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Abstract

This thesis studies the interplay between randomness and computation. We in-
vestigate this interplay from the perspectives of hardness amplification and deran-
domization.

Hardness amplification is the task of taking a function that is hard to compute
on some input or on some fraction of inputs, and producing a new function that is
very hard on average, i.e. hard to compute on a fraction of inputs that is as large as
possible. Hardness amplification is an important step toward understanding average-
case hardness, and is also motivated by modern cryptography, which for the most
part relies on the existence of a very average-case hard function in NP. Our results
in this area include the following:

• We show that if NP contains a function that is hard to compute on a constant
fraction of inputs then NP contains a function that is hard to compute on a frac-
tion of inputs that is exponentially close to one-half, as opposed to polynomially
close to one-half in previous work.

• We show that there is no black-box construction of an average-case hard function
in NP starting from a worst-case hard function.

Derandomization studies the possibility of removing randomness from probabilis-
tic algorithms. Its study is key to understanding the power of randomness in compu-
tation, and has recently led to several algorithmic breakthroughs. Our contributions
to this area include the following:

• We construct a new pseudorandom generator that stretches a random seed into
a much longer sequence that looks random to any small constant-depth circuit
with a few arbitrary symmetric gates, such as Parity or Majority.

• We show that any black-box simulation of randomized polynomial time in the
second level of the polynomial-time hierarchy must incur a quadratic slow-down
in the running time, which matches the running time of known simulations. We
also exhibit a quasilinear-time simulation at the third level of the polynomial-
time hierarchy.
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Chapter 1

Introduction

Computational complexity theory is the theory that investigates the amount of
resources required to solve computational problems. For example, one might be in-
terested in how much time it takes to find a factorization of a given integer number.
Within this theory, the present thesis focuses mostly on the interplay between ran-
domness and computation.

There are at least two ways in which randomness plays an important role in
computation. The first is in the choice of the problem instance. Going back to our
example of factorization, we can ask how much time it takes to factor an integer
number that is chosen at random. Besides their theoretical interest, such questions
are of practical relevance; for example, the security of most cryptography currently in
use relies on the assumption that factoring randomly chosen integer numbers requires
an infeasible amount of time. The investigation of these questions belongs to the area
of average-case complexity and leads to the study of hardness amplification (discussed
below in Section 1.1), which is the task of constructing problems that are as hard on
average as possible.

The second way in which randomness can play a role in computation is in allowing
our algorithms to be randomized. For example, does it become easier to factor a
given integer number if we are given access to a source of randomness? While there
are several computational tasks that we only know how to perform efficiently using
randomness, researchers have found striking evidence that, in fact, it is always possible
to remove randomness from probabilistic algorithms to obtain efficient deterministic
counterparts. The study of the possibility of removing randomness from computation
belongs to the field of derandomization (discussed below in Section 1.2), and has led
to several algorithmic breakthroughs, such as the existence of efficient deterministic
algorithms to decide whether a given number is prime [AKS].

As we will see, hardness amplification and derandomization are closely related. We
now proceed to describe these two areas in more detail and highlight our contributions.

1
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1.1 Hardness amplification

Average-case complexity is the study of the computational complexity of functions
over random choice of the input. This is a fundamental topic in complexity theory,
the study of which has at least two distinct motivations. First, it may provide more
meaningful explanations than worst-case complexity about the intractability of prob-
lem instances actually encountered in practice. Second, it provides us with methods
to generate hard instances, allowing us to harness intractability for ‘useful’ ends such
as derandomization and cryptography. In fact, most modern cryptography requires
the existence of a function in NP that is very average-case hard, i.e. hard to compute
over random choice of the input.

The ultimate goal of this research is to understand whether important complexity
classes, such as NP, contain functions that are average-case hard. Many researchers

believe that this is indeed the case, but, just like for the “P
?
= NP” question, the

answer is still unknown and, some people argue, very far.

A more modest goal is that of hardness amplification. Hardness amplification
seeks connections between the existence of average-case hard functions and other
“seemingly weaker” assumptions, such as the existence of “mildly” average-case hard
functions, or the existence of functions that are hard in the worst-case. An important
step toward understanding the possibility and implications of the existence of average-
case hard functions is the hardness amplification problem, which is the problem of
converting a given function that is “somewhat hard” into a new function that is
“much harder” on average. More precisely, we define the hardness of a function as
the fraction of inputs on which it is hard to compute. The hardness amplification
problem is then the problem of taking a function that is hard to compute on some
input or on some fraction of inputs, and converting it into a new function that is hard
to compute on a fraction of inputs that is as large as possible. In this conversion
process, we would also like the new function to be not much more “complex” than
the original function, which is captured by fixing a complexity class C (e.g., C = NP)
and asking that the new function belongs to C whenever the original function does.
We refer to this as hardness amplification within C.

We distinguish between two types of hardness amplification problems, according
to the hardness of the initial function.

Amplifying noticeable hardness: The first type corresponds to starting with a
function that is “noticeably” or “mildly” hard on average. For example, we can think
of a function that any efficient algorithm fails to compute on a constant fraction of
inputs. From this function, we would like to construct a new function that is as hard
on average as possible. How hard can we hope this new function to be? In this thesis
we will mostly focus on boolean functions, i.e. functions with output in {0, 1}. Such
functions are either 0 or 1 for at least half of their inputs, and therefore they can
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trivially be computed on half of their inputs. Our goal will be getting as close to
hardness one-half as possible. Specifically, we will measure the distance from one-half
as a function of the input length, and we will want this distance to vanish as quickly
as possible.

In this thesis we show how to amplify hardness within NP with nearly optimal
parameters. Specifically, we obtain hardness exponentially close to one-half, thereby
improving on a previous result by O’Donnell [O’D] which achieves hardness polyno-
mially close to one-half.

Amplifying worst-case hardness: The second type of the hardness amplification
problem corresponds to starting with a function that is worst-case hard, i.e. hard to
compute on some input, as opposed to a noticeable fraction of inputs in the previ-
ous case. We would like to construct a new function that is hard to compute on a
noticeable fraction of inputs. In this case, we speak of worst-case to average-case
hardness amplification. This is the setting that corresponds to relating average-case
complexity questions to “standard” worst-case questions, such as: “does NP have
polynomial-size circuits?” Worst-case to average-case hardness amplification has
been accomplished for a number of “high” complexity classes such as P#P and EXP
(e.g. [Lip, BF, BFL, FL, CPS, STV, TV]); however, it remains a major open question
for NP or even the polynomial-time hierarchy PH.

In this thesis we explain our current inability to exhibit a worst-case to average-
case hardness amplification within NP by showing that a “large class” of techniques
cannot yield such a hardness amplification. These techniques are known as “black-
box” or “relativizing,” and encompass most techniques actually used in hardness
amplification, as we discuss below in Section 1.3.

1.2 Derandomization

Understanding the power of probabilistic computation is a central problem in
theoretical computer science. There seems to be a strong belief among complexity
researchers that randomness does not buy much in computation. Specifically, it is
believed that it is always possible to derandomize probabilistic algorithms, that is,
drastically reduce the amount of random bits they employ. Such a derandomized
probabilistic algorithm can then be simulated deterministically with only a small
overhead in resources by going over all the possibilities for its few random bits. Some
researchers believe that derandomization can be pushed as far as obtaining that the
class of problems solvable in probabilistic polynomial time equals the class of problems
solvable in deterministic polynomial time, i.e., BPP = P.

A long line of exciting research (e.g., [NW, Imp1, IW1, ISW, STV, SU1, Uma2])
shows that derandomization is in fact possible given some seemingly unrelated com-
plexity assumptions, for example the existence of explicit worst-case hard functions.
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Such derandomization is obtained through the construction of fascinating objects
called pseudorandom generators, which we now discuss.

Pseudorandom Generators (PRGs): Rigorously introduced by Blum and Micali
[BM] and Yao [Yao1], a pseudorandom generator (PRG) is an efficient deterministic
algorithm that stretches a randomly chosen seed into a much longer sequence, which
nevertheless fools any efficient algorithm, in the sense that the algorithm cannot
distinguish it from truly random. A PRG can be used to derandomize a probabilistic
algorithm by replacing the random bits of that algorithm with the output of the
PRG. Since no efficient algorithm can distinguish the output of the PRG from truly
random, the derandomized algorithm will behave just like the original probabilistic
algorithm.

Nisan and Wigderson, in a breakthrough result [NW], show how to construct
a PRG starting from a very average-case hard function. Informally, their PRG is
obtained by outputting many evaluations of the average-case hard function on “nearly
disjoint” inputs. Because the average-case hardness assumption required for the
Nisan-Wigderson generator seemed very strong, much research (e.g. [BFNW, Imp1,
IW1, STV]) was devoted to constructing average-case hard functions from weaker
hardness assumptions, i.e. to hardness amplification (see Section 1.1).

PRGs that fool restricted classes of algorithms: While we do not know of
PRGs that fool general efficient algorithms, we do know of unconditional PRGs that
fool restricted classes of algorithms. A notable example is the class of algorithms
implemented by circuits of constant depth: a remarkable result by Nisan [Nis1] shows
a PRG that fools any small constant-depth circuit. Perhaps surprisingly, PRGs that
fool restricted classes of algorithms, such as Nisan’s, have found many applications
that go well beyond the derandomization of the restricted classes. For example,
in this thesis we develop new applications of such PRGs to the field of hardness
amplification: several of our results on hardness amplification mentioned in Section
1.1 rely on Nisan’s PRG for constant-depth circuits.

In light of their usefulness, it is natural to try to construct PRGs that fool as gen-
eral classes of algorithms as possible. However, it has proved to be very challenging
to construct PRGs that fool even very restricted classes of algorithms. Nisan’s re-
markable PRG for constant-depth circuits is one of the very few unconditional PRGs
we have. While this PRG has many applications, its use is limited by the fact that
it only fools a relatively weak class of algorithms: it is known that constant-depth
circuits cannot even compute “simple” functions like Parity or Majority.

In this thesis we construct a new PRG that fools a class of algorithms richer
than Nisan’s, namely constant-depth circuits that are equipped with few “arbitrary
symmetric” gates, i.e. gates computing arbitrary symmetric functions, such as Parity
or Majority. As a corollary, we obtain that probabilistic constant-depth circuits with



Chapter 1: Introduction 5

few arbitrary symmetric gates can be simulated deterministically in subexponential
time. This is the richest probabilistic circuit class known to admit a subexponential
derandomization.

BPP vs. PH: For unrestricted models of probabilistic polynomial-time computation
(BPP), we do not know of any deterministic subexponential-time simulation. How-
ever, we can prove several interesting and useful relationships between probabilistic
polynomial time (BPP) and the polynomial-time hierarchy (PH), which is a general-
ization of NP allowing a constant number of alternating nondeterministic quantifiers,
∃ and ∀, rather than just ∃ as in NP. Even though it is not known whether BPP ⊆ NP,
it is known that probabilistic polynomial time is in the second level of the polynomial-
time hierarchy, i.e. BPP ⊆ ΣP

2 = NPNP, which was proven in ’83 by Sipser and Gács
[Sip], and independently by Lautemann [Lau]. (One can think of ΣP

2 as what can be
computed efficiently using two quantifiers ∃ · ∀.)

In this thesis we investigate the relationship between BPP and ΣP
2 . We observe

that the Siper-Gács-Lautemann simulation of BPP in ΣP
2 incurs a quadratic slow-

down in the running time. Specifically, their simulation shows that any probabilistic
algorithm running in time t can be simulated in ΣP

2 in roughly quadratic time t2.
The question of whether this quadratic slow-down is necessary seems very natural,
given that “BPP ⊆ ΣP

2” is essentially the only non-trivial upper bound that we have
on the power of probabilistic time. Moreover, this question arises when studying
computational limitations of probabilistic machines, as we will see in later chapters.
We prove that, for simulating BPP in ΣP

2 , a quadratic slow-down in the running time
is in fact necessary for black-box techniques (discussed below in Section 1.3), such as
those used in the simulations by Siper, Gács, and Lautemann, as well as any other
known simulation. However, we show that the quadratic slow-down disappears at the
third level of the polynomial-time hierarchy, where a quasi-linear time simulation is
possible.

1.3 Black-box techniques

Part of this thesis studies relationships between complexity assumptions. That
is, we study whether a certain complexity assumption implies another complexity
assumption, even though we do not know whether either one of these assumptions
actually holds. For example, the hardness amplification problem, introduced in Sec-
tion 1.1, is the problem of establishing that the existence of a “somewhat hard”
function (assumption A) implies the existence of a “very hard on average” function
(assumption B).

In some cases, researchers have been able to prove such an implication. For
example, it is shown in [BFNW] that if EXP contains a worst-case hard function
(assumption A) then EXP contains a very average-case hard function (assumption
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B).

In other important cases, researchers have been unable to prove such an impli-
cation. For example, they have been unable to show a worst-case vs. average-case
connection for NP, i.e. to show that the existence of a worst-case hard function in
NP (assumption A) implies the existence of a function in NP that is noticeably hard
on average (assumption B). In light of this, it is natural to ask whether such an im-
plication cannot be proved. One must be careful in formalizing such questions. If
it is the case, as many researchers believe, that NP does contain a function that is
noticeably hard on average, the implication “assumption A implies assumption B”
is true in a trivial logical sense. Paraphrasing [RTV], the question is whether the
techniques that we typically use to prove implications of worst-case hard functions in
NP have some inherent limitation that prevents us from deriving the existence of a
function in NP that is noticeably hard on average.

To make formal sense of the above question one needs a model. In this thesis we
focus on the black-box model, essentially introduced in the work of Baker et al. [BGS],
which is also known as the relativizing model (cf. [IR, RTV]). Roughly speaking, this
model captures proof techniques that are information-theoretic, in the sense that they
do not exploit computational properties of the objects involved but only use them as
“black-box” in an input/output fashion. Continuing with our example, a black-box
hardness amplification would transform any given function f into a harder function,
regardless of whether f belongs to NP or not, provided that we allow input/output
access to f .

There exist relatively few non-black-box techniques. In fact, there seem to be
some areas of complexity theory, such as the study of the relationship between BPP
and PH (see Section 1.2), where all known results are proven via black-box tech-
niques. Therefore, in certain contexts, a negative result in the black-box model about
an implication between two complexity assumptions is interpreted as meaning that
proving such an implication, if it is true at all, would require a significant departure
from current techniques.

An additional motivation for studying problems in the black-box model is that
they often correspond to interesting problems in other fields. For example, black-box
hardness amplification can be seen as a task in coding theory, and this connection has
fostered a fruitful exchange of ideas between complexity theory and coding theory
(cf. [Tre3]). We will exploit this connection several times in later chapters.

1.4 Results and structure of this thesis

Chapter 2 – Hardness Amplification within NP. We study hardness amplifica-
tion from noticeable average-case hardness. We prove that if NP contains a balanced
function that is hard to compute on a noticeable fraction of the inputs then NP con-
tains a function that is hard to compute on a fraction of inputs exponentially close
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to one-half. (A function is balanced if it evaluates to 1 on half of the inputs.) This
improves on the previous results of O’Donnell [O’D], who, under the same assump-
tion, obtained a function that is hard to compute on a fraction of inputs polynomially
close to one-half (as opposed to exponentially in our result).

We also prove an impossibility result demonstrating that the assumption that the
original function is balanced is necessary for black-box techniques (such as ours).

Chapter 3 – Worst-Case Hardness Amplification. We study hardness ampli-
fication from worst-case hardness. We show that there is no black-box worst-case to
average-case hardness amplification within NP, or even within the polynomial-time
hierarchy PH. We exhibit two versions of this result, addressing different notions of
“black-box.” Our results complement the previous ones (e.g., [BFNW, STV]), which
show that such worst-case hardness amplifications are possible in complexity classes
above PH, such as EXP.

Chapter 4 – Pseudorandom Bits for Constant-Depth Circuits with Few
Arbitrary Symmetric Gates. We construct a new PRG that fools any small
constant-depth circuit that is equipped with few special gates computing arbitrary
symmetric functions, such as Parity or Majority. This improves on a generator by
Luby, Velickovic, and Wigderson [LVW] that only fools circuits of depth 2 with one
arbitrary symmetric gate at the top. Our generator also fools a richer class of circuits
than Nisan’s generator for constant-depth circuits [Nis1]. In particular, we conclude
that every function computable by small probabilistic constant-depth circuits with
few arbitrary symmetric gates can be simulated deterministically in subexponential
time. This is the richest probabilistic circuit class known to admit a subexponential
derandomization.

Chapter 5 – Probabilistic Time versus Alternating Time. We study the
relationship between probabilistic polynomial time, BPP, and the polynomial-time
hierarchy, PH. We prove that, for simulating BPP in ΣP

2 , a quadratic slow-down in
the running time is necessary for black-box techniques. This matches the running
time of the known ΣP

2 simulations [Sip, Lau], which are black-box. We also show that
the quadratic slow-down disappears at the third level of the polynomial-time hierar-
chy, where a quasi-linear time simulation is possible. Using this latter time-efficient
simulation we prove new lower bounds for computing certain explicit functions on
probabilistic Turing machines.

Chapter 6 – The Complexity of Decoding. We remark that none of the known
hardness amplification results can be applied to the computational models for which
we actually can establish the existence of hard functions (i.e. prove lower bounds).
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We conjecture that the most restricted circuit class to which black-box hardness
amplification can be applied is the class of constant-depth circuits with Majority
gates, i.e., TC0 circuits. This is problematic because no explicit function is known to
require super-polynomial size TC0 circuits. We prove special cases of our conjecture
for settings of parameters that are achieved by known hardness amplification results.



Chapter 2

Hardness Amplification within NP

2.1 Introduction

In this chapter we study hardness amplification within NP, starting from functions
that are at least 1/nO(1)-hard. Let us recall (from Section 1.1) the definition of “hard.”

