One-way multi-party communication lower bound for pointer jumping with applications

Emanuele Viola
 \&
 Avi Wigderson

Columbia University
IAS
work done while at IAS

October 2007

Multiparty protocols [Yao, Chandra Furst Lipton '83]

- k parties wish to compute $f: X_{1} \times X_{2} \ldots \times X_{k} \rightarrow\{0,1\}$ Party i knows all inputs except x_{i} (on forehead) Cost of protocol = communication c
- Applications to many areas of computer science - Circuit/proof complexity, PRGs, TM's, branching programs...
- Context: no lower bound known for $\mathrm{k} \geq \log \mathrm{n}$ parties

Rounds

[Papadimitriou Sipser '82]

- Parties only exchange r messages (any order, length $\leq \mathrm{c}$)
- Question: More rounds more power?
- Theorem[Duris Galil Schnitger, ..., Nisan Wigderson] Hierarchy for $k=2$ parties. $\exists f: X_{1} \times X_{2} \rightarrow\{0,1\}$: communication $\mathrm{c}=\mathrm{n}^{\Omega(1)}$ for 2-party r -round communication $\mathrm{c}=\mathrm{O}(\log \mathrm{n})$ for 2-party $(\mathrm{r}+1)$-round
- Theorem[This work] Hierarchy for any k parties. $\exists \mathrm{f}: \mathrm{X}_{1} \times \ldots \times \mathrm{X}_{\mathrm{k}} \rightarrow\{0,1\}$: communication $\mathrm{c}=\mathrm{n}^{\Omega(1)} \quad$ for k-party \mathbf{r}-round communication $\mathrm{c}=\mathrm{O}(\log \mathrm{n})$ for k-party $(\mathbf{2 r})$-round

One-way model and PJ

- Results on rounds \Leftarrow new bound in one-way model: Parties speak once, in turn: 1,2,..,k
- Pointer jumping function $P J_{k}: X_{1} \times \ldots \times X_{k}=\{0,1\}^{n} \rightarrow\{0,1\}$ d-regular tree of depth k-1 Input $=$ pointers node \rightarrow child, leaf $\rightarrow 0$ or 1
Output = bit reached following path from root

- Party i knows all pointers except those on i-th level (x_{i})

Previous results on PJ

- $P J_{k}: X_{1} \times \ldots \times X_{k}=\{0,1\}^{n} \rightarrow\{0,1\}$

$$
d=n^{1 /(k-1)}
$$

Trivial upper bound: Communication $\mathrm{c} \leq$ degree d

- Theorem[Wigderson]:

Communication $\mathrm{c} \geq \Omega(\mathrm{d})=\Omega\left(\mathrm{n}^{0.5}\right)$ for $\mathrm{k}=3$ parties

- Theorem[Damm Jukna Sgall '96, Chakrabarti ‘07] Lower bounds for $k>3$ parties in restricted models
- Nothing was known for $k=4$ parties in one-way model

Our main theorem

- Theorem[This work]

One-way communication of k-party
$P J_{k}:\{0,1\}^{n} \rightarrow\{0,1\}$ is $c \geq d / k^{k}=n^{1 /(k-1)} / k^{k}$

- Tight for fixed k : Trivial upper bound $\mathrm{c} \leq$ degree d
- Non-trivial up to $\mathrm{k}=\log ^{1 / 3} \mathrm{n} \quad$ (by definition $\left.\mathrm{k} \leq \log \mathrm{n}\right)$
- Distributional result \Rightarrow bounds randomized protocols

Consequences of our main theorem

- General model with bounded rounds

1) Round hierarchy $\forall \mathrm{k}$ parties (already mentioned)
2) Separating nondeterminism from determinism $\forall \mathrm{k}$

- One-way model

1) Separation of different orders for parties
2) Lower bound for disjointess; extend simultaneous bound in [Beame Pitassi Segerlind Wigderson]

- Streaming algorithms

Lower bound even with access to many orderings

Outline

- Main result and consequences
- Proof of lower bound

Main theorem

- Want: $\forall \mathrm{k}$ parties there is no protocol Π :

$$
\operatorname{Pr}_{x}\left[\Pi(x)=P J_{k}(x)\right]=1 \text { with } c \leq o(d)
$$

- m-bit extension of $P J_{k}$ $P J_{k}{ }^{m}: X_{1} \times \ldots \times X_{k} \rightarrow\{0,1\}^{m}$

