One-way multi-party communication lower bound for pointer jumping with applications

#### Emanuele Viola & Avi Wigderson

Columbia University work done while at IAS

October 2007

IAS



- k parties wish to compute f : X<sub>1</sub> × X<sub>2</sub> ... × X<sub>k</sub> → {0,1} Party i knows all inputs except x<sub>i</sub> (on forehead)
   Cost of protocol = communication c
- Applications to many areas of computer science
   Circuit/proof complexity, PRGs, TM's, branching programs...
- Context: no lower bound known for  $k \ge \log n$  parties

#### Rounds [Papadimitriou Sipser '82]

- Parties only exchange **r** messages (any order, length  $\leq$ c)
- Question: More rounds more power?
- Theorem[Duris Galil Schnitger, ..., Nisan Wigderson] Hierarchy for k = 2 parties.  $\exists f : X_1 \times X_2 \rightarrow \{0,1\}$ : communication  $c = n^{\Omega(1)}$  for 2-party **r**-round communication  $c = O(\log n)$  for 2-party (**r+1**)-round
- Theorem[This work] Hierarchy for any k parties.  $\exists f : X_1 \times ... \times X_k \rightarrow \{0,1\}$ : communication  $c = n^{\Omega(1)}$  for k-party **r**-round communication  $c = O(\log n)$  for k-party (**2 r**)-round

## One-way model and PJ

- Pointer jumping function PJ<sub>k</sub>: X<sub>1</sub>×...× X<sub>k</sub>= {0,1}<sup>n</sup>→{0,1} d-regular tree of depth k-1 Input = pointers node → child, leaf → 0 or 1 Output = bit reached following path from root



Party i knows all pointers except those on i-th level (x<sub>i</sub>)

#### Previous results on PJ

•  $PJ_k : X_1 \times ... \times X_k = \{0,1\}^n \rightarrow \{0,1\}$ •  $d \longrightarrow X_1 \times X_2 \times X_k = \{0,1\}^n \rightarrow \{0,1\}$ •  $d = n^{1/(k-1)}$ 

Trivial upper bound: Communication  $c \leq degree d$ 

- Theorem[Wigderson]: Communication  $c \ge \Omega(d) = \Omega(n^{0.5})$  for k = 3 parties
- Theorem[Damm Jukna Sgall '96, Chakrabarti '07] Lower bounds for k > 3 parties in restricted models
- Nothing was known for k = 4 parties in one-way model

#### Our main theorem



• Theorem[This work] One-way communication of k-party  $PJ_k : \{0,1\}^n \rightarrow \{0,1\}$  is  $c \ge d / k^k = n^{1/(k-1)} / k^k$ 

- Tight for fixed k: Trivial upper bound  $c \leq degree d$
- Non-trivial up to  $k = \log^{1/3} n$  (by definition  $k \le \log n$ )
- Distributional result  $\Rightarrow$  bounds randomized protocols

## Consequences of our main theorem

- General model with bounded rounds
- 1) Round hierarchy ∀ k parties (already mentioned)
- 2) Separating nondeterminism from determinism  $\forall k$
- One-way model
- 1) Separation of different orders for parties
- 2) Lower bound for disjointess; extend simultaneous bound in [Beame Pitassi Segerlind Wigderson]
- Streaming algorithms

Lower bound even with access to many orderings

# Outline

- Main result and consequences
- Proof of lower bound

#### Main theorem

- Want:  $\forall$  k parties there is no protocol  $\Pi$ :  $Pr_x[\Pi(x) = PJ_k(x)] = 1$  with  $c \le o(d)$
- m-bit extension of  $PJ_k$  $PJ_k^m : X_1 \times ... \times X_k \rightarrow \{0,1\}^m$

Example **m=4** 



• Will prove:  $\forall$  k parties there is no protocol  $\Pi$ :  $Pr_x[\Pi(x) = PJ_k^m(x)] \ge exp(-o(m))$  with  $c \le o(m \cdot d)$ 

### Proof

- Th.:  $\forall k \text{ parties there is no protocol } \Pi$ :  $\Pr_x[\Pi(x) = PJ_k^m(x)] \ge exp(-o(m)) \text{ with } c \le o(m \cdot d)$
- Proof by induction on k = parties
  Assume for contradiction

$$\begin{aligned} & \mathsf{Pr}_x[\Pi(x) = \mathsf{PJ}_k^{\ m}(x)] \geq exp(-o(m)) \\ & \text{with } c \leq o(m {\cdot} d) \end{aligned}$$

 $Pr_{x}[\Pi'(x) = PJ_{k-1}^{m'}(x)] \ge exp(-o(m'))$ 

with  $\mathbf{c}' \leq \mathbf{o}(\mathbf{m}' \cdot \mathbf{d}), \mathbf{m}' = \mathbf{m} \cdot \mathbf{d}$ 

## Proof of inductive step

- Assume for contradiction  $Pr_x[\Pi(x) = PJ_k^m(x)] \ge exp(-o(m))$  with  $c \le o(m \cdot d)$
- Definition of  $\Pi$ '

Input  $y = x_2 x_3 \dots x_k$ Choose  $x_1^{1}, x_1^{2}, \dots, x_1^{d} \in {}^{R} X_1$ Run  $\Pi$  d times on  $x_1^{1}y, \dots, x_1^{d}y$ 

i-th output bit: If some x<sub>1</sub><sup>h</sup> hits i, use output of П If not, output random bit [Ben-Aroya, Regev, de Wolf; '07]



# Analysis

- Assume for contradiction  $Pr_x[\Pi(x) = PJ_k^m(x)] \ge exp(-o(m))$  with  $c \le o(m \cdot d)$
- Definition of  $\Pi$ '

Input  $y = x_2 x_3 \dots x_k$ Choose  $x_1^1, x_1^2, \dots, x_1^d \in {}^{\mathsf{R}} X_1$ Run  $\Pi$  d times on  $x_1^1 y, \dots, x_1^d y$   $c' = d \cdot c = o(m' \cdot d) \checkmark$ Pr[all d runs correct]  $\geq \exp(-o(m))^d = \exp(-o(m'))\checkmark$ 

i-th output bit:

If some  $x_1^h$  hits **i**, use output of  $\Pi$ 

If not, output random bit

W.h.p. hit  $(1-o(1)) \cdot m'$  i's. Success = exp(-o(m'))  $\checkmark$ 

**Analysis** 

#### Conclusion

• First one-way communication lower bound for pointer jumping with  $k \ge 4$  parties

Theorem[This work] One-way comm. of  $PJ_k$  is  $c \ge d / k^k = n^{1/(k-1)} / k^k$ 

#### • Applications

general bounded-rounds model, e.g. round hierarchy one-way model, e.g. disjointness

- Proof: compute  $PJ_k \longrightarrow$  compute many copies of  $PJ_{k-1}$
- Open problem: bound for  $k \ge \log n$  on general graph?