Definition 2.1. For δ ∈ [0, 1/2], a function f : {0, 1}n → {0, 1} is δ-hard for size s
if every circuit of size s fails to compute f on at least a δ fraction of inputs.

Recall that the maximum value of the hardness parameter δ is 1/2 because f is
boolean (and so can trivially be computed with error probability at most 1/2). The
hardness amplification problem is to convert a function f that is δ-hard for size s into
a function f ′ that is (1/2− ε)-hard for size polynomially related to s. In this chapter,
δ = 1/ poly(n) and the aim is to make ε = ε(n) vanish as quickly as possible.

On the definition of hardness: The above notion of hardness (Definition 2.1) is
fairly standard (e.g. in the literature on hardness amplification starting from [NW]),
but we remark that it differs from Levin’s original notion of average-case complex-
ity [Lev] (cf. Impagliazzo’s survey [Imp2]). The main difference is that Levin’s formu-
lation corresponds to algorithms that always either give the correct answer or say “do
not know,” whereas we consider even “heuristic” algorithms that can make arbitrary
errors.

The standard approach to hardness amplification employs Yao’s Xor Lemma [Yao1]
(see [GNW]): Given a “mildly” hard-on-average function f : {0, 1}n → {0, 1}, we
define f ′ : {0, 1}n·k → {0, 1} by

f ′(x1, . . . , xk) := f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk).

The Xor Lemma says that the hardness of f ′ approaches 1/2 exponentially fast with
k. More precisely:

9
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Theorem 2.2 (Yao’s Xor Lemma). If f is δ-hard for size s(n) ≥ nω(1) and k ≤
poly(n), then f ′ is (1/2− 1/2Ω(δk) − 1/s′)-hard for size s′(n · k) = s(n)Ω(1).

In particular, taking k = Θ(n/δ), the amplified hardness is dominated by the 1/s′

term. That is, we can amplify to hardness (1/2− ε), where ε is polynomially related
to the (reciprocal of the) circuit size for which f was hard. (Note, however, that we
should measure ε = ε(n′) as a function of the new input length n′ = n · k, so when
k = n, the hardness is actually 1/2− 1/s(

√
n′)Ω(1).)

However, if we are interested in hardness amplification within NP (i.e. f, f ′ ∈
NP), we cannot use the Xor lemma; it does not ensure that f ′ is in NP when f is
in NP. Hardness amplification within NP was first addressed in a recent paper of
O’Donnell [O’D], which is the starting point for our work.

2.1.1 O’Donnell’s hardness amplification

To ensure that the new function f ′ is in NP when f is in NP, O’Donnell [O’D] was
led to study constructions of the form

f ′(x1, . . . , xk) := C(f(x1), f(x2), . . . , f(xk)), (2.1)

where C is an efficiently computable monotone function. The monotonicity of C
ensures that f ′ is in NP when f is in NP. But we are left with the task of choosing
such a function C and proving that it indeed amplifies hardness.

Remarkably, O’Donnell was able to precisely characterize the amplification prop-
erties of Construction 2.1 in terms of a combinatorial property of the combining
function C, called its expected bias. (The actual definition is not needed for this dis-
cussion, but can be found in Section 2.3.) By finding a monotone combining function
in which this expected bias is small, he obtained the first positive result on hardness
amplification in NP:

Theorem 2.3 (O’Donnell’s Theorem [O’D]). If NP contains a balanced function that
is 1/ poly(n)-hard for polynomial-size circuits, then NP contains a function that is
(1/2 − 1/n1/2−α)-hard for polynomial-size circuits (where α is an arbitrarily small
positive constant).

However, the amplification provided by O’Donnell’s theorem is not as strong as
what the Xor Lemma gives. It is limited to 1/2 − 1/

√
n, regardless of the circuit

size s for which the original function is hard, even if s is exponentially large. The
Xor Lemma, on the other hand, amplifies to 1/2−1/sΩ(1). O’Donnell showed that this
difference is inherent — no construction of the form (2.1) with a monotone combining
function C can always amplify hardness to better than 1/2− 1/n. (The gap between
O’Donnell’s positive result of 1/2− 1/

√
n and his negative result of 1/2− 1/n is not

significant for what follows, and it will be subsumed by our improvements.)
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2.1.2 Our result

In this chapter, we amplify hardness within NP beyond the 1/2− 1/n barrier:

Theorem 2.4 (Main). If NP contains a balanced function that is 1/ poly(n)-hard
for circuits of size s(n), then NP contains a function that is (1/2− 1/s′(n))-hard for
circuits of size s′(n) for some function1 s′(n) = s(

√
n)Ω(1). In particular,

1. If s(n) = nω(1), we amplify to hardness 1/2− 1/nω(1).

2. If s(n) = 2nΩ(1)
, we amplify to hardness 1/2− 1/2nΩ(1)

.

3. If s(n) = 2Ω(n), we amplify to hardness 1/2− 1/2Ω(
√

n).

Items 1–3 match the parameters of the Yao’s Xor Lemma. However, subsequent
“derandomizations” of the Xor Lemma [Imp1, IW1] actually amplify up to 1/2 −
1/2Ω(n) rather than just 1/2 − 1/2Ω(

√
n) in the case s(n) = 2Ω(n). This gap is not

inherent in our approach and, as mentioned below, would be eliminated given a
corresponding improvement in one of the tools we employ.

Of course, our construction cannot be of the form in Construction (2.1). Below
we describe our two main points of departure.

2.1.3 Techniques

To explain how we bypass it, we first look more closely at the source of the
1/2 − 1/n barrier. The actual barrier is 1/2 − 1/k, where k is the input length of
the monotone combining function C. Since in Construction (2.1), f ′ has input length
n′ = n · k ≥ k, it follows that we cannot amplify beyond 1/2− 1/n′.

Derandomization. Given the above, our first idea is to break the link between the
input length of f ′ and the input length of the combining function C. We do this by
derandomizing O’Donnell’s construction. That is, the inputs x1, . . . , xk are no longer
taken independently (as in Construction (2.1)), but are generated pseudorandomly
from a short seed of length n′ � k, which becomes the actual input to f ′. Our
method for generating the xi’s is based on combinatorial designs (as in the Nisan–
Wigderson generator [NW]) and Nisan’s pseudorandom generator for space-bounded
computation [Nis2]; it reduces the input length of f ′ from n ·k to n′ = O(n2 +log2 k).
We stress that this derandomization is unconditional, i.e. requires no additional com-
plexity assumption. We also remark that it is the quadratic seed length of Nisan’s
generator that limits our amplification to 1/2− 1/2Ω(

√
n) rather than 1/2− 1/2Ω(n) in

1In the rest of the chapter, we more compactly write “for circuits of size s′(n) = s(
√

n)Ω(1),”
where the Ω(1) is to be interpreted as a fixed constant (possibly depending on previously quantified
constants).
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Part 3 of our Main Theorem, and thus any improvement in Nisan’s generator would
yield a corresponding improvement in our result.

Similar derandomizations have previously been achieved for Yao’s Xor Lemma
by Impagliazzo [Imp1] and Impagliazzo and Wigderson [IW1]. The analysis of such
derandomizations is typically tailored to a particular proof, and indeed both [Imp1,
IW1] gave new proofs of the Xor Lemma for that purpose. In our case, we do not know
how to derandomize O’Donnell’s original proof, but instead manage to derandomize
a different proof due to Trevisan [Tre2].

Our derandomization allows for k to be larger than the input length of f ′, and
hence we can go beyond the 1/2−1/n′ barrier. Indeed, by taking k to be a sufficiently
large polynomial, we amplify to 1/2− 1/(n′)c for any constant c.

Using nondeterminism. To amplify further, it is tempting to take k superpoly-
nomial in the input length of f ′. But then we run into a different problem: how do we
ensure that f ′ is in NP? The natural algorithm for f ′ requires running the algorithm
for f on k inputs.

To overcome this difficulty, we observe that we need only give an efficient nonde-
terministic algorithm for f ′. Each nondeterministic path may involve only polynomi-
ally many evaluations of f while the global outcome f ′(x) depends on exponentially
many evaluations. To implement this idea, we exploit the specific structure of the
combining function C. Namely, we (like O’Donnell) use the Tribes function of Ben-Or
and Linial [BL], which is a monotone DNF with clauses of size O(log k). Thus, the
nondeterministic algorithm for f ′ can simply guess a satisfied clause and (nondeter-
ministically) evaluate f on the O(log k) corresponding inputs.

2.1.4 Other results

We also present the following complementary negative results for black-box hard-
ness amplifications:

• We show that the assumption that the original hard function is balanced is
necessary, in the sense that no monotone “black-box” hardness amplification
can amplify unbalanced functions of unknown bias (or even improve their bias).2

• We show that our use of nondeterminism is necessary, in the sense that any
“black-box” hardness amplification in which each evaluation of f ′ is a monotone
function of at most k evaluations of f can amplify hardness to at most 1/2−1/k.

Informally, a “black-box” hardness amplification is one in which the construction
of the amplified function f ′ from f only utilizes f as an oracle and is well-defined

2We note that there do exist balanced NP-complete problems, as observed by Barak [For], but
this has no direct implication for us because we are studying the average-case complexity of NP.
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for any function f (regardless of whether or not it is in NP). Moreover, the correct-
ness of the construction is proved by a generic reduction that converts any oracle A
(regardless of its circuit size) that computes f ′ well on average (e.g., with probabil-
ity 1/2 + ε over random choice of input) into one that computes f much better on
average (e.g., with probability 1 − o(1) over random input). (A formal definition is
given in Section 2.7.1.) We note that most results on hardness amplification against
circuits, including ours, are black-box (though there have been some recent results
using non-black-box techniques in hardness amplification against uniform algorithms;
see [IW2, TV]).

Our framework also gives a new proof of the hardness amplification by Impagliazzo
and Wigderson [IW1]. Our proof is simpler and in particular it does not employ the
Goldreich–Levin [GL] step.

2.1.5 Organization

The rest of this chapter is organized as follows. In Section 2.2, we discuss some
preliminaries. In Section 2.3, we review existing results on hardness amplification in
NP. In Section 2.4, we present our main results and new techniques. In Section 2.5
we treat the details of the proof of our main theorem. In Section 2.6 we show how we
could amplify to 1/2− 1/2Ω(n) given an improvement in the pseudorandom generator
we use, and we also give a new proof of the hardness amplification by Impagliazzo
and Wigderson [IW1]. In Section 2.7 we discuss some limitations of monotone hard-
ness amplification; in particular we show a sense in which the hypothesis that the
starting function be balanced is necessary, and also that the use of nondeterminism
is necessary.

2.2 Preliminaries

We denote the uniform distribution on {0, 1}n by Un. If Un occurs more than once
in the same expression, it is understood that these all represent the same random vari-
able; for example, Un · f(Un) denotes the random variable obtained by choosing X
uniformly at random in {0, 1}n and outputting X · f(X) (where · means concatena-
tion).

Definition 2.5. Let X and Y be two random variables taking values over the same
set S. Then the statistical difference between X and Y , is

∆(X, Y ) := max
T⊆S

∣∣∣ Pr[X ∈ T ]− Pr[Y ∈ T ]
∣∣∣.

We view probabilistic functions as functions of two inputs, e.g. h(x; r), the first
being the input to the function and the second being the randomness. (Deterministic
functions may be thought of as probabilistic functions that ignore the randomness.)
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For notational convenience, we will often omit the second input to a probabilistic
function, e.g. writing h(x) instead of h(x; r), in which case we view h(x) as the
random variable h(x;U|r|).

Definition 2.6. The bias of a 0-1 random variable X is

Bias [X] :=
∣∣∣ Pr[X = 0]− Pr[X = 1]

∣∣∣ = 2 ·∆(X,U1).

Analogously, the bias of a probabilistic function f : {0, 1}n → {0, 1} is

Bias [f ] :=
∣∣∣ Pr[f(Un) = 0]− Pr[f(Un) = 1]

∣∣∣,
where the probabilities are taken over both the input chosen according to Un and the
coin tosses of f . We say that f is balanced when Bias [f ] = 0.

Note that the bias of a random variable is a quantity between 0 and 1.
We say that the random variables X and Y are ε-indistinguishable for size s if for

every circuit C of size s,∣∣∣ Pr
X

[C(X) = 1]− Pr
Y

[C(Y ) = 1]
∣∣∣ ≤ ε.

We will routinely use the following connection between hardness and indistin-
guishability.

Lemma 2.7 ([Yao1]). Let h : {0, 1}n → {0, 1} be any probabilistic function. If
the distributions Un · h(Un) and Un · U1 are ε-indistinguishable for size s then h is
(1/2− ε)-hard for size s−O(1). Conversely, if h is (1/2− ε)-hard for size s then the
distributions Un · h(Un) and Un · U1 are ε-indistinguishable for size s−O(1).

Finally, whenever we amplify the hardness of a function f : {0, 1}n → {0, 1} that
is hard for circuits of size s(n), we assume that s(n) is well-behaved in the sense that
it is computable in time poly(n) and s(cn) = s(n)O(1), for all constants c > 0. Most

natural functions smaller than 2n, such as nk, 2logk n, 2nε
, 2εn, are well-behaved in this

sense.

2.3 Overview of previous hardness amplification in

NP

In this section we review the essential components of existing results on hardness
amplification in NP. We then discuss the limitations of these techniques. By the end
of this section, we will have sketched the main result of O’Donnell [O’D], following
the approach of Trevisan [Tre2]. We outline this result in a way that will facilitate
the presentation of our results in subsequent sections.
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Let f : {0, 1}n → {0, 1} be an average-case hard function, and let C : {0, 1}k →
{0, 1} be any function. In [O’D], O’Donnell studies the hardness of functions of the
form

C ◦ f⊗k : ({0, 1}n)k → {0, 1}

where f⊗k(x1, . . . , xk) := (f(x1), . . . , f(xk)), and ◦ denotes composition. That is,

(C ◦ f⊗k)(x1, . . . , xk) := C(f(x1), . . . , f(xk)).

In order to ensure that C ◦ f⊗k ∈ NP whenever f ∈ NP, O’Donnell chooses C to
be a polynomial-time computable monotone function. (Indeed, it is not hard to see
that a monotone combination of NP functions is itself in NP.)

O’Donnell characterizes the hardness of C ◦ f⊗k in terms of a combinatorial prop-
erty of the combining function C, called its expected bias (which we define later). We
will now review the key steps in establishing this characterization and O’Donnell’s
final amplification theorem.

Step 1: Impagliazzo’s hardcore sets. An important tool for establishing this
connection is the hardcore set lemma of Impagliazzo [Imp1], which allows us to pass
from computational hardness to information-theoretic hardness.

Definition 2.8. We say that a (probabilistic) function g : {0, 1}n → {0, 1} is δ-
random if g is balanced and there exists a subset H ⊆ {0, 1}n with |H| = 2δ2n such
that g(x) = U1 (i.e. a coin flip) for x ∈ H and g(x) is deterministic for x /∈ H.

Thus, a δ-random function has a set of relative size 2δ on which it is information-
theoretically unpredictable. Note that in the above definition we require g to be
balanced. This will be convenient when dealing with functions f that are balanced.

The following version of Impagliazzo hardcore set lemma says that any balanced
δ-hard function f : {0, 1}n → {0, 1} has a hardcore set H ⊆ {0, 1}n of density ≈ 2δ
such that f is very hard-on-average on H. Thus, f looks like a δ-random function
to small circuits (cf. Lemma 2.7). (Following subsequent works, our formulation of
Impagliazzo’s lemma differs from the original one in several respects.)

Lemma 2.9 ([Imp1, KS, STV, O’D]). For any function f : {0, 1}n → {0, 1} that is
balanced and δ-hard for size s, there exists a δ′-random function g : {0, 1}n → {0, 1}
such that X ·f(X) and X ·g(X) are ε-indistinguishable for size Ω(sε2/ log(1/δ)), with
δ/2 ≤ δ′ ≤ δ, where X ≡ Un.

In particular, by a standard hybrid argument (see, e.g., [Gol3]),

X1 · · ·Xk · f(X1) · · · f(Xk) and X1 · · ·Xk · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2/ log(1/δ)), where the Xi’s are uniform and
independent.
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Step 2: expected bias. By the above, proving the computational hardness of
C ◦ f⊗k reduces to calculating the information-theoretic hardness of C ◦ g⊗k for some
δ′-random g. It turns out that information-theoretic hardness can be characterized
by the following quantity.

Definition 2.10. Let h : {0, 1}n → {0, 1} be any probabilistic function. We define
the expected bias of h by

ExpBias [h] := E
x←Un

[
Bias [h(x)]

]
,

where Bias [h(x)] is taken over the coin tosses of h.

It turns out that for any function C : {0, 1}k → {0, 1} and any δ-random g, the
quantity ExpBias

[
C ◦ g⊗k

]
does not depend on the particular choice of the δ-random

function g; indeed, it turns out to equal the quantity that O’Donnell [O’D] calls
the “expected bias of C with respect to noise 2δ” and denotes by ExpBias2δ(C) in
[O’D]. However, the more general notation we use will be useful in presenting our
improvements.

The next lemma shows that information-theoretic hardness is equivalent to ex-
pected bias.

Lemma 2.11. For any probabilistic function h : {0, 1}n → {0, 1},

∆(Un · h(Un), Un · U1) =
1

2
ExpBias [h] .

Proof.

∆(Un · h(Un), Un · U1) = E
x←Un

[∆(h(x), U1)]

= E
x←Un

[Bias [h(x)] /2] = ExpBias [h] /2.