Example $\quad \mathbf{m}=4$

- Will prove: $\forall \mathrm{k}$ parties there is no protocol Π :

$$
\operatorname{Pr}_{x}\left[\Pi(x)=P J_{k}{ }^{m}(x)\right] \geq \exp (-o(m)) \text { with } c \leq o(m \cdot d)
$$

Proof

- Th.: $\forall \mathrm{k}$ parties there is no protocol Π :
$\operatorname{Pr}_{x}\left[\Pi(x)=P J_{k}{ }^{m}(x)\right] \geq \exp (-o(m))$ with $\mathrm{c} \leq o(m \cdot d)$
- Proof by induction on $\mathrm{k}=$ parties Assume for contradiction
$\operatorname{Pr}_{\mathrm{x}}\left[\Pi(\mathrm{x})=\mathrm{PJ}_{\mathrm{k}}{ }^{\mathrm{m}}(\mathrm{x})\right] \geq \exp (-\mathrm{o}(\mathrm{m}))$ with $\mathrm{c} \leq \mathrm{o}(\mathrm{m} \cdot \mathrm{d})$
m $\quad \mathrm{m}^{\prime}=\mathrm{m} \cdot \mathrm{d}$
$\operatorname{Pr}_{x}\left[\Pi^{\prime}(x)=P J_{k-1} m^{\prime}(x)\right] \geq \exp \left(-o\left(m^{\prime}\right)\right)$ with $c^{\prime} \leq 0\left(m^{\prime} \cdot d\right), m^{\prime}=m \cdot d$

Proof of inductive step

- Assume for contradiction

$$
\operatorname{Pr}_{\mathrm{x}}\left[\Pi(\mathrm{x})=\mathrm{PJ}_{\mathrm{k}}^{\mathrm{m}}(\mathrm{x})\right] \geq \exp (-\mathrm{o}(\mathrm{~m})) \text { with } \mathrm{c} \leq 0(\mathrm{~m} \cdot \mathrm{~d})
$$

- Definition of Π '

Input $y=x_{2} x_{3} \ldots x_{k}$
Choose $x_{1}{ }^{1}, x_{1}{ }^{2}, \ldots, x_{1}{ }^{d} \in^{R} X_{1}$ Run Πd times on $x_{1}{ }^{1} y, \ldots, x_{1}{ }^{d} y$

I-th output bit:
If some $x_{1}{ }^{\text {h }}$ hits i , use output of Π If not, output random bit
[Ben-Aroya, Regev, de Wolf; '07]

Analysis

- Assume for contradiction

$$
\operatorname{Pr}_{\mathrm{x}}\left[\Pi(\mathrm{x})=\mathrm{PJ}_{\mathrm{k}}^{\mathrm{m}}(\mathrm{x})\right] \geq \exp (-\mathrm{o}(\mathrm{~m})) \text { with } \mathrm{c} \leq \mathrm{o}(\mathrm{~m} \cdot \mathrm{~d})
$$

- Definition of Π '

Input $y=x_{2} x_{3} \ldots x_{k}$
Choose $x_{1}{ }^{1}, x_{1}{ }^{2}, \ldots, x_{1}{ }^{d} \in^{R} X_{1}$
Run Πd times on $x_{1}{ }^{1} y, \ldots, x_{1}{ }^{d} y$

Analysis

$$
c^{\prime}=\mathrm{d} \cdot \mathrm{c}=\mathrm{o}\left(\mathrm{~m}^{\prime} \cdot \mathrm{d}\right)
$$

$\operatorname{Pr}[$ all d runs correct $] \geq \exp (-o(m))^{d}=\exp \left(-o\left(m^{\prime}\right)\right)$
i-th output bit:
If some $x_{1}{ }^{\text {h }}$ hits i , use output of Π If not, output random bit

Analysis

 W.h.p. hit (1-o(1)).m' i's. Success $=\exp \left(-o\left(m^{\prime}\right)\right)$
Conclusion

- First one-way communication lower bound for pointer jumping with $k \geq 4$ parties

Theorem[This work]
One-way comm. of $P J_{k}$ is $c \geq d / k^{k}=n^{1 /(k-1)} / k^{k}$
Applications
general bounded-rounds model, e.g. round hierarchy one-way model, e.g. disjointness

- Proof: compute $P J_{k} \Longrightarrow$ compute many copies of $P J_{k-1}$

Open problem: bound for $\mathrm{k} \geq \log \mathrm{n}$ on general graph?

