degree $\log _{2} n$
Prerequisite for correlation $\bmod p$, and for sign correlation
... and what do we do about it? (Spoiler: not much)
[Razborov V] "Real advantage"

Consider real-valued polynomials f vs. boolean function, where $f(x) \notin\{0,1\}$ always counts as a mistake

Challenge: Prove $1 / n$ correlation with parity for degree $\log _{2} n$
Prerequisite for correlation $\bmod p$, and for sign correlation

- Theorem: Correlation ≤ 0 for degree $\mathrm{d} \leq \log \log \mathrm{n}$

Based on anti-concentration by [Costello Tao Vu] False for modulo p, and sign

Challenge: $d=\sqrt{ } n$ is smallest we know with correlation >0
[Servedio V] "On a special case of rigidity"

Valiant's '77 rigidity: Construct matrices far from low-rank.
Candidate: Hadamard, corresponding to Inner Product (IP)

Challenge: Prove the special case where low-rank matrices are given by sparse polynomials

Recall $\operatorname{rank}(M)=R \leftrightarrow M=$ sum of R rank -1 matrixes. In challenge, rank-1 matrices given by monomials.

Next: specific challenge and some new facts

- Challenge:
\forall real-valued polynomial f in $2 n$ variables (x, y) with R terms:

$$
\operatorname{Pr}_{x, y}[f(x, y) \neq I P] \gg 1 / R
$$

Note: $\log (\mathrm{R}) / \mathrm{R}$ follows from known rigidity results

- Theorem:

Challenge $\rightarrow \mathrm{IP} \notin \mathrm{AC}^{0}$ with a layer of parity gates at the input (not known !!??)

- Theorem:
\forall real-valued polynomial f in $2 n$ variables (x, y) with R terms:

$$
\operatorname{Pr}_{x, y}[\operatorname{sign}(f(x, y)) \neq I P] \geq \Omega(1 / R)
$$

Not known for rigidity
Proof by extension of [Aspnes Beigel Furst Rudich]