In particular, for any circuit C (regardless of its size) we have∣∣∣ Pr[C(Un · h(Un)) = 1]− Pr[C(Un · U1) = 1]
∣∣∣ ≤ ExpBias [h] /2,

and thus by Lemma 2.7, h is (1/2− ExpBias [h] /2)-hard for circuits of any size.
Now we characterize the hardness of C◦f⊗k in terms of expected bias. Specifically,

by taking, say, ε = 1/s1/3 in Lemma 2.9 and using Lemmas 2.7 and 2.11, one can
prove the following (we defer the details until the proof of the more general Lemma
2.21).
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Lemma 2.12 ([O’D]). Let f : {0, 1}n → {0, 1} be balanced and δ-hard for size s,
and let C : {0, 1}k → {0, 1} be any function. Then there exists a δ′-random function
g : {0, 1}n → {0, 1}, with δ/2 ≤ δ′ ≤ δ, such that C ◦ f⊗k : ({0, 1}n)k → {0, 1} has
hardness

1

2
−

ExpBias
[
C ◦ g⊗k

]
2

− k

s1/3

for circuits of size Ω
(
s1/3/ log(1/δ)

)
− size(C), where size(C) denotes the size of a

smallest circuit computing C.

What makes this lemma so useful is that, as noted above, the quantity
ExpBias

[
C ◦ g⊗k

]
is independent of the choice of the δ-random function g (using

the fact that g is balanced, by definition of δ-random); hence the hardness of C ◦ f⊗k

depends only on the combining function C and the hardness parameter δ. Thus, un-
derstanding the hardness of C ◦ f⊗k is reduced to analyzing a combinatorial property
of the combining function C.

Step 3: noise stability. Unfortunately, it is often difficult to analyze the expected
bias directly. However, the expected bias is closely related to the noise stability, a
quantity that is more amenable to analysis and well-studied (see, e.g., [O’D], [MO]).
The noise stability of a function is (up to normalization) the probability that the
value of the function is the same on two correlated inputs x and x + η, where x is a
random input and η a random vector of noise.

Definition 2.13. The noise stability of C with respect to noise δ, denoted
NoiseStabδ[C], is defined by

NoiseStabδ[C] := 2 · Pr
x,η

[C(x) = C(x⊕ η)]− 1,

where x is random, η is a vector whose bits are independently one with probability δ
and ⊕ denotes bitwise Xor.

The following lemma from [O’D] bounds the expected bias of C ◦ g⊗k (and hence
the hardness in Lemma 2.12) in terms of the noise stability of C.

Lemma 2.14. Let g : {0, 1}n → {0, 1} be δ-random. Then

ExpBias
[
C ◦ g⊗k

]
≤

√
NoiseStabδ[C].

Combining this with Lemma 2.12, we find that the hardness of C ◦ f⊗k is at least
(roughly) 1/2−

√
NoiseStabδ[C]/2. The next step is to exhibit a combining function

C with a small noise stability (to ensure that the hardness of C ◦ f⊗k is as close to
1/2 as possible). The following is shown in [O’D].
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Lemma 2.15 ([O’D]). For all δ > 0, there exists a k = poly(1/δ) and a polynomial-
time computable monotone function C : {0, 1}k → {0, 1} with NoiseStabδ[C] ≤
1/kΩ(1).

Finally, by combining Lemmas 2.12, 2.14 and 2.15, we obtain the following weaker
version of O’Donnell’s hardness amplification within NP. (While in the introduction
we mentioned a stronger version of O’Donnell’s result, that amplifies up to hardness
1/2−1/m1/2−α for every constant α > 0, the following version will suffice as a starting
point for our work. The loss in the amplification in this version comes from the fact
that we did not specify the constants in Lemma 2.15.)

Theorem 2.16 ([O’D]). If there is a balanced function f : {0, 1}n → {0, 1} in NP
that is 1/ poly(n)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in
NP that is (1/2− 1/mΩ(1))-hard for size s(mΩ(1))Ω(1).

Limitations of direct product constructions. O’Donnell also showed that The-
orem 2.16 is essentially the best result that one can obtain using the techniques that
we have described thus far. He showed that for all monotone combining functions C
there is a δ-hard function f such that the hardness of C ◦ f⊗k is not much better
than 1/2 − NoiseStabδ[C]/2 (assuming that C is easily computable). This is prob-
lematic because the noise stability of monotone functions cannot become too small.
Specifically, by combining a result from [KKL] with a Fourier characterization of noise
stability, O’Donnell [O’D] proves the following theorem.

Theorem 2.17 ([KKL, O’D]). For every monotone function C : {0, 1}k → {0, 1}
and every δ > 0,

NoiseStabδ[C] ≥ (1− 2δ) · Ω
(

log2 k

k

)
.

Therefore, for any monotone C : {0, 1}k → {0, 1} there is a δ-hard f such that
C ◦f⊗k does not have hardness 1/2−NoiseStabδ[C]/2 ≤ 1/2−Ω(1/k). Since C ◦f⊗k

takes inputs of lengthm = n·k ≥ k, this implies that we must employ a new technique
to amplify beyond hardness 1/2− Ω(1/m).

2.4 Main Theorem and overview

In this chapter, we obtain the following improvement upon Theorem 2.16.

Theorem 2.18 (Main Theorem, restated). If there is a balanced function f :
{0, 1}n → {0, 1} in NP that is 1/ poly(n)-hard for size s(n), then there is a function
f ′ : {0, 1}m → {0, 1} in NP that is (1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).3

3A comment is in order about the input lengths for which f ′ is hard. As it turns out, the hardness
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We also show that the assumption that we start with a balanced function f is
essential for a large class of hardness amplifications. Specifically, we show (Section
2.7.1) that no monotone black-box hardness amplification can amplify the hardness
of functions whose bias is unknown. Most hardness amplifications, including the one
in this chapter, are black-box.

We now elaborate on the two main techniques that allow us to prove Theorem
2.18. As explained in the introduction, these two techniques are derandomization and
nondeterminism.

2.4.1 Derandomization

As in the previous section, let f : {0, 1}n → {0, 1} be our hard function and let
C : {0, 1}k → {0, 1} be a (monotone) combining function.

We will derandomize O’Donnell’s construction using an appropriately “pseudo-
random” generator.

Definition 2.19. A generator is a function G : {0, 1}l → ({0, 1}n)k. We call l the
seed length of G, and we often write G(σ) = X1 · · ·Xk, with each Xi ∈ {0, 1}n.
G is explicitly computable if given σ and 1 ≤ i ≤ k, we can compute Xi in time
poly(l, log k), where G(σ) = X1 · · ·Xk.

Instead of using the function C ◦ f⊗k : ({0, 1}n)k → {0, 1}, we take a generator
G : {0, 1}l → ({0, 1}n)k (where l� nk) and use (C ◦ f⊗k) ◦G : {0, 1}l → {0, 1}, i.e.,

(C ◦ f⊗k) ◦G(σ) = C
(
f(X1), . . . , f(Xk)

)
,

where (X1, . . . , Xk) ∈ ({0, 1}n)k is the output of G(σ). This reduces the input length
of the function to l. Therefore, if G is a “good” pseudorandom generator we would
expect (C ◦ f⊗k) ◦G to be harder (with respect to its input length) than C ◦ f⊗k. We
will show that this is indeed the case, provided the generator G satisfies the following
requirements:

1. G is indistinguishability-preserving: Analogously to Lemma 2.12, the gen-
erator G should be such that the computational hardness of (C ◦ f⊗k) ◦ G is
at least the information-theoretic hardness of (C ◦ g⊗k) ◦G for some δ-random
function g – that is, at least 1/2 − ExpBias

[
(C ◦ g⊗k) ◦G

]
. We will see that

this can be achieved provided that G is indistinguishability-preserving; that is
(analogously to the last part of Lemma 2.9),

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

of f ′ on inputs of length m is related to the hardness of the original function f on inputs of length
Θ(
√

m). Thus if f is hard for all sufficiently large input lengths, then so is f ′. Alternatively, if f is
only hard infinitely often, then we may still conclude that f ′ is hard infinitely often.
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should be indistinguishable, for some δ-random g, when σ
R← {0, 1}l and

(X1, . . . , Xk) ∈ ({0, 1}n)k is the output of G on input σ.

2. G fools the expected bias: G should be such that for any δ-random
g, ExpBias

[
(C ◦ g⊗k) ◦G

]
is approximately ExpBias

[
C ◦ g⊗k

]
, and thus, by

Lemma 2.14:

ExpBias
[
(C ◦ g⊗k) ◦G

]
≤

√
NoiseStabδ[C] + ε, (2.2)

for a suitably small ε. Actually, we will not show that G fools the expected bias
directly but instead will work with a related quantity (the expected collision
probability), which will still suffice to show Inequality (2.2).

Informally, the effect of the two above requirements on the generator G is that
the hardness of (C ◦ f⊗k) ◦ G is roughly the hardness of C ◦ f⊗k, while the input
length is dramatically reduced from nk to l (the seed length of G). More precisely,
as illustrated in Figure 1, the first requirement allows us to relate the hardness of
(C ◦ f⊗k) ◦ G to the information-theoretic hardness of (C ◦ g⊗k) ◦ G (where g is a
δ-random function); the second allows us to relate this information-theoretic hardness
to the noise stability of the combining function C. In particular, if we employ the
combining function from Lemma 2.15, we obtain hardness 1/2 − 1/kΩ(1). Thus, by
choosing k � l, we bypass the barrier discussed at the end of the previous section.

Now we briefly describe how the above requirements on G are met. The first
requirement is achieved through a generator that outputs combinatorial designs. This
construction is essentially from Nisan and Wigderson [Nis1, NW] and has been used
in many places, e.g. [IW1, STV].

The second requirement is achieved as follows. We show that if G is pseudoran-
dom against space-bounded algorithms and the combining function C is computable
in small space (with one-way access to its input), then Inequality (2.2) holds. We
then use Nisan’s unconditional pseudorandom generator against space-bounded algo-
rithms [Nis2], and show that combining functions with low noise stability can in fact
be computed in small space.4 Note that we only use the pseudorandomness of the
generator G to relate the expected bias with respect to G to a combinatorial property
of the combining function C. In particular, it is not used to fool the circuits trying to
compute the hard function. This is what allows us to use an unconditional generator
against a relatively weak model of computation.

Our final generator, Γ, is the generator obtained by Xor’ing a generator that is
indistinguishability-preserving and a generator that fools the expected bias, yielding
a generator that has both properties. The approach of Xor’ing two generators in this
way appeared in [IW1], and was subsequently used in [STV].

4The same approach also works using the unconditional pseudorandom generator against
constant-depth circuits of [Nis1] and showing that the combining function is computable by a small
constant-depth circuit; however, the space generator gives us slightly better parameters.
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Table 2.1: Hardness amplification within NP.

Functions : {0, 1}n → {0, 1}

Amplification up to Technique Reference

1/2− 1/
√
n Direct Product [O’D]

1/2− 1/nc, for every c Derandomized Direct Product Theorem 2.27

Derandomized

1/2− 1/2Ω(
√

n) Direct Product & Theorem 2.32
Nondeterminism

2.4.2 Using nondeterminism

The derandomization described above gives hardness amplification up to 1/2 −
1/nc for any constant c. This already improves upon the best previous result, namely
Theorem 2.16. However, to go beyond this new techniques are required. The problem
is that if we want C to be computable in time poly(n), we must take k = poly(n)
and thus we amplify to at most 1/2− 1/k = 1/2− 1/ poly(n).

We solve this problem by taking full advantage of the power of NP, namely nonde-
terminism. This allows us to use a function C : {0, 1}k → {0, 1} which is computable
in nondeterministic time poly(n, log(k)); thus, the amplified function will still be in
NP for k as large as 2n.

Conversely, in Section 2.7.2 we show that any non-adaptive monotone black-box
hardness amplification that amplifies to hardness 1/2− 1/nω(1) cannot be computed
in P, i.e. the use of nondeterminism is essential.

We proceed by discussing the details of the derandomization (Sections 2.5.1, 2.5.2
and 2.5.3) and the use of nondeterminism (Section 2.5.4). The results obtained in
these sections are summarized in Table 1. For clarity of exposition, we focus on
the case where the original hard function f is balanced and is 1/3-hard. Hardness
amplification from hardness 1/ poly(n) is discussed in Section 2.5.5, and hardness
amplification of unbalanced functions is discussed in Section 2.7.1.

2.5 Proof of Main Theorem

In this section we prove our main theorem (i.e., Theorem 2.18).
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2.5.1 Preserving indistinguishability

The main result in this subsection is that if G is pseudorandom in an appropriate
sense, then the hardness of (C ◦ f⊗k) ◦G is roughly

1/2− ExpBias
[
(C ◦ g⊗k) ◦G

]
for some δ-random function g. As we noted in the previous section, it will be sufficient
for G to be indistinguishability-preserving. We give the definition of indistinguisha-
bility-preserving and then our main result.

Definition 2.20. A generator G : {0, 1}l → ({0, 1}n)k is said to be indistinguishabili-
ty-preserving for size t if for all (possibly probabilistic) functions f1, . . . , fk, g1, . . . , gk

the following holds:
If for every i, 1 ≤ i ≤ k the distributions

Un · fi(Un) and Un · gi(Un)

are ε-indistinguishable for size s, then

σ · f1(X1) · · · fk(Xk) and σ · g1(X1) · · · gk(Xk)

are kε-indistinguishable for size s − t, where σ is a random seed of length l and
X1 · · ·Xk is the output of G(σ).

The fact that in the above definition we consider k fi’s and k gi’s implies that an
indistinguishability−preserving generator stays indistinguishability−preserving
when Xor’ed with any other generator (cf. the proof of Item 1 in Lemma 2.31). We
will use this property in the proof of our main result.

Lemma 2.21. Let f : {0, 1}n → {0, 1} be δ-hard for size s, let G : {0, 1}l →
({0, 1}n)k be a generator that is indistinguishability-preserving for size t and let C :
{0, 1}k → {0, 1} be any function. Then there exists a δ′-random g, with δ/2 ≤ δ′ ≤ δ
such that the function (C ◦ f⊗k) ◦G : {0, 1}l → {0, 1} has hardness

1

2
−

ExpBias
[
(C ◦ g⊗k) ◦G

]
2

− k

s1/3

for circuits of size Ω
(
s1/3/ log(1/δ)

)
− t − size(C) where size(C) denotes the size of

a smallest circuit computing C.

Proof. By Lemma 2.9, there exists a δ′-random function g with δ/2 ≤ δ′ ≤ δ, such
that Un · f(Un) and Un · g(Un) are ε-indistinguishable for size Ω(sε2/ log(1/δ)). Since
G is an indistinguishability-preserving for size t by assumption, this implies that

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)
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are kε-indistinguishable for size Ω(sε2/ log(1/δ))− t, where here and below σ denotes
a uniform random seed in {0, 1}l and X1 · · ·Xk will denote the output of G(σ). This
in turn implies that

σ · C(f(X1) · · · f(Xk)) and σ · C(g(X1) · · · g(Xk))

( i.e., σ · (C ◦ f⊗k) ◦ G(σ) and σ · (C ◦ g⊗k) ◦ G(σ)) are kε-indistinguishable for size
Ω(sε2/ log(1/δ))− t− size(C). By Lemma 2.11,

σ · (C ◦ g⊗k) ◦G and σ · U1

are (ExpBias
[
(C ◦ g⊗k) ◦G

]
/2)-indistinguishable for any size. Therefore, we have

that
σ · (C ◦ f⊗k) ◦G and σ · U1

are (ExpBias
[
(C ◦ g⊗k) ◦G

]
/2+ kε)-indistinguishable for size Ω(sε2/ log(1/δ))− t−

size(C). The result follows by setting ε = 1/s1/3 and applying Lemma 2.7.

In particular, we note that the identity generator G : {0, 1}nk → ({0, 1}n)k,
i.e. G(x) = x, is indistinguishability-preserving for size 0 (by a hybrid argument,
see, e.g., [Gol3]), and thus Lemma 2.12 is a corollary of Lemma 2.21. However, the
identity generator has seed-length nk and is therefore a very poor pseudorandom
generator. Fortunately, there are indistinguishability-preserving pseudorandom gen-
erators with much shorter seeds which will allow us to use Lemma 2.21 to obtain
much stronger hardness amplifications.

Lemma 2.22. There is a constant c such that for every n ≥ 2 and every k = k(n)
there is an explicitly computable generator NW k : {0, 1}l → ({0, 1}n)k with seed length
l = c · n2 that is indistinguishability-preserving for size k2.

Proof. The generator is the main component of the generator by Nisan and Nisan
and Wigderson [Nis1, NW], and is based on combinatorial designs. Specifically, we
let S1, . . . , Sk ⊆ [l] be an explicit family of sets such that |Si| = n for all i, and
|Si ∩ Sj| ≤ log k for all i 6= j. Nisan [Nis1] gives an explicit construction of such sets
with l = O(n2). Then the generator NW k : {0, 1}l → ({0, 1}n)k is defined by

NW k(σ) := (σ|S1 , . . . , σ|Sk
),

where σ|Si
∈ {0, 1}n denotes the projection of σ onto the coordinates indexed by the

set Si.
The proof that this generator is indistinguishability preserving for size k2 fol-

lows the arguments in [NW, STV]. For completeness, we sketch the proof here.
Suppose that we have a circuit C of size s − k2 distinguishing the distributions
σ · f1(σ|S1) · · · fk(σ|Sk

) and σ · g1(σ|S1) · · · gk(σ|Sk
) with advantage greater than k · ε.

For i = 0, . . . , k, let Hi be the hybrid distribution

Hi = σ · g1(σ|S1) · · · gi(σ|Si
) · fi+1(σ|Si+1

) · · · fk(σ|Sk
).
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Then there must exist an i ∈ {0, . . . , k} such that C distinguishes Hi from Hi+1 with
advantage greater than ε. The only difference between Hi and Hi+1 is that Hi has the
component fi+1(σ|Si+1

) while Hi+1 has gi+1(σ|Si+1
). By averaging, we may fix all the

bits of σ outside of Si+1 (as well as the randomness of fj, gj for j 6= i+ 1 if they are
probabilistic functions) while preserving the advantage of C. Thus C distinguishes
between two distributions of the form

τ · h1(τ)h2(τ) · · ·hi(τ)fi+1(τ)hi+2(τ) · · ·hk(τ),

and
τ · h1(τ)h2(τ) · · ·hi(τ)gi+1(τ)hi+2(τ) · · ·hk(τ),

where τ is uniform in {0, 1}n and each hj is a function of at most |Sj ∩ Si+1| bits
of τ . Then each hj can be computed by a circuit of size smaller than 2|Sj∩Si+1| ≤ k.
Combining these k− 1 circuits with C, we get a distinguisher between τ · fi+1(τ) and
τ · gi+1(τ) of size |C|+ (k − 1) · k < s and advantage greater than ε.

2.5.2 Fooling the expected bias

In this subsection we prove a derandomized version of Lemma 2.14. Informally,
we show that if C is computable in a restricted model of computation and G “fools”
that restricted model of computation, then for any δ-random function g:

ExpBias
[
(C ◦ g⊗k) ◦G

]
≤

√
NoiseStabδ[C] + ε.

The restricted model of computation we consider is that of nonuniform space-
bounded algorithms which make one pass through the input, reading it in blocks of
length n. These are formally modeled by the following kind of branching programs.

Definition 2.23. A (probabilistic, read-once, oblivious) branching program of size
s with block-size n is a finite state machine with s states, over the alphabet {0, 1}n
(with a fixed start state, and an arbitrary number of accepting states). Each edge is
labelled with a symbol in {0, 1}n. For every state a and symbol α ∈ {0, 1}n, the edges
leaving a and labelled with α are assigned a probability distribution. Then computation
proceeds as follows. The input is read sequentially, one block of n bits at a time. If
the machine is in state a and it reads α, then it chooses an edge leaving a and labelled
with α according to its probability, and moves along it.

Now we formally define pseudorandom generators against branching programs.

Definition 2.24. A generator G : {0, 1}l → ({0, 1}n)k is ε-pseudorandom against
branching programs of size s and block-size n if for every branching program B of
size s and block-size n:∣∣ Pr[B(G(Ul)) = 1]− Pr[B(Unk) = 1]

∣∣ ≤ ε.
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In [Nis2], Nisan builds an unconditional pseudorandom generator against branch-
ing programs. Its parameters (specialized for our purposes) are given in the following
theorem.

Theorem 2.25 ([Nis2]). For every n and k ≤ 2n, there exists a generator

Nk : {0, 1}l → ({0, 1}n)k

such that:

• Nk is 2−n-pseudorandom against branching programs of size 2n and block-size
n.

• Nk has seed length l = O(n log k).

• Nk is explicitly computable.

Note that Nisan [Nis2] does not mention probabilistic branching programs. How-
ever, if there is a probabilistic branching program distinguishing the output of the
generator from uniform, then by a fixing of the coin tosses of the branching pro-
gram there is a determinisitic branching program that distinguishes the output of the
generator from uniform.

We now state the derandomized version of Lemma 2.14.

Lemma 2.26. Let

• g : {0, 1}n → {0, 1} be a δ-random function,

• C : {0, 1}k → {0, 1} be computable by a branching program of size t and block-
size 1,

• G : {0, 1}l → ({0, 1}n)k be ε/2-pseudorandom against branching programs of
size t2 and block-size n.

Then ExpBias
[
(C ◦ g⊗k) ◦G

]
≤

√
NoiseStabδ[C] + ε.

Proof. We will not show that G fools the expected bias, but rather the following re-
lated quantity. For a probabilistic boolean function h(x; r) we define its (normalized)
expected collision probability as

ExpCP[h] := E
x

[
2 · Pr

r,r′
[h(x; r) = h(x; r′)]− 1

]
.

The same reasoning that proves Lemma 2.14 also shows that for every probabilistic
boolean function h:

ExpBias [h] ≤
√

ExpCP[h]. (2.3)
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More specifically, Inequality (2.3) holds because

ExpBias [h] = E
x←Un

[
Bias [h(x)]

]
≤

√
E

x←Un

[
Bias [h(x)]2

]
(by Cauchy-Schwartz)

=
√

ExpCP[h].

Let h(x; r) : ({0, 1}n)k → {0, 1} be the probabilistic function C◦g⊗k. Even though h is
defined in terms of g, it turns out that its expected collision probability is the same for
all δ-random functions g. Specifically, for x = (x1, . . . , xk), the only dependence of the
collision probability Prr,r′ [h(x; r) = h(x; r′)] on xi comes from whether g(xi) is a coin
flip (which occurs with probability δ over the choice of xi), g(xi) = 1 (which occurs
with probability (1 − δ)/2), or g(xi) = 0 (which occurs with probability (1 − δ)/2).
In the case where g(xi) is a coin flip, then the i’th bits of the two inputs fed to C
(i.e. g(xi; r) and g(xi; r

′)) are random and independent, and otherwise they are equal
and fixed (according to g(xi)). It can be verified that this corresponds precisely to
the definition of noise stability, so we have:

ExpCP[h] = NoiseStabδ[C]. (2.4)

Now we construct a probabilistic branching program M : ({0, 1}n)k → {0, 1} of
size t2 and block-size n such that for every x ∈ ({0, 1}n)k:

Pr[M(x) = 1] = Pr
r,r′

[h(x; r) = h(x; r′)].

To do this, we first note that, using the branching program for C, we can build a
probabilistic branching program of size t with block-size n which computes C ◦ g⊗k:
The states of the branching program are the same as those of the branching program
for C, and we define the transitions as follows. Upon reading symbol α ∈ {0, 1}n in
state s, if g(α) = 0 (resp. g(α) = 1), we deterministically go to the state given by
the 0-transition (resp., 1-transition) of C from state s, and if g(α) is a coin flip, then
we put equal probability on these two transitions.

Then, to obtain M , run two independent copies of this branching program (i.e.,
using independent choices for the probabilistic state transitions) and accept if and
only if both of them accept or both of them reject. Now,∣∣∣ ExpCP[(C ◦ g⊗k) ◦G]− NoiseStabδ[C]

∣∣∣
=

∣∣∣ ExpCP[(C ◦ g⊗k) ◦G]− ExpCP[C ◦ g⊗k]
∣∣∣ (by (2.4))

= 2 ·
∣∣∣ Pr[M ◦G(Ul) = 1]− Pr[M(Un·k) = 1]

∣∣∣
≤ ε. (by pseudorandomness of G)
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The lemma follows combining this with Equation (2.3).

2.5.3 Amplification up to 1/2− 1/ poly

In this subsection we sketch our hardness amplification up to 1/2−1/nc, for every
c:

Theorem 2.27. If there is a balanced function f : {0, 1}n → {0, 1} in NP that is
(1/3)-hard for size s(n) ≥ nω(1), then for every c > 0 there is a function f ′ : {0, 1}m →
{0, 1} in NP that is (1/2− 1/mc)-hard for size (s(

√
m))Ω(1).

To amplify we use the Tribes function of Ben-Or and Linial [BL], a monotone
read-once DNF.

Definition 2.28. The Tribes function on k bits is:

Tribesk(x1, . . . , xk) :=

(x1 ∧ . . . ∧ xb) ∨ (xb+1 ∧ . . . ∧ x2b) ∨ . . . ∨ (xk−b+1 ∧ . . . ∧ xk)

where there are k/b clauses each of size b, and b is the largest integer such that
(1− 2−b)k/b ≥ 1/2. Note that this makes b = O(log k).

The Tribes DNF has very low noise stability when perturbed with constant noise.

Lemma 2.29 ([O’D, MO]). For every constant δ > 0,

NoiseStabδ[Tribesk] ≤
1

kΩ(1)
.

A key step in our result is that Tribesk is easily computable by a branching
program of size O(k), and therefore we can use Lemma 2.26 to fool its expected bias.

We now define the generator we will use in our derandomized direct product
construction.

Definition 2.30. Given n and k ≤ 2n, define the generator Γk : {0, 1}m → ({0, 1}n)k

as follows:
Γk(x, y) := NW k(x)⊕Nk(y),

where ⊕ denotes bitwise Xor.

We recall the properties of Γ we are interested in:

Lemma 2.31. The following hold:

1. Γk is indistinguishability-preserving for size k2.

2. Γk is 2−n-pseudorandom against branching programs of size 2n and block-size n.

3. Γk has seed length m = O(n2).
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4. Γk is explicitly computable (see Definition 2.19 for the definition of explicit).

Proof. Item (1) follows from Lemma 2.22 and the fact that an indistinguishabili-
ty-preserving generator Xor’ed with any fixed string is still indistinguishability-pre-
serving. More specifically, suppose, for the sake of contradiction, that Γk(x, y) =
NW k(x) ⊕ Nk(y) is not indistinguishability-preserving. Then there are functions
f1, . . . , fk and g1, . . . , gk such that for every i the distributions Un·fi(Un) and Un·gi(Un)
are indistinguishable, yet the distributions

(x, y) · f1(NW 1(x)⊕N1(y)) · · · fk(NW k(x)⊕Nk(y))

and
(x, y) · g1(NW 1(x)⊕N1(y)) · · · gk(NW k(x)⊕Nk(y))

are distinguishable (for random x, y). Then, by averaging, they are distinguishable
for some fixed value of y = ỹ. Thus, we obtain that

x · f ′1(NW 1(x)) · · · f ′k(NW k(x))

and
x · g′1(NW 1(x)) · · · g′k(NW k(x))

are distinguishable (for random x), where f ′i(z) = fi(z ⊕ Ni(ỹ)), g
′
i(z) = gi(z ⊕

Ni(ỹ)). (Note that we hardwire the fixed part of the seed ỹ in the distinguisher.)
Now observe that the indistinguishability of Un · fi(Un) and Un · gi(Un) implies the
indistinguishability of Un · f ′i(Un) and Un · g′i(Un), because the mapping T (u · v) =
(u ⊕ Ni(ỹ)) · v transforms the latter pair of distributions to the former. (There is
no loss in the circuit size assuming that circuits have input gates for both the input
variables and their negations.) But this is a contradiction because NW is indisting-
uishability-preserving.

Item (2) follows from Theorem 2.25 and the fact that Xor’ing with any fixed string
(in particular, NW k(x) for any x) preserves pseudorandomness against branching
programs.

Item (3) is an immediate consequence of the seed lengths of NW k (Lemma 2.22)
and Nk (Theorem 2.25).

Item (4) follows from the fact that NW k is explicit (Lemma 2.22) and Nk is
explicit (Theorem 2.25).

Proof of Theorem 2.27. Given f : {0, 1}n → {0, 1} that is δ-hard for size s(n) (for
δ = 1/3) and a constant c, let k = nc′ for c′ = O(c) to be determined later. Consider
the function f ′ : {0, 1}m → {0, 1} defined by

f ′ := (Tribesk ◦f⊗k) ◦ Γk.

Note that f ′ ∈ NP since f ∈ NP, Tribes is monotone and both Γ and Tribes are
efficiently computable.
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We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for
size k2 by Lemma 2.31, Lemma 2.21 implies that there is a δ′-random function g (for
δ/2 ≤ δ′ ≤ δ) such that f ′ has hardness

1

2
−

ExpBias
[
(Tribesk ◦g⊗k) ◦ Γk

]
2

− k

s(n)1/3
(2.5)

for circuits of size Ω
(
s(n)1/3

)
− k2 − size(Tribesk). Next we bound the hardness.

By Lemma 2.31, we know that Γk is 2−n-pseudorandom against branching pro-
grams of size 2n and block-size n. In particular, since k = poly(n), Γk is 1/k-
pseudorandom against branching programs of size 9k and block-size n. Since, as
we noted before, Tribesk is easily computable by a branching program of size O(k),
we can apply Lemma 2.26 (noting that O(k)2 = poly(n) � 2n) in order to bound
ExpBias

[
(Tribesk ◦g⊗k) ◦ Γk

]
by

√
NoiseStabδ′ [Tribesk] + 2/k. And the noise stabil-

ity inside the square root is at most 1/kΩ(1) by Lemma 2.29. Since k = poly(n)
and s(n) = nω(1), the k/s1/3 term in the hardness (2.5) is negligible and we obtain
hardness at least 1/2− 1/kΩ(1).

We now bound the circuit size: Since Tribesk is computable by circuits of size
O(k), and s(n) = nω(1), the size is at least s(n)Ω(1).

Now note that f ′ has input length m = m(n) = O(n2) by Lemma 2.31. Strictly
speaking, we have only defined f ′ for certain input lengths; however, it is easy to
extend the function to every input length, by simply defining f ′(x) := f ′(x′) where x′

consists of the first m(n) bits of x and n is the largest integer such that m(n) ≤ |x|.
It is easy to check that f ′ still has hardness 1/2−1/kΩ(1) = 1/2−1/nΩ(c′). The result
then follows by an appropriate choice of c′ = O(c).

2.5.4 Using nondeterminism

In this subsection we discuss how to use nondeterminism to get the following
theorem.

Theorem 2.32. If there is a balanced function f : {0, 1}n → {0, 1} in NP that is
(1/3)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in NP that is
(1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Our main observation is that Tribesk is a DNF with clause size O(log k), and there-
fore it is computable in nondeterministic time poly(n) even when k is superpolynomial
in n:

Lemma 2.33. Let f : {0, 1}n → {0, 1} be in NP, and let Gk : {0, 1}l → ({0, 1}n)k

be any explicitly computable generator (see Definition 2.19) with l ≥ n. Then the
function f ′ := (Tribesk ◦f⊗k) ◦Gk is computable in NP for every k = k(n) ≤ 2n.
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Proof. We compute f ′(σ) nondeterministically as follows: Guess a clause vi ∧ vi+1 ∧
· · · ∧ vj in Tribesk. Accept if for every h s.t. i ≤ h ≤ j we have f(Xh) = 1, where
G(σ) = (X1, . . . , Xk) and the values f(Xh) are computed using the NP algorithm for
f .

It can be verified that this algorithm has an accepting computation path on input
σ iff f ′(σ) = 1. Note that the clauses have size logarithmic in k, which is polynomial
in n. Moreover, G is explicitly computable. The result follows.

Now the proof of Theorem 2.32 proceeds along the same lines as the proof of
Theorem 2.27, setting k := s(n)Ω(1).

2.5.5 Amplifying from hardness 1/ poly

Our amplification from hardness Ω(1) to 1/2− ε (Theorem 2.27) can be combined
with O’Donnell’s amplification from hardness 1/ poly to hardness Ω(1) to obtain
an amplification from 1/ poly to 1/2 − ε. However, since O’Donnell’s construction
blows up the input length polynomially, we would only obtain ε = 1/s(nΩ(1)) (where
the hidden constant depends on the initial polynomial hardness) rather than ε =
1/s(
√
n)Ω(1) (as in Theorem 2.27). Thus we show here how to amplify directly from

1/ poly to 1/2− ε using our approach. For this we need a combining function C that
is more involved than the Tribes function. The properties of C that are needed in
the proof of Theorem 2.18 are captured by the following lemma.

Lemma 2.34. For every δ(n) = 1/nO(1), there is a sequence of functions Ck :
{0, 1}k → {0, 1}, such that for every k = k(n) with nω(1) ≤ k ≤ 2n, the follow-
ing hold:

1. NoiseStabδ[Ck] ≤ 1/kΩ(1).

2. For every f : {0, 1}n → {0, 1} in NP and every explicitly computable generator
(see Definition 2.19) Gk : {0, 1}l → ({0, 1}n)k with l ≥ n, the function (Ck ◦
f⊗k) ◦Gk is in NP.

3. Ck can be computed by a branching program of size poly(n) · k, and also by a
circuit of size poly(n) · k.

Before proving Lemma 2.34, let us see how it can be used to prove our main
theorem.

Theorem 2.35 (Thm. 2.18, restated). If there is a balanced function f : {0, 1}n →
{0, 1} in NP that is 1/ poly(n)-hard for size s(n), then there is a function f ′ :
{0, 1}m → {0, 1} in NP that is (1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).
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Proof. Let f : {0, 1}n → {0, 1} be a balanced function in NP that is δ = δ(n)-
hard for size s(n), where δ ≥ 1/nO(1). Let k = k(n) := s(n)1/7 and let Ck be the
function guaranteed by Lemma 2.34. Let Γk be the the generator from Definition 2.30.
Consider the function f ′ : {0, 1}m → {0, 1} defined by f ′ := (Ck ◦ f⊗k) ◦ Γk. Note
that f ′ ∈ NP by Item 2 in Lemma 2.34.

We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for
size k2 (by Lemma 2.31), Lemma 2.21 implies that there is a δ′-random function g
(for δ/2 ≤ δ′ ≤ δ) such that f ′ has hardness

α(m) =
1

2
−

ExpBias
[
(Ck ◦ g⊗k) ◦ Γk

]
2

− k

s(n)1/3
(2.6)

for circuits of size

s′(m) = Ω

(
s(n)1/3

log(1/δ)

)
− k2 − size(Ck).

We first bound the hardness α(m). By Lemma 2.31, we know that Γk is 2−n-
pseudorandom against branching programs of size 2n and block-size n. Since
the branching program for computing Ck has size poly(n) · k, and (poly(n) ·
k)2 � 2n (by our choice of k(n)), we may apply Lemma 2.26 in order to bound
ExpBias

[
(Ck ◦ g⊗k) ◦ Γk

]
by

√
NoiseStabδ′ [Ck] + 2/2n. This noise stability is at most

1/kΩ(1) by Item 1 in Lemma 2.34. Using the fact that k = s(n)1/7, we have

α(m) ≥ 1

2
−

√
1/kΩ(1) − 2/2n

2
− k

s(n)1/3
=

1

2
− 1

s(n)Ω(1)
.

We now bound the circuit size s′(m). Since Ck is computable by a circuit of size
poly(n) · k (by Item 3 in Lemma 2.34) and log(1/δ) = O(log n) and s(n) = nω(1), we
have

s′(m) = Ω

(
s(n)1/3

log n

)
− s(n)2/7 − poly(n) = s(n)Ω(1).

To conclude, we note that f ′ has input length m = O(n2) by Lemma 2.31, so s(n) =
s(Ω(
√
m)) = s(

√
m)Ω(1), and we indeed obtain hardness α(m) = 1/2 − 1/s(

√
m)Ω(1)

for size s′(m) = s(
√
m)Ω(1). Strictly speaking, we have only defined f ′ for certain

input lengths; however, it is easy to extend the function to every input length, cf. the
end of the proof of Theorem 2.27.

The rest of this subsection is devoted to the proof of Lemma 2.34. Recall that
amplification from hardness Ω(1) (Theorem 2.27) relies on the fact that the Tribes
DNF has low noise stability with respect to noise parameter δ = Ω(1) (i.e., Lemma
2.29). Similarly, to amplify from hardness 1/ poly(n) we need to employ a combining
function that has low noise stability with respect to noise 1/ poly(n). To this end,
following [O’D], we employ the recursive-majorities function, RMajr. Let Maj denote
the majority function.
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Definition 2.36. The RMajr function on 3r bits is defined recursively by:

RMaj1(x1, x2, x3) := Maj(x1, x2, x3)

RMajr(x1, . . . , x3r) := RMajr−1

(
Maj(x1, x2, x3), . . . ,Maj(x3r−2, x3r−1, x3r)

)
The following lemma quantifies the noise stability of RMajr.

Lemma 2.37 ([O’D], Proposition 11). There is a constant c such that for every δ > 0
and every r ≥ c · log(1/δ), we have

NoiseStabδ[RMajr] ≤
1

4
.

Note that if r = O(log n) then RMajr is a function of 3r = poly(n) bits.
However, when r = O(log n), RMajr does not have sufficiently low noise stability

to be used on its own. For this reason, we will combine RMaj with Tribes. (The
same combination of RMaj and Tribes is employed by O’Donnell [O’D], albeit for a
different setting of parameters.)

Proof of Lemma 2.34. Given n and δ = δ(n) ≥ 1/nO(1), let r := c · log(1/δ) for a
constant c to be chosen later. Assume, without loss of generality, that r and k/3r are
integers. The function Ck : {0, 1}k → {0, 1} is defined as follows

Ck := Tribesk/3r ◦RMaj⊗k/3r

r .

We now prove that Ck satisfies the required properties.
Item (1): We will use the following result from [O’D].

Lemma 2.38 ([O’D], Proposition 8). If h is a balanced boolean function and ϕ :
{0, 1}` → {0, 1} is any boolean function, then

NoiseStabδ[ϕ ◦ h⊗`] = NoiseStab 1
2
−NoiseStabδ [h]

2

[ϕ].

Letting c be a sufficiently large constant (recall that r = c · log(1/δ)), by Lemma
2.37 we have that NoiseStabδ[RMajr]/2 ≥ 1/2− 1/8 ≥ 3/8. Now note that RMajr is
balanced because taking the bitwise complement of an input x also negates the value
of RMajr(x). Hence, by Lemma 2.38,

NoiseStabδ[Tribesk/3r ◦RMaj⊗k/3r

r ] = NoiseStab3/8[Tribesk/3r ]

≤ 1

(k/3r)Ω(1)
=

1

kΩ(1)
,

where the last two equalities use Lemma 2.29 and the fact that k = nω(1) and r =
O(log n).
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The proof of Item (2) is similar to the proof of Lemma 2.33. To compute

(Tribesk/3r ◦RMaj⊗k/3r

r ◦f⊗k) ◦Gk,

we guess a clause of the Tribesk/3r and verify that all the RMajr evaluations feeding
into it are satisfied (using the NP algorithm for f). The only additional observation is
that each of the recursive majorities depends only on 3r = poly(n) bits of the input,
and hence can be computed in time polynomial in n.

Item (3): As noted earlier, Tribesk/3r is easily computable by a branch-
ing program of size O(k). RMajr, on the other hand, can be computed by
a branching program of size poly(n). Indeed, Maj(x1, x2, x3) is clearly com-
putable by a branching program of constant size c, and therefore RMajr =
RMajr−1

(
Maj(x1, x2, x3), . . . ,Maj(x3r−2, x3r−1, x3r)

)
can be computed by a branch-

ing program whose size is at most c times the size of RMajr−1. By induction it follows
that RMajr can be computed in size cr = poly(n).

By composing the branching program of size O(k) for Tribes with the branching
program of size poly(n) for RMaj, we can compute Ck by a branching program of
size poly(n) · k.

2.6 Extensions

2.6.1 On the possibility of amplifying hardness up to 1/2 −
1/2Ω(n)

Even when starting from a function that is δ-hard for size 2Ω(n), our results (The-
orem 2.18) only amplify hardness up to 1/2−1/2Ω(

√
n) (rather than 1/2−1/2Ω(n)). In

this section we discuss the possibility of amplifying hardness in NP up to 1/2−1/2Ω(n),
when starting with a function that is δ-hard for size 2Ω(n). The problem is that the
seed length of our generator in Lemma 2.31 is quadratic in n, rather than linear. To
amplify hardness up 1/2− 1/2Ω(n) we need a generator (for every k = 2Ω(n)) with the
same properties of the one in Lemma 2.31, but with linear seed length.

Recall our generator is the Xor of an indistinguishability-preserving generator
and a generator that is pseudorandom against branching programs. While it is an
open problem to exhibit a generator with linear seed length that is pseudorandom
against branching programs, an indistinguishability-preserving generator with linear
seed length is given by the following lemma.

Lemma 2.39. For every constant γ, 0 < γ < 1, there is a constant c such that for

every n there is an explicitly computable generator NW ′
2n/c : {0, 1}l → ({0, 1}n)2n/c

with seed length l = c · n that is indistinguishability-preserving for size 2γ·n.

The generator is due to Nisan and Wigderson [NW] and Impagliazzo and Wigder-
son [IW1]. The approach is the same as for the generator used in Lemma 2.22, except
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we now require a design consisting of 2Ω(n) sets of size n in a universe of size O(n),
with pairwise intersections of size at most γn/2. An explicit construction of such a
design is given in [GV].5

Theorem 2.40. Suppose that there exists an explicit generator N ′2n : {0, 1}l →
({0, 1}n)2n

that is 2−n-pseudorandom against branching programs of size 2n and block-
size n and that has seed length l = O(n). Then the following holds: If there is a
balanced function f : {0, 1}n → {0, 1} in NP that is 1/ poly(n)-hard for size 2Ω(n),
then there is a function f ′ : {0, 1}m → {0, 1} in NP that is (1/2 − 1/2Ω(n))-hard for
size 2Ω(n).

A slightly more careful analysis shows that all the branching programs considered
in our constructions have width much smaller than their size, where the width of a
branching program is the maximum, over i, of the number of states that are reachable
after reading i symbols. Specifically, the branching program for Tribes has constant
width, and the one for the function in Lemma 2.34, i.e. Tribes composed with RMaj,
has width poly(n) independent of k. Thus to prove the conclusion in the statement
of Theorem 2.40 it would suffice to exhibit an explicit pseudorandom generator that
fools such restricted branching programs.

For amplifying from constant hardness, it suffices to instead have a generator
fooling constant-depth circuits of size 2n with seed length O(n). (The generator of
Nisan [Nis1] has seed length poly(n).) The reason is that our proof that PRGs versus
branching programs “fool” the expected bias also works for PRGs versus constant-
depth circuits, provided that the combining function is computable in constant depth.
The Tribes function is depth 2 by definition (but the recursive majorities RMaj is not
constant-depth, and hence this would only amplify from constant hardness).

More generally, we only need, for every constant γ > 0, a generator G :
{0, 1}O(n) → ({0, 1}n)k where k = 2γn such that for every δ-random function g,

ExpBias
[
(Ck ◦ g⊗k) ◦G

]
= 2−Ω(n),

where, for example, Ck = Tribesk (when δ is constant). As in the proof of Lemma 2.14,
in proving such a statement, it may be convenient to work instead with the (polyno-
mially related) expected collision probability. An important property of Ck = Tribesk

we used in bounding the expected bias with respect to G is that it gives expected bias
2−Ω(n) if G is replaced with a truly random generator (i.e. using seed length n ·k) and
δ is constant. One might try to use a different monotone combining function with
this property, provided it can also be evaluated in nondeterministic time poly(n).

5Alternatively, we can use the randomized algorithm described in [IW1] that computes such sets
S1, . . . , SM with probability exponentially close to 1 using O(n) random bits. This is sufficient for
constructing an indistinguishability-preserving generator.
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2.6.2 Impagliazzo and Wigderson’s hardness amplification

Our framework gives a new proof of the hardness amplification by Impagliazzo and
Wigderson [IW1]. Impagliazzo and Wigderson [IW1] show that if E := Time

(
2O(n)

)
contains a function f : {0, 1}n → {0, 1} that requires (in the worst-case) circuits of
size 2Ω(n), then E contains a function f ′ that is

(
1/2− 1/2Ω(n)

)
-hard for circuits of

size 2Ω(n). The main contribution in [IW1] is amplification from constant hardness,
e.g. 1/3, to

(
1/2− 1/2Ω(n)

)
(amplification from worst-case hardness and constant

hardness was essentially already established in [BFNW, Imp1]). The improvement
over the standard Yao Xor Lemma is that the input length of the amplified function
increases only by a constant factor. In this section, we sketch a simple proof of this
result using the framework developed in earlier sections. While other, more recent
hardness amplifications achieving the same result for E are known [STV, SU2, Uma1],
the original one by Impagliazzo and Wigderson is still interesting because it can be
implemented in “low” complexity classes, such as the polynomial-time hierarchy, while
the others cannot. This is due to the fact that they actually amplify from worst-case
hardness and will be proved in Chapter 3.

The construction of [IW1] uses an expander-walk generator Wk : {0, 1}l →
({0, 1}n)k, which uses its seed of length l = n+ O(k) to do a random walk of length
k (started at a random vertex) in a constant-degree expander graph on 2n vertices.
More background on such generators can be found in [Gol2, Sec 3.6.3]. The con-
struction of [IW1] Xor’s the expander-walk generator with the (first k outputs of the)
indistinguishability-preserving generator from Lemma 2.39:

Definition 2.41. Let k = c · n for a constant c > 1. Let NW ′′
k : {0, 1}O(n) →

({0, 1}n)k be a generator that is indistinguishability-preserving for size 2n/c as given
by Lemma 2.39. The generator IW k : {0, 1}l → ({0, 1}n)k is defined as

IW k(x, y) := NW ′′
k(x)⊕Wk(y).

The seed length of IW k is l = O(n).

Given a function f that is 1/3-hard for size s = 2Ω(n), the Impagliazzo–Wigderson
amplification defines

f ′ := (Xor ◦ f⊗k) ◦ IW k : {0, 1}O(n) → {0, 1},

where k = c ·n for a constant c that depends on the hidden constant in the s = 2Ω(n).
They prove the following about this construction.

Theorem 2.42 ([IW1]). If there is a function f : {0, 1}n → {0, 1} in E that is
1/3-hard for size 2Ω(n), then there is a function f ′ : {0, 1}m → {0, 1} in E that is
(1/2− 2−Ω(m))-hard for size 2Ω(m).
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Proof. By Theorem 2.21 there exists a δ′-random function g : {0, 1}n → {0, 1},
where δ′ is a constant, such that the hardness of f ′ : {0, 1}O(n) → {0, 1} is 1/2 −
ExpBias

[
(Xor ◦ g⊗k) ◦ IW k

]
− 2−Ω(n) for circuits of size 2Ω(n).

We now bound the hardness. Whenever some IW i(x) falls in the set of inputs of
density 2 · δ′ where the output of g is a coin flip, the bias of (Xor ◦ g⊗k) ◦ IW k is 0.
Therefore

ExpBias
[
(Xor ◦ g⊗k) ◦ IW k

]
≤ Pr

x
[∀i : IW i(x) 6∈ H] ≤ 2−Ω(n),

where in the last inequality we use standard hitting properties of expander walks (see
e.g. [Gol1] for a proof), and take c to be a sufficiently large constant.

2.7 Limitations of monotone hardness amplifica-

tion

2.7.1 On the hypothesis that f is balanced

The hardness amplification results in the previous sections start from balanced
functions. In this section we study this hypothesis. Our main finding is that, while
this hypothesis is not necessary for hardness amplification within NP/poly (i.e., non-
deterministic polynomial size circuits), it is likely to be necessary for hardness ampli-
fication within NP.

To see that this hypothesis is not necessary for amplification within NP/poly, note
that if the quantity Prx[f(x) = 1] of the original hard function f : {0, 1}n → {0, 1} is
known, then we can easily pad f to obtain a balanced function f̄ : {0, 1}n+1 → {0, 1}:

f̄(x, p) :=


f(x) if p = 0

0 if p = 1 and x ≤ Prx[f(x) = 1] · 2n

1 if p = 1 and x > Prx[f(x) = 1] · 2n

It is easy to see that f̄ is 1/ poly(n)-hard if f is. Since a circuit can (non-uniformly)
know Prx[f(x) = 1], the following hardness amplification within NP/poly is a corollary
to the proof of Theorem 2.18.

Corollary 2.43. If there is a function f : {0, 1}n → {0, 1} in NP/poly that is
1/ poly(n)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in NP/poly
that is (1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Now we return to hardness amplification within NP. First we note that, in our
results, to amplify the hardness of f : {0, 1}n → {0, 1} up to 1/2 − ε it is only
necessary that Bias [f ] ≤ εc for some universal constant c. The argument is standard
and can be found, for example, in [Tre2].
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Combining this observation with the above padding technique, O’Donnell con-
structs several candidate hard functions, one for each “guess” of the bias of the
original hard function. He then combines them in a single function using a different
input length for each candidate; this gives a function that is very hard on average
for infinitely many input lengths. However, this approach, even in conjunction with
derandomization and nondeterminism, cannot give better hardness than 1/2 − 1/n.
(Roughly speaking, if we want to amplify to 1/2 − ε, then we will have at least 1/ε
different candidates and thus the “hard” candidate may have input length n ≥ 1/ε,
which means 1/2− ε ≤ 1/2− 1/n.)

To what extent can we amplify the hardness of functions whose bias is unknown?
Non-monotone hardness amplifications, such as Yao’s Xor Lemma, work regardless of
the bias of the original hard function. However, in the rest of this section we show that,
for hardness amplifications that are monotone and black-box, this is impossible. In
particular, we show that black-box monotone hardness amplifications cannot amplify
the hardness beyond the bias of the original function.

We now formalize the notion of black-box monotone hardness amplification and
then state our negative result.

Definition 2.44. An oracle algorithm Amp : {0, 1}l → {0, 1} is a black-box β-bias
[δ 7→ (1/2−ε)]-hardness amplification for length n and size s if for every f : {0, 1}n →
{0, 1} such that Bias [f ] ≤ β and for every A : {0, 1}l → {0, 1} such that

Pr[A(Ul) 6= Ampf (Ul)] ≤ 1/2− ε,

there is an oracle circuit C of size at most s such that

Pr[CA(Un) 6= f(Un)] ≤ δ.

Amp is monotone if for every x, Ampf (x) is a monotone function of the truth
table of f .

Note that if Amp is as in Definition 2.44 and if f is δ-hard for size s′ and Bias [f ] ≤
β, then Ampf is (1/2 − ε)-hard for size s′/s: if there were a circuit A of size s′/s
computing Ampf with error probability at most 1/2− ε, then CA would be a circuit
of size s · (s′/s) = s′ computing f with error probability at most δ, contradicting the
hardness of f . The term “black box” refers to the fact that the definition requires
this to hold for every f and A, regardless of whether or not f is in NP and A is a
small circuit.

The following theorem shows that any monotone black-box hardness amplification
up to 1/2− ε must start from functions of bias β ≈ ε.

Theorem 2.45. For any constant γ > 0, if Amp is a monotone black-box β-bias
[δ 7→ (1/2 − ε)]-hardness amplification for length n and size s ≤ 2n/3 such that
1/2− 4ε > δ + γ, then β ≤ 8ε+O(2−n).
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The main ideas for proving this bound are the following: first we show that the
above kind of hardness amplification satisfies certain coding-like properties. Roughly,
Amp can be seen as a kind of list-decodable code where the distance property is
guaranteed only for δ-distant messages with bias at most β (cf. [Tre2]). Then we
show that monotone functions fail to satisfy these properties. The limitation we
prove on monotone functions relies on the following corollary to the Kruskal-Katona
theorem (see [And], Theorem 7.3.1).

Lemma 2.46. Let S = {S1, . . . , Sm} be a collection of m subsets Si ⊆ {1, . . . , N},
where |Si| = t. If m ≥

(
N−1

t

)
=

(
1− t

N

) (
N
t

)
then for every integer t′ < t

|{S : |S| = t′, S ⊆ Si for some i}| ≥
(
N − 1

t′

)
=

(
1− t′

N

) (
N

t′

)
.

Let Fp be the uniform distribution on functions f whose truth-tables have relative
Hamming weight exactly p, i.e. Prx[f(x) = 1] = p. We use the above Lemma 2.46 to
prove the following fact.

Lemma 2.47. Let A : {0, 1}l → {0, 1} be a an oracle function such that for every
x ∈ {0, 1}l, Af (x) is a monotone function of the truth-table of f : {0, 1}n → {0, 1}.
(For example, any monotone black-box hardness amplification Amp satisfies this con-
dition.) Let τ be an integer multiple of 1/2n. Then there is p ∈ {1/2 − τ, 1/2 + τ}
such that:

EUl

[
BiasF←Fp [A

F (Ul)]
]
≥ τ.

Proof. We show that for every fixed x ∈ {0, 1}l there is a p ∈ {1/2− τ, 1/2 + τ} such
that BiasF←Fp

[
AF (x)

]
≥ 2τ. The theorem then follows easily. Fix x. For every p

define Sp as the set of functions f in Fp such that Af (x) = 0. Note that

BiasF←Fp

[
AF (x)

]
=

∣∣∣∣1− 2|Sp|
|Fp|

∣∣∣∣ .
If |S1/2+τ | < (1/2 − τ) · |F1/2+τ | then BiasF←F1/2+τ

[
AF (x)

]
> 2τ and we are done.

Otherwise,

|S1/2+τ | ≥ (1/2− τ) · |F1/2+τ | = (1− (1/2 + τ)) ·
(

2n

(1/2 + τ)2n

)
.

View the elements f ∈ Sp as subsets of {1, . . . , 2n} of size exactly p2n in the natural
way; i.e. the subset associated with f is the set of inputs x such that f(x) = 1.
Note that if f ′ ⊆ f ⊆ {1, . . . , 2n} and Af (x) = 0 then by the monotonicity of A,
Af ′(x) = 0. Therefore, by Lemma 2.46,

|S1/2−τ | ≥ (1− (1/2− τ)) ·
(

2n

(1/2− τ)2n

)
= (1/2 + τ) · |F1/2−τ |,

and so BiasF←F1/2−τ

[
AF (x)

]
≥ 2τ .
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The following lemma captures the coding-like properties of monotone, black-box
hardness amplifications — it shows that it is very unlikely that Ampf for a “random
f” will land in any fixed Hamming ball of radius 1/2− ε. For two functions f1, f2, let
Dist denote the relative Hamming distance of their truth tables, i.e. Dist(f1, f2) :=
Prx[f1(x) 6= f2(x)].

Lemma 2.48. Let γ > 0 be any fixed constant. Let Amp be a monotone black-box
8ε-bias [δ 7→ (1/2 − ε)]-hardness amplification for length n and size s ≤ 2n/3, where
1/2 − 4ε > δ + γ, and let ε > 0 be an integer multiple of 1/2n. Then for both p in
{1/2− 4ε, 1/2 + 4ε} and every function G:

Pr
F←Fp

[Dist(G,AmpF ) ≤ 1/2− ε] ≤ 2−Ω(2n).

Proof. Let N := 2n. For every function f of bias at most 8ε such that
Dist(G,Ampf ) ≤ 1/2 − ε, there must exist a circuit of size s, with oracle access
to G, that computes f with error at most δ. Therefore, since there are 2O(s log s)

circuits of size s and no more than 2H(δ)N functions that are at distance at most δ
from f , there are at most 2O(s log s)2H(δ)N such functions. Thus, when we restrict our
attention to the

(
N
pN

)
functions in Fp (for p ∈ {1/2− 4ε, 1/2 + 4ε}), we have:

Pr
F←Fp

[Dist(G,AmpF ) ≤ 1/2− ε] ≤ 2O(s log s) · 2H(δ)N(
N
pN

)
≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(p))N

≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(1/2−4ε))N

≤ 2−Ω(N),

where the second inequality follows from the fact that
(

N
pN

)
≥ 2H(p)N/(N + 1),6

and the last inequality uses the fact that 1/2 − 4ε > δ + γ implies H(1/2 − 4ε) >
H(δ) + Ω(1).

Proof of Theorem 2.45. We assume that ε is a positive integer multiple of 1/2n and
show that β ≤ 8ε. The theorem then follows for general ε by rounding it up to the
next integer multiple of 1/2n. We show that β = 8ε is impossible, and therefore that
β < 8ε (because any β′-bias hardness amplification is clearly also a β-bias hardness
amplification for every β ≤ β′).

Suppose, for the sake of contradiction, that β = 8ε.
By Lemma 2.47, we may choose p ∈ {1/2− 4ε, 1/2 + 4ε} such that

EUl

[
BiasF←Fp [Amp

F (Ul)]
]
≥ 4ε.

6Actually,
(

N
pN

)
is asymptotically Θ

(
2H(p)N/

√
N

)
, but for our purpose the easier estimate stated

suffices.
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Define the function G(x) := MajF←Fp
AmpF (x), and consider

Pr
Ul,F←Fp

[AmpF (Ul) 6= G(Ul)]. (2.7)

We have:

Pr
Ul,F←Fp

[AmpF (Ul) 6= G(Ul)]

= EUl

[
Pr

F←Fp

[AmpF (Ul) 6= G(Ul)]
]

= EUl

[1

2
−

BiasF←Fp [Amp
F (Ul)]

2

]
(by def. of bias and G)

=
1

2
−

EUl

[
BiasF←Fp [Amp

F (Ul)]
]

2

≤ 1

2
− 2ε. (by the choice of p)

On the other hand, Lemma 2.48 implies that quantity (2.7) is at least 1/2− ε −
2Ω(2n) (note that the hypothesis of the lemma is satisfied by our assumption that
1/2− 4ε ≥ δ + γ).

Combining the two bounds, we have that

1/2− 2ε ≥ Pr
Ul,F←Fp

[AmpF (Ul) 6= G(Ul)] ≥ 1/2− ε− 2−Ω(2n),

which is a contradiction for sufficiently large n (by the assumption that ε is a
positive multiple of 1/2n).

2.7.2 Nondeterminism is necessary

In this subsection we show that deterministic, monotone, non-adaptive black-box
hardness amplifications cannot amplify hardness beyond 1/2 − 1/ poly(n). Thus,
the use of nondeterminism in our results (Section 2.5.4) seems necessary. Note that
most hardness amplifications, including the one in this chapter, are black-box and
non-adaptive.

O’Donnell [O’D] proves that any monotone “direct product construction” (i.e.
f ′(x1, . . . , xk) = C(f(x1), . . . , f(xk)), as in Equation 2.1) cannot amplify to hardness
better than 1/2 − 1/n, assuming that the amplification works for all functions f
(not necessarily in NP). We relax the assumption that the hardness amplification is
a direct product construction (allowing any monotone nonadaptive oracle algorithm
f ′ = Ampf ). On the other hand, we require that the reduction proving its correctness
is also black-box (as formalized in Definition 2.44).

We prove our bound even for hardness amplifications that amplify only balanced
functions (i.e. β = 0 in Definition 2.44).
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Theorem 2.49. For every constant δ < 1/2, if Amp is a black-box 0-bias [δ 7→
(1/2− ε)]-hardness amplification for length n and size s ≤ 2n/3 such that for every x,
Ampf (x) is a monotone function of k ≤ 2n/3 values of f , then

ε ≥ Ω

(
log2 k

k

)
.

The following lemma is similar to Lemma 2.48. The only difference is in consider-
ing functions F at distance η from f ; this will correspond to perturbing the monotone
amplification-function with noise having parameter η.

Lemma 2.50. Let Amp be as in Definition 2.44 with β = 0 and s ≤ 2n/3. Then
for any constant δ < 1/2 there is a constant η < 1/2 such that, for sufficiently large
n, the following holds: If f : {0, 1}n → {0, 1} is any fixed balanced function and
F : {0, 1}n → {0, 1} is a random balanced function such that Dist(f, F ) = η, then

Pr
F

[Dist(Ampf , AmpF ) ≤ 1/2− ε] ≤ ε.

Proof. Let N := 2n. It is easy to see that F is uniform on a set of size
(

N/2
ηN/2

)2
. The

rest of the proof is like the proof of Lemma 2.48:

Pr[Dist(Ampf , AmpF ) ≤ 1/2− ε] ≤ 2O(s log s)2H(δ)N(
N/2
ηN/2

)2

≤ 2O(s log s) · (N/2 + 1)2 · 2(H(δ)−H(η))N

≤ ε,

where the last inequality holds for a suitable choice of η < 1/2, using the fact that
δ < 1/2 is a constant and that s ≤ 2n/3.

Proof of Theorem 2.49. Let η be the constant in Lemma 2.50. The idea is to consider

Pr
Ul,F,F ′

[AmpF (Ul) 6= AmpF ′
(Ul)], (2.8)

where F is a random balanced function and F ′ is a random balanced function such
that Dist(F, F ′) = η.

By the above lemma, the probability (2.8) is at least 1/2− 2ε.
On the other hand, for every fixed x, AmpF (x) is a monotone function depending

only on k bits of the truth-table of the function F . Since k is small compared to 2n,
the distribution (F, F ′) induces on the input of AmpF (x) a distribution very close to
(Uk, Uk ⊕ µ), where µ is a noise vector with parameter η. Specifically, it can be verified
that the statistical difference between these two distributions is at most O(k2/(η2n)).
Because this value is dominated by log2 k/k when k ≤ 2n/3, and because AmpF (x)
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is a monotone function of k bits, we may apply Theorem 2.17 to conclude that the
probability (2.8) is at most 1/2−O(log2 k/k).

Combining the two bounds, we have that 1/2 − O(log2 k/k) ≥ 1/2 − 2ε and the
results follows.



Chapter 3

Worst-case hardness amplification

3.1 Introduction

In the previous Chapter 2 we studied hardness amplification of functions f :
{0, 1}n → {0, 1} from hardness δ = 1/ poly(n) to hardness close to 1/2. In particular,
we showed that this hardness amplification can be accomplished within NP with
nearly optimal parameters (when starting from balanced functions). We did not
discuss amplification from hardness δ = 1/nω(1). This is the topic of this chapter.

A celebrated result, usually credited to Babai et al. [BFNW], shows that it is
possible to amplify worst-case hardness (i.e., δ = 2−n) within E := Time

(
2O(n)

)
.

Theorem 3.1 ([BFNW]). If there is a function f : {0, 1}n → {0, 1} in E that is worst-
case hard for circuits of size s(n) = nω(1), then there is a function f ′ : {0, 1}O(n) →
{0, 1} in E that is (1/ poly(n))-hard for for circuits of size s′(n) = nω(1).

The idea in the proof of Theorem 3.1 is to take f ′ to be a small degree, multi-variate
polynomial extension of f . The random self-reducibility of low-degree polynomials
then implies that f ′ has the required hardness.

Can we prove a similar result for lower complexity classes, such as NP? As pointed
out in the Introduction in Section 1.1, establishing a connection between worst-case
hardness and average-case hardness for NP is a central open problem in complexity
theory and cryptography.

In this chapter we prove two results that show that such a connection for NP can-
not be proved using black-box techniques. More generally, we prove that black-
box techniques cannot prove such a connection within the polynomial-time hierarchy
PH ⊇ NP.

While we present our negative results only for worst-case hardness amplification,
i.e. δ = 2−n, they can be generalized to any hardness δ = 1/nω(1). (The generalization
of our first result, Theorem 3.4, is addressed in [LTW].) We fix δ = 2−n for simplicity
of exposition and because this seems to be the most interesting setting of parameters.

43
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3.1.1 Organization

This chapter is organized as follows. In Section 3.2 we discuss some preliminaries.
In Section 3.3 we prove that there is no black-box worst-case hardness amplification
within PH. In Section 3.4 we consider a more relaxed model for black-box hardness
amplification, i.e. mildly black-box hardness amplification, and, speaking informally,
we show that even these do not exist within PH.

3.2 Preliminaries

The two main results in this chapter rely on a connection between alternating
time and constant-depth circuits which originated in the seminal paper of Furst et
al. [FSS] (see also [H̊as]). Informally, the connection is that any oracle computation
performed in alternating time with d quantifiers can be carried out by an exponential-
size constant-depth circuit of depth d + 1 that takes the truth-table of the oracle as
part of the input. We now formally describe this connection. First, let us briefly
recall some standard definitions of alternating machines and constant-depth circuits.

An alternating machine is a non-deterministic machine with two types of configu-
rations, ∃ and ∀. An ∃ configuration is accepting if at least one of the configurations
reachable in one step from it are accepting. A ∀ configuration is accepting if all of the
configurations reachable in one step from it are accepting. We say that the machine
uses d − 1 alternations (or d quantifiers) if d − 1 is the maximum number of times
the machine switches between the above two types of configurations over all compu-
tation paths (see [Pap]). Constant-depth circuits consist of And and Or gates with
unbounded fan-in. Circuits take both input variables and their negations as input.
The depth of a circuit is the longest path from any input to the output. The size of
a circuit is the number of gates in it.

We have the following result.

Theorem 3.2 ([FSS]). Let M f : {0, 1}n′ → {0, 1} be an oracle machine, where
f : {0, 1}n → {0, 1}. Suppose that M uses d − 1 alternations and runs in time t for
every x ∈ {0, 1}n′ and every oracle f .

Then, for every x ∈ {0, 1}n′, there is a constant-depth circuit Cx of depth d + 1
and size 2O(d·t) that given the truth-table of f computes M f (x).

For completeness, we include a proof of Theorem 3.2 in Appendix B.

3.3 No black-box hardness amplification within PH

In this section we prove that there is no black-box worst-case hardness amplifica-
tion within the polynomial-time hierarchy PH (and thus in particular within NP).
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Overview of techniques: The outline of our proof is as follows. First we show
that every black-box hardness amplification gives rise to a ‘good’ list-decodable code,
where messages are the truth-tables of the worst-case hard functions and codewords
are the truth-tables of the amplified, average-case hard functions. By the connection
between alternating computation and constant-depth circuits reviewed in Section 3.2,
this code (i.e., the map from messages to codewords) can be computed by a constant-
depth circuit. We then show that constant-depth circuits cannot compute ‘good’
list-decodable codes, which proves the result.

To show that constant-depth circuits cannot compute ‘good’ list-decodable codes,
we use the notion of noise sensitivity, which is a measure of how likely the output
of a function is to change when the input is perturbed with random noise. (Noise
sensitivity was used throughout Chapter 2). We show that ‘good’ list-decodable codes
are very sensitive to noise. Since constant-depth circuits are not, we get our result.

We remark that the above approach is very similar to the one used in Chapter
2 to prove limitations of monotone black-box hardness amplifications (sections 2.7.1
and 2.7.2), though in fact the results in this section preceded those in Chapter 2.

We now proceed to turn the above sketch into a formal proof. First, let us formalize
our notion of black-box hardness amplification.

Definition 3.3. An oracle algorithm Amp : {0, 1}n′ → {0, 1} is a (2−n → δ)-black-
box hardness amplification for size s and length n if for every f : {0, 1}n → {0, 1}
and for every A : {0, 1}n′ → {0, 1} such that

Pr[A(Un′) 6= Ampf (Un′)] ≤ δ,

there is an oracle circuit C of size at most s such that CA(x) = f(x) for every
x ∈ {0, 1}n.

The idea behind this definition is that if Amp is a (2−n → δ)-black-box hardness
amplification for size s and length n, then for every function f : {0, 1}n → {0, 1} that
is worst-case hard for circuits of size s′, Ampf is δ-hard for circuits of size s′/s.

In the notation of Definition 3.3, the hardness amplification in Theorem 3.1 is a
(2−n → 1/ poly(n))-black-box hardness amplification for size poly(n) and length n.
This hardness amplification is computable in time exponential in the input length n
of the worst-case hard function f . In this section we suggest that this running time
cannot be significantly improved, and in particular we prove the following negative
result about black-box worst-case hardness amplification.

Theorem 3.4 (No worst-case hardness amplification within PH). Suppose Amp is a
(2−n → δ) black-box hardness amplification for length n and size s, and suppose that
Amp uses d− 1 alternations and runs in time t ≥ d. Then:

t ≥
(

2nδ

s log s

)Ω(1/d)

.
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In particular, for any constants c > 0, ε < 1, any (2−n → 1/nc)-black-box worst-
case hardness amplification for length n and size 2ε·n that uses d−1 alternations must
run in time 2Ω(n/d).

We note that, if we start with a worst-case hard function f : {0, 1}n → {0, 1},
Theorem 3.4 says that black-box techniques cannot construct a (1/ poly(n))-hard
function in PH. Specifically, for the amplified function Ampf to be in PH we would
need Amp to make only a constant number of alternations (i.e., d = O(1)) and run
in time t = poly(n′). Theorem 3.4 then implies that n′ ≥ 2Ω(n). Since the hardness s
is measured in terms of the input length of the original function f , this gives nothing
when starting from a lower bound for circuits of size s whenever s = 2o(n). We
elaborate more on the tightness of Theorem 3.4 in Section 3.3.1.

A technical remark on the input length of Amp: It should be noted that in
previous hardness amplifications (e.g., Theorem 3.1) the input length increases only
by a constant factor, i.e. Ampf : {0, 1}O(n) → {0, 1}. Our negative result applies
regardless of this. More specifically, our negative result is only expressed in terms of
the running time of the hardness amplification, rather than its input length. Jumping
ahead, this will correspond to a negative result (Theorem 3.7) for computing codes
that is independent from the block length of the code.

We now proceed with the proof of Theorem 3.4. First, let us give the definition
of list-decodable codes:

Definition 3.5 (List-decodable code). A code E : {0, 1}N → {0, 1}N ′
is (δ, ρ)-list-

decodable if for every r ∈ {0, 1}N ′
we have:∣∣∣{x ∈ {0, 1}N : ∆(r, E(x)) ≤ δ

}∣∣∣ ≤ ρ

where ∆ is the relative Hamming distance: ∆(r, y) := Pri[ri 6= yi]. We refer to
x ∈ {0, 1}n as messages and to E(x), x ∈ {0, 1}n, as codewords.

Let Amp be a black-box worst-case hardness amplification. The following lemma,
pointed out in [TV] and also implicit in [Tre1, STV], states that if we consider the
truth table of a function f as a message and the truth table of Ampf as a codeword,
then Amp can be seen as an encoding algorithm.

Lemma 3.6 (Black-box hardness amplification gives rise to a list-decodable code).
Let Amp : {0, 1}n′ → {0, 1} be a (2−n → δ)-black-box hardness amplification for

size s and length n. Then E : {0, 1}2n → {0, 1}2n′
defined as Enc(f) := Ampf is

(δ, 2O(s·log s))-list-decodable.

Proof. Consider A ∈ {0, 1}n̄. By definition of hardness amplification, for every f
such that Prx∈{0,1}n′ [A(x) 6= Ampf (x)] < δ, there is an oracle circuit C of size at most

s such that CA(x) = f(x) for every x. Therefore the number of such codewords is
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bounded by the number of oracle circuits. Noting that there are at most 2O(s·log s)

oracle circuits of size at most s, and that Prx∈{0,1}n̄ [A(x) 6= Ampf (x)] = ∆(A,Ampf ),
completes the proof.

The following theorem states that constant-depth circuits cannot compute ‘good’
list-decodable codes.

Theorem 3.7. Let E : {0, 1}N → {0, 1}N ′
be a (δ, 2m)-list-decodable code, with

m ≤ N/2. If each bit of E can be computed by a circuit of size g and depth d, then

logd−1 g ≥ Ω

(
Nδ

m

)
.

Before proving the above Theorem 3.7, we note that, using the connection between
list-decodable codes and black-box hardness amplification (Lemma 3.6), it implies our
main Theorem 3.4.

Proof of Theorem 3.4. By Theorem 3.2, for every fixed x ∈ {0, 1}n the oracle algo-
rithm Ampf (x) can be turned into an equivalent circuit of depth d+1 and size 2O(d·t),
where we view the truth-table of the oracle f as the input. The result then follows
from Lemma 3.6 and Theorem 3.7.

To prove Theorem 3.7 we make use of the following fact about low noise sensitivity
of constant-depth circuits, which we deduce combining results in [KKL, Bop, O’D],
and ultimately relies on H̊astad’s switching lemma [H̊as]. We denote bitwise Xor by
⊕.

Lemma 3.8. Let C : {0, 1}n → {0, 1} be a circuit of size g and depth d. Let
X ∈ {0, 1}n be a random input, and Ψ ∈ {0, 1}n a random noise vector where each
bit is ‘1’ independently with probability δ < 1/2. Then:

Pr
X,Ψ

[
C(X) 6= C(X ⊕Ψ)

]
≤ O(δ logd−1 g).

The proof of Lemma 3.8 requires a detour into Fourier analysis and therefore we
defer it to Section 3.5.

Proof of Theorem 3.7. Let Ci(x) denote the i-th output bit of C(x). Let Ψ ∈ {0, 1}N
be a random noise vector where each bit is ‘1’ independently with probability m/N .
Let X be chosen at random in {0, 1}N .

The idea in the proof is to consider the quantity

Pr
i,X,Ψ

[
Ci(X) 6= Ci(X ⊕Ψ)

]
and to bound it using (1) the assumption that C is (δ, 2m)-list-decodable and (2) the
low noise sensitivity of constant-depth circuits (Lemma 3.8).
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For every fixed x ∈ {0, 1}N , the list-decodability assumption tells us that there
are at most 2m messages whose codewords are at distance at most δ from C(x). Fix
any such message a ∈ {0, 1}N . The probability that x⊕Ψ is equal to this message a
is

Pr
Ψ

[x⊕Ψ = a] ≤ Pr
Ψ

[x⊕Ψ = x] ≤ (1−m/N)N ≤ e−m, (3.1)

where the first inequality holds because m/n ≤ 1/2.
Therefore, by a union bound:

Pr
X,Ψ

[
∆(C(X), C(X ⊕Ψ)) ≤ δ

]
≤ 2m · e−m = 2−Ω(m).

Therefore:

Pr
i,X,Ψ

[
Ci(X) 6= Ci(X ⊕Ψ)

]
≥ Pr

i,X,Ψ

[
Ci(X) 6= Ci(X ⊕Ψ)

∣∣∣∆(C(X), C(X ⊕Ψ)) > δ
]

· Pr
X,Ψ

[
∆(C(X), C(X ⊕Ψ)) > δ

]
≥ δ ·

(
1− 2Ω(m)

)
≥ δ/2. (3.2)

On the other hand, by Lemma 3.8 we have

Pr
i,X,Ψ

[
Ci(X) 6= Ci(X ⊕Ψ)

]
≤ m · O(logd−1 g)

N
. (3.3)

The theorem follows by putting together the bounds (3.2) and (3.3).

3.3.1 Tightness

In this section we discuss in what sense Theorem 3.4 is tight. Recall that it estab-
lished the following tradeoff for a (2−n → 1/nO(1)) black-box hardness amplification
for length n and size s computable with d− 1 alternations in time t ≥ d :

t ≥
(

2n

n · s · log s

)Ω(1/d)

.

Suppose we have a black-box worst-case to average-case hardness amplification that
achieves n′ = poly(n), as achieved by Theorem 3.1. If we insist that Amp is com-
putable in the polynomial-time hierarchy PH, i.e. that runs in time t = poly(n′) =
poly(n) with a constant number of alternations, then the above bound implies that
s ≥ 2n/nO(1), which means that the function f : {0, 1}n → {0, 1} we start with must
be hard for circuits of size at least s = 2n/nO(1). However, the next easy proposition
shows that for such big sizes average-case and worst-case hardness are equivalent !
Consequently, under such an assumption no worst-case to average-case hardness am-
plification is needed.
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Proposition 3.9. If f : {0, 1}n → {0, 1} is worst-case hard for circuits of size (2n/nc)
then f is (1/nc+O(1))-hard for circuits of size (2n/nc+O(1)).

Proof. Suppose not: let C be a circuit of size at most p · 2n such that

Pr[C(Un) 6= f(Un)] < p.

Then there are at most p ·2n inputs x such that C(x) 6= f(x). By hardwiring all these
inputs in the circuit, we can construct a circuit C ′ of size at most poly(n) · p · 2n such
that, given x, decides whether C(x) 6= f(x).

Combining C and C ′ with a Xor we obtain a circuit of size p · 2n + poly(n) · p · 2n

computing f everywhere. We reach a contradiction for p = 1/nc+O(1).

3.4 No mildly black-box hardness amplification in

PH

In the previous Section 3.3 we proved a negative result regarding black-box hard-
ness amplification. As pointed out in Section 1.3, this covers all known hardness
amplifications against circuits. However, there are instances in complexity theory
and cryptography when non-black-box techniques have been successfully used, and
thus it is natural to wonder if non-black-techniques could be used for worst-case hard-
ness amplification, or if one can prove meaningful negative results about more relaxed
notions of “black-box.” In this section we present a result of the latter kind. Let us
first discuss a relaxation of the notion of black-box hardness amplification.

Mildly black-box hardness amplification: Our previous notions of black-box
hardness amplification (definitions 3.3 and 2.44) was black-box both in the use of the
worst-case hard function f and in the ‘proof of correctness.’ Namely it asked for
an ‘efficient’ algorithm Amp such that for every function f and every adversary A,
if A computes Ampf well on average then there is a small circuit D such that DA

computes f in the worst-case. Recall from Section 3.3 that the rationale behind this
definition is that if f is worst-case hard then DA cannot be a small circuit. However,
since D is a small circuit, we have that A cannot be a small circuit, and hence Ampf is
average-case hard. A natural relaxation of this notion is to drop the requirement that
Amp is black-box in both the worst-case hard function and the ‘proof of correctness.’

Bogdanov and Trevisan [BT] prove a negative result where Amp is black-box
only in the proof of correctness. Specifically, building on [FF], they show that every
hardness amplification within NP such that its proof of correctness is black-box and D
makes non-adaptive queries to A implies a collapse of the polynomial-time hierarchy
PH, and therefore such a hardness amplification is unlikely to exist. Their result is
powerful in that it allows for the hardness amplification to depend on the particular
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worst-case hard function in NP (e.g., SAT). However, it only applies when the proof
of correctness is non-adaptive.

In this section we present a negative result on hardness amplifications that is
black-box only in the use of f . Let us pause a moment to reflect on what kind of
negative result one can expect. If we put no requirements on the proof of correctness,
we are simply studying hardness amplifications Amp such that Ampf is average-case
hard whenever f is worst-case hard. But if PH contains average-case hard functions
than such hardness amplifications do exist: simply ignore the oracle and compute
the average-case hard function known to exist in PH! Thus, if we believe, as most
researchers do, that PH contains average-case hard functions, we cannot rule out
such pathological hardness amplifications. The best we can hope to show is that such
pathological hardness amplifications are the only possibility. That is exactly what we
show: we show that exhibiting a hardness amplification that is black-box only in the
use of f is equivalent to exhibiting an average-case hard function in PH.

Theorem 3.10. Let s(n) be a function such that s(n) = 2n/nω(1). Suppose that there
is a constant a and an oracle algorithm Amp such that for every f : {0, 1}n → {0, 1}
that is worst-case hard for size s(n), Ampf : {0, 1}na → {0, 1} is .3-hard for size s′(n).
Suppose moreover that Amp runs in polynomial time and uses a constant number of
alternations.

Then there is a constant b and a function f ′ ∈ PH such that f ′ : {0, 1}nb → {0, 1}
is .1-hard for size s′(n).

Before discussing the ideas behind the proof of Theorem 3.10 we make some
remarks.

Remarks on Theorem 3.10: (1) We required (in the statement of the theo-
rem) that for every c and for sufficiently large n, s(n) ≤ 2n/nc. This is because
for s ≥ 2n/nc for some fixed constant c, the oracle is already 1/ poly(n)-hard by
Proposition 3.9. In this case, one can construct a function in PH that is .3-hard by
using, say, the Xor Lemma (see Section 2.1). (2) Similar results hold for hardness am-
plifications Ampf : {0, 1}l(n) → {0, 1} running in time t(n) with a constant number of
alternations, for a ‘wide’ range of parameters l(n), t(n). Here we set l(n) = poly(n)
and t(n) = poly(n) for simplicity of exposition.

Techniques: We now sketch the main ideas in the proof of Theorem 3.10. The idea
is to choose the oracle function f at random from a suitable distribution of functions
F̃ such that (1) F̃ is worst-case hard with high probability, but (2) AmpF̃ makes
‘little’ use of the oracle F̃ . By (1) and the assumption of the theorem we have that

AmpF̃ is average-case hard, but by (2) we can dispense with the oracle and construct
an average-case hard function f ′ from scratch, thus proving the theorem.
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We now explain how we construct the distribution F̃ . The idea is to fix some of
the bits in the truth table of F̃ , and choose the other at random. The bits to be fixed
are chosen applying a random restriction to the truth table of F̃ . Now, (1) follows
by the fact that we only fix few bits, while (2) follows by the fact that the oracle
PH computation can be simulated by constant-depth circuits (Theorem 3.2) and such
circuits have low noise sensitivity (Lemma 3.8). More precisely, (2) follows by the
fact that a constant-depth circuit becomes very biased after we apply a restriction to
it, and so the choice of the other bits does not affect its outcome too much.

An idea now would be to include the fixing of the bits in the input to the function
h, but the problem is that to describe this fixing of bits requires length of the order
of the truth table of the oracle f , i.e. 2n, while we need the input length of h to
be polynomial in n (since the circuit size s′ in Theorem 3.10 is relative to the input
length of f). To overcome this problem, we derandomize the random restrictions. I.e.,
we create a pseudorandom distribution on restrictions that can be generated using
only poly(n) random bits, yet still with high probability satisfies (1) and (2). Now,
the function h takes σ as part of the input, where σ is of size poly(n) and is used
to generate a pseudorandom restriction. The input length of h is polynomial in n
and the theorem can be proved. This pseudorandom distribution on restrictions is
obtained using Nisan’s unconditional pseudorandom generator against constant-depth
circuits [Nis1]. The challenges of course are showing that after this derandomization
(1) and (2) still hold. In particular, for (2) we show that a constant depth circuit
becomes very biased even after applying a pseudorandom restriction. We remark that
the idea of using Nisan’s generator to derandomize restrictions already appeared in
[CSS] in the context of resource-bounded measure theory. Our use of it in hardness
amplification and our technique based on noise sensitivity are new.

Before presenting the formal proof of Theorem 3.10, we need to discuss some
notation about restrictions.

Restrictions: A restriction ρ on t bits is an element of {0, 1, ∗}t, where we think
of the *’s as values yet to be chosen. For x ∈ {0, 1}t we denote by xρ ∈ {0, 1}t the
string obtained from ρ by substituting the *’s with the corresponding bits of x. Note
xρ only depends on the bits of x corresponding to * in ρ. We consider restrictions on
2n bits, which will be convenient to view as functions ρ : {0, 1}n → {0, 1, ∗}. When
ρ : {0, 1}n → {0, 1, ∗} we think of ρ(i) as a partial assignment to the output f(i) of
some function f : {0, 1}n → {0, 1}. The following is a key definition: for a function
f : {0, 1}n → {0, 1} we denote by fρ : {0, 1}n → {0, 1} the function defined by

fρ(x) := f(x)ρ(x) =

{
f(x) if ρ(x) = ∗,
ρ(x) otherwise.

For a fixed restriction ρ, a key random variable we will look at is F ρ, where F :
{0, 1}n → {0, 1} is a uniform random function. Note that F ρ can be seen as the
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distribution on functions whose truth table is obtained starting from the truth table
of ρ and replacing each * with a uniform and independent random bit. The standard
[FSS] distribution on restrictions Rδ is the one where each symbol in the restriction
is independently * with probability δ and otherwise it is a uniform and independent
random bit. When we say that ρ : {0, 1}n → {0, 1, ∗} is random in Rδ we mean that
each of the 2n symbols in the truth table of ρ is independently * with probability δ
and otherwise it is a uniform and independent random bit.

We would like to point out some differences between our notation for restrictions
(above) and the notation more commonly used in literature (e.g. [FSS, H̊as]) and
also used in Chapter 4. The notation commonly used in literature is the following:
for a function f : {0, 1}n → {0, 1} and a restriction ρ : {1, 2, . . . , n} → {0, 1, ∗}
with s stars (i.e. exactly s distinct indexes i such that ρ(i) = ∗) one denotes by
f |ρ : {0, 1}s → {0, 1} the function obtained by ‘restricting’ f on the s bits mapped
to ∗ by ρ, where the other bits are fixed as prescribed by ρ. Thus, in the standard
notation one restricts the input of the function, while in our notation we restrict
the truth-table of the function. Our notation makes sense in our setting because we
will use restrictions to argue about an exponential-size constant-depth circuit that
computes Ampf when given the truth-table of f as input. To avoid confusion we
never use the notation f |ρ in this chapter.

3.4.1 The proof

To prove Theorem 3.10 we build a certain pseudorandom distribution on restric-
tions. This is the main technical lemma of this section.

Lemma 3.11. For every constant c, there is a distribution R̃c on restrictions ρ :
{0, 1}n → {0, 1, ∗} such that:

(1) Every ρ ∈ R̃c is described by poly(n) bits σ. We denote by ρσ the restriction
described by σ. For random σ, we have that ρσ is random in R̃c. There is a polynomial
time algorithm such that given σ and x ∈ {0, 1}n, computes ρσ(x).

(2) For every circuit C of size 2nc
and depth c on N := 2n bits, with probability

1− o(1) over ρσ ← R̃c,
BiasUN

[C(UN
ρσ)] ≥ 1− o(1).

(Where the Bias of a 0− 1 random variable X is |Pr[X = 0]− Pr[X = 1]|.)
(3) There is a constant d such that with probability 1− o(1) over ρσ ← R̃c, ρσ has

at least 2n/nd ∗’s.

We now assume the above Lemma and prove Theorem 3.10.

Proof of Theorem 3.10. By Theorem 3.2, the oracle algorithm Amp can be turned
into an exponential size constant-depth circuit whose input is the truth table of the
oracle f . In particular, let c be such that, for every x, Ampf (x) has depth c and
size 2nc

when turned into a constant depth circuit whose input is the truth table
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of f . Consider the distribution on restrictions R̃c whose existence is guaranteed by
Lemma 3.11, let F denote a uniform random function F : {0, 1}n → {0, 1}. Consider
AmpF ρσ

, where ρσ ← R̃c. We need a couple of lemmas.

Lemma 3.12. With probability 1− o(1) over ρσ ← R̃c and F , F ρσ : {0, 1}n → {0, 1}
is worst-case hard for size s(n). In particular, with probability 1− o(1) over ρσ ← R̃c

and F , AmpF ρσ
: {0, 1}na → {0, 1} is .3-hard for size s′(n).

Lemma 3.13. There is a PH machine A′ such that given σ and an input x
computes the most likely value of AmpF ρσ

(x) over the choice of F , whenever
BiasF [AmpF ρσ

(x)] ≥ .2. I.e., if PrF [AmpF ρσ
(x) = 1] ≥ .6 then A′(σ, x) = 1, and

if PrF [AmpF ρσ
(x) = 0] ≥ .6 then A′(σ, x) = 0.

Now for the proof of the theorem. By Lemma 3.11, for every x, w.p. 1 − o(1)
over σ, BiasF [AmpF ρσ

(x)] ≥ 1− o(1). This holds because, for fixed x, Ampf (x) is a
constant depth function of the truth table of f . Let A′ be the oracle PH machine in
Lemma 3.13. By Lemma 3.13 we have:

Pr
x,σ,F

[A′(σ, x) 6= AmpF ρσ
(x)] ≤ o(1) + o(1) = o(1). (3.4)

Thus there is a function η(n) = o(1) such that

Pr
σ,F

[∆(A′(σ, .), AmpF ρσ
) ≥ η(n)] ≤ η(n). (3.5)

Where ∆(f, f ′) denotes the relative Hamming distance of the truth tables of f, f ′ :
{0, 1}n → {0, 1}. Thus:

Pr
σ,F

[A′(σ, .)is not .2-hard for size s′(n)]

≤ Pr
σ,F

[
∆(A′(σ, .), AmpF ρσ

) > .1 or AmpF ρσ
is not .3-hard for size s′(n)

]
≤ o(1) + o(1) (By Inequality (3.5) and Lemma 3.12)

≤ o(1),

where we use the fact that if A′(σ, .) is at relative Hamming distance at most .1 from
AmpF ρσ

that is .3-hard, then A′(σ, .) must be .2-hard. This holds because otherwise
the circuit computing A′(σ, .) with error less than .2 would also compute AmpF ρσ

with error less than .2 + .1 = .3.
Now, since with high probability over σ we have that A′(σ, .) is .2-hard for size

s′(n), we have that every circuit of size s′(n) fails to compute A′ on at least a .2 · (1−
o(1)) > .1 fraction of inputs, and thus A′ is .1-hard for size s′(n).

To finish the proof note that A′ is in PH and that it has input length nb for some
constant b.

We now discuss Lemmas 3.12 and 3.13.
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Proof of Lemma 3.12. This is a simple counting argument. By Lemma 3.11 there is
a constant d such that ρ has at least 2n/nd ∗’s with high probability. Whenever this
happens, F ρ is uniform (over the choice of F ) on a set of 22n/nd

functions. There
are at most 2O(S·log S) circuits of size S. By assumption, for sufficiently large n,
S(n) ≤ 2n/nd+2. This means in particular that for sufficiently large n, O(S · logS) ≤
(2n/nd)/2. Therefore, for sufficiently large n, the probability (over F ) that F ρ is not
worst-case hard for size S is at most 2O(S(n)·log S(n))−2n/nd ≤ 22n/(2·nd) = o(1).

Lemma 3.13 was essentially proved by Nisan in [Nis1] (see also [NW]) (In [Nis1,
NW] the lemma is stated as “almost-PH=PH”). The idea is to use Nisan’s generator
(described below in Theorem 3.14) to replace the random oracle F with a pseudo-
random oracle that is generated using only poly(n) random bits (as opposed to 2n).
These poly(n) random bits are then replaced by a constant number of alternations
just like in the proof that BPP ⊆ PH (which is discussed in detail in Chapter 5).

3.4.2 Pseudorandom restrictions

In this section we prove Lemma 3.11. A key tool is Nisan’s pseudorandom gener-
ator against constant depth circuits.

Theorem 3.14 ([Nis1]). For every constant c and every n there is a generator Nis :
{0, 1}poly log n → {0, 1}n such that (1) given x and i ≤ n we can compute the i-th bit
of Nis(x) in time poly log(n) and (2) Nis is 1/n-pseudorandom for circuits of size n
and depth c. That is, for every circuit C : {0, 1}n → {0, 1} of size n and depth c:∣∣∣ Pr[C(Nis(Upoly log n)) = 1]− Pr[C(Un) = 1]

∣∣∣ ≤ 1/n.

Proof of Lemma 3.11. Let δ := 1/nc2 . First, let us see that Rδ satisfies Items (2) and
(3) in Lemma 3.11. Using our previous result on noise-sensitivity of constant-depth
circuits (Lemma 3.8), we have that for every circuit C : {0, 1}t → {0, 1} of size 2nc

and depth c on t bits:

Pr
ρ∈Rδ ,Ut,U ′

t

[C(Ut
ρ) 6= C(U ′t

ρ
)] = Pr

Ut,Ψ
[C(Ut) 6= C(Ut ⊕Ψ)] ≤ O(δ · logc−1 2nc

) = o(1),

(3.6)
where Ψ ∈ {0, 1}t is a random string where each bit is ‘1’ independently with proba-
bility δ/2. The above Equation 3.6 in turn implies that with probability 1−o(1) over
Rδ, BiasUt [C(Ut

ρ)] ≥ 1 − o(1) (see below). (A similar connection between collision
probability and bias was also used in Section 2.5.2.) Moreover by a Chernoff bound
(see Appendix A)the fraction of ∗’s in ρ ∈ Rδ will be concentrated around δ.

So Rδ satisfies Items (2) and (3) in Lemma 3.11. But the problem is that Rδ

requires at least 2n bits to be generated, while we aim to a distribution on restrictions
which can be generated with poly n bits. To this aim we derandomize Rδ.



Chapter 3: Worst-case hardness amplification 55

Let W be a canonical circuit that given I := O(2n log(1/δ)) random bits generates
Rδ (say we use blocks of O(log(1/δ)) bits to put a ∗ with probability δ). It is easy to
see that there is such a circuit W of size poly(2n) and depth O(1).

We now define R̃c. For a constant c′ to be determined later, consider the generator

Nis : {0, 1}logd I → {0, 1}I which is
(
2nc′

)
-pseudorandom against depth c′, where d is

a constant that depends on c′, as given by Theorem 3.14. Then

R̃c := W (Nis(Ulogd I)).

We now prove that R̃c has the required properties.
(1) Follows immediately from Theorem 3.14.
(2) First we show that, even under pseudorandom restrictions, circuits of size 2nc

and depth c still have low noise sensitivity. The claim about the bias then easily
follows. To show this we use an approach similar to one used in the previous Chapter
2. Specifically, we let N := 2n and we note that the noise sensitivity of a constant-
depth circuit C equals the acceptance probability of another (slightly bigger) constant-
depth circuit C ′ defined as follows: Given a restriction ρ, C ′ tosses coins for UN and
U ′N and answers 1 if and only if C(UN

ρ) 6= C(U ′N
ρ). It is easy to see that such a

C ′ can be implemented in constant depth. Combining C ′ with our constant depth
circuit W that given random bits generates a random restriction in Rδ we obtain
another constant depth circuit C ′′ := C ′ ◦ W . Now, the acceptance probability of
C ′′ over a truly random input is the noise sensitivity of C with respect to Rδ, while
the acceptance probability of C ′′ over a pseudorandom input generated using Nisan’s
PRG Nis is the noise sensitivity of C with respect to R̃c. Therefore, since C ′′ cannot
distinguish the output of Nisan’s PRG from truly random, we deduce that the noise
sensitivity of C with respect to R̃c is close to the noise sensitivity of C with respect
to Rδ.

Therefore, choosing a sufficiently large constant c′ in the definition of R̃c we have
that, for every C : {0, 1}N → {0, 1} of size 2nc

and depth c:

Pr
ρσ∈R̃c,UN ,U ′

N

[C(UN
ρσ) 6= C(U ′N

ρσ)]

≤ Pr
ρ∈Rδ ,UN ,U ′

N

[C(UN
ρ) 6= C(U ′N

ρ
)] + o(1) (by pseudorandomness)

≤ o(1) (by Equation (3.6))

We now deduce a claim about the bias. By above there is a function η(n) = o(1) such
that

Pr
ρσ∈R̃c

[
Pr

UN ,U ′
N

[C(UN
ρσ) 6= C(U ′N

ρσ)] ≤ η(n)

]
≥ 1− η(n).

Noticing that PrUN ,U ′
N
[C(UN

ρσ) 6= C(U ′N
ρσ)] ≤ o(1) implies that BiasUN

[C(UN
ρσ)] =

1− o(1) concludes the proof of this item.
(3) Ajtai [Ajt1] shows the following:
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Lemma 3.15 ([Ajt1]). For every i there is a circuit C of size poly(2n) and depth
O(1) such that, given u and a bit string of length 2n:

If the bit string has more than u+ 2n/ni occurrences of ‘1’ then C outputs 1.
If the bit string has fewer than u− 2n/ni occurrences of ‘1’ then C outputs 0.

(In Theorem 5.2 we show that this can be done by uniform polynomial-size depth-3
circuits for the special setting of parameters where u = 2n/2 and we have the constant
6 instead of ni.)

We expect a random ρ ∈ Rδ to have δ2n ∗’s. By a Chernoff bound (see Appendix
A) the probability that it has less than (δ2n)/2 is o(1). Since δ = 1/nc2 = 1/ poly(n),
by Lemma 3.15 there is a constant depth circuit of size poly(2n) that can distinguish
the cases, say, “more than δ/2 fraction of ∗’s” and “less than δ/3 fraction of ∗’s”
(setting u := (δ2n)/2.5 in Lemma 3.15). Therefore, choosing a sufficiently large
constant c′ in the definition of R̃c, by pseudorandomness, we have that ρσ ∈ R̃c has
at least (δ2n)/3 ∗’s with high probability.

3.5 Noise sensitivity of constant-depth circuits

In this section we prove Theorem 3.8. Recall that ⊕ denotes bitwise Xor.

Theorem (3.8, restated). Let C : {0, 1}n → {0, 1} be a circuit of size g and depth
d. Let X ∈ {0, 1}n be a random input and let Ψ ∈ {0, 1}n be a random noise vector
where each bit is ‘1’ independently with probability δ < 1/2. Then:

Pr
X,Ψ

[
C(X) 6= C(X ⊕Ψ)

]
≤ O(δ logd−1 g).

Although it is well known that constant-depth circuits have small noise sensitivity,
the bound we need is not stated in the literature, and to prove it we need to introduce
the Fourier machinery and then combine several results.

We now set up the usual Fourier machinery, see e.g. [LMN] for details. Whenever
we discuss Fourier coefficients, we will use {+1,−1} instead of {0, 1}. When working
over {+1,−1} we denote also by ⊕ bitwise multiplication. Let f : {+1,−1}n →
{+1,−1} be any boolean function. Then f has a unique representation as a multilin-
ear polynomial in x1, . . . , xn of total degree at most n. The S-th Fourier coefficient
of f , denoted f̂(S), is the coefficient of the monomial

∏
i∈S xi in this polynomial. We

also have, by Parseval’s identity: ∑
S⊆[n]

f̂(S)2 = 1,

where [n] := {1, . . . , n}.
The first result we need is a characterization of the noise sensitivity of a function

in terms of its Fourier coefficients. Such a characterization is given by [O’D].
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Lemma 3.16 ([O’D]). Let f : {+1,−1}n → {+1,−1} be any boolean function. Let
X ∈ {+1,−1}n be a random input and let Ψ ∈ {+1,−1}n be a random noise vector
where each bit is ‘1’ independently with probability δ < 1/2. Then:

Pr
X,Ψ

[f(X) 6= f(X ⊕Ψ)] =
1

2
− 1

2

∑
S⊆[n]

(1− 2δ)|S|f̂(S)2.

The second result we need is a bound on the Fourier coefficients of functions com-
puted by constant-depth circuits. [Bop] gives a tight bound on the average sensitivity
of constant-depth circuits. Combining this bound with the characterization of aver-
age sensitivity in terms of Fourier coefficients given by [KKL] (see also [LMN]), we
obtain the following bound.

Lemma 3.17 ([KKL, Bop]). Let f be computable by a circuit of size g and depth d.
Then ∑

S⊆[n]

|S|f̂(S)2 ≤ O(logd−1 g).

We can now prove Lemma 3.8.

Proof of Lemma 3.8. Let f : {+1,−1}n → {+1,−1} be the function computed by
C. We have:

Pr
X,Ψ

[C(X) 6= C(X ⊕Ψ)]

=
1

2
− 1

2

∑
S⊆[n]

(1− 2δ)|S|f̂(S)2 (by Lemma 3.16)

≤ 1

2
− 1

2

∑
S⊆[n]

(1− 2δ|S|)f̂(S)2 (by Bernoulli’s inequality)

=
1

2

∑
S⊆[n]

2δ|S|f̂(S)2 (by Parseval’s identity)

≤ O(δ logd−1 g) (by Lemma 3.17)

which proves the lemma.



Chapter 4

Pseudorandom Bits for
Constant-Depth Circuits with
Sym Gates

A major consequence of the existence of average-case hard functions is that it
allows us to build pseudorandom generators and consequently derandomize proba-
bilistic algorithms (see Section 1.2). In this chapter we construct a function that is(
1/2− 1/nω(1)

)
-hard for small constant-depth circuits with few arbitrary symmetric

gates. We then apply it to construct a new pseudorandom generator and obtain a
subexponential derandomization of the class of functions computable by small prob-
abilistic constant-depth circuits with few arbitrary symmetric gates.

4.1 Introduction

A pseudorandom generator G : {0, 1}l → {0, 1}m is an efficient procedure that
stretches l input bits into m� l output bits such that the output distribution of the
generator fools small circuits. That is, for every circuit C of size m we have∣∣∣ Pr

x∈{0,1}l
[C(G(x)) = 1]− Pr

x∈{0,1}m
[C(x) = 1]

∣∣∣ ≤ 1

m
.

Pseudorandom generators have found a striking variety of applications in complexity
theory, most notably to derandomize probabilistic algorithms.

Starting with the seminal work of Nisan and Wigderson [NW], a series of results
(e.g. [BFNW, STV, SU1, Uma1]) show how to construct pseudorandom generators
starting from an explicit function that requires circuits of superpolynomial size. How-
ever, no such function is known to exist.

On the other hand, pseudorandom generators that fool restricted kinds of circuits,
such as constant-depth circuits with unbounded fan-in, are already very interesting.

58
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They also have a large variety of applications (see, e.g., sections 2.4.1 and 3.4.2)
and are central to understanding the power of randomness in restricted classes of
algorithms. While there has been exciting progress in constructing explicit functions
that require superpolynomial size constant-depth circuits with certain kinds of gates
(e.g. [H̊as, Raz, Smo, HG, RW, HM]), no explicit function is known to require super-
polynomial size constant-depth circuits with Majority gates (cf. [RR]). This is an
obstacle to construct pseudorandom generators, as most constructions need such a
function. This need is due to the fact that the reductions in the proofs of correctness
of these constructions use (a polynomial number of) Majority gates, as discussed in
greater detail in Chapter 6.

But when starting from an average-case hard function, the reduction in the proof
of correctness of the Nisan-Wigderson construction [NW] does not require Majority
gates (here by average-case hard we mean a function f : {0, 1}n → {0, 1} that is(
1/2− 1/nω(1)

)
-hard). Thus, one can plug average-case lower bounds into the Nisan-

Wigderson construction to get a generator that fools small constant-depth circuits.
This approach is used in a celebrated work by Nisan [Nis1] (that actually predates
the more general construction in [NW]) where he exhibits a generator G : {0, 1}l →
{0, 1}2lΩ(1)

that fools small AC0 circuits (i.e. constant-depth circuits with And and
Or gates). This generator is based on the fact that Parity is very average-case hard
for small AC0 circuits [H̊as].

Subsequently, Luby, Velickovic, and Wigderson (Theorem 2 in [LVW]) build a

generator G : {0, 1}l → {0, 1}lΩ(log l)
that fools small Sym ◦ And circuits, i.e. depth 2

circuits with one arbitrary symmetric gate (Sym) at the top and And gates at the
bottom. By arbitrary symmetric gate we mean a gate that computes an arbitrary
function whose value depends only on the number of input bits being 1, important
examples being Parity and Majority. This generator is based on the fact that the
‘generalized inner product’ function is average-case hard for small Sym ◦ And circuits
with small bottom fan-in [BNS, HG].

The above two generators ([Nis1] and Theorem 2 in [LVW]) fool two incomparable
classes of circuits (i.e. small AC0 circuits and small Sym ◦ And circuits). In this chapter
we exhibit a generator that fools a class of circuits strictly richer than both of them,
namely small constant-depth circuits with few arbitrary symmetric gates.

4.1.1 Our Results

In this chapter we exhibit the following generator.

Theorem 4.1. For every constant d there is a constant ε > 0 such that for every l
there is a generator G : {0, 1}l → {0, 1}m, where m = m(l) := lε log l, such that for
every circuit C of size m and depth d with logm(l) arbitrary symmetric gates, we
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have: ∣∣∣∣ Pr
x∈{0,1}m

[C(x) = 1]− Pr
x∈{0,1}l

[C(G(x)) = 1]

∣∣∣∣ ≤ 1

m
,

and given x ∈ {0, 1}l, i ≤ m, we can compute the i-th output bit of G(x) in time
poly(l).

The generator in Theorem 4.1 improves on the generator by Luby, Velickovic, and
Wigderson (Theorem 2 in [LVW]) that achieves the same stretch (up to a different
constant ε) but only fools circuits of depth 2 (as opposed to any constant depth)
with one symmetric gate at the top. (We elaborate more on the difference between
the two generators in Section 4.6.) The generator in Theorem 4.1 also fools a strictly
richer class of circuits than Nisan’s generator that fools constant depth circuits [Nis1].

(However, Nisan’s generator has a much bigger stretch: it stretches l bits to 2lΩ(1)
bits.)

As a standard consequence of Theorem 4.1 we obtain the following subexponential
derandomization of probabilistic constant depth circuits with a constant number of
arbitrary symmetric gates. This is the richest probabilistic circuit class known to
admit a subexponential derandomization. (See Section 1.2 or, e.g., [NW] for the
connection between generators and derandomization.)

Corollary 4.2. Let a function f be computed by a uniform family of probabilistic
poly(n)-size constant depth circuits with O(log n) arbitrary symmetric gates. Then f

can be computed in deterministic time exp(2O(
√

log n)) = 2no(1)
.

4.1.2 Techniques

The generator in Theorem 4.1 is obtained by plugging into the Nisan-Wigderson
pseudorandom generator construction [NW] a function that is very hard on average
for ‘small’ constant-depth circuits with ‘few’ arbitrary symmetric gates (cf. Theorem
4.3 below). Here a simple and crucial observation is that the reduction in the proof
of correctness of the Nisan-Wigderson generator (essentially) does not increase the
number of arbitrary symmetric gates.

Given our average-case hardness result (Theorem 4.3), the construction of our
generator is simpler than the construction of the (weaker) generator by Luby, Velick-
ovic, and Wigderson (Theorem 2 in [LVW]) that uses more involved combinatorial
arguments than those in [NW]. These more involved combinatorial arguments were
probably used because the generator in [LVW] builds on a function that is hard on
average for circuits of depth 2 (as opposed to any constant depth), and thus one
cannot use directly the Nisan-Wigderson construction [NW] since the reduction in its
proof of correctness increases the depth by 1.

We now state our average-case hardness result.

Theorem 4.3. There is a function f : {0, 1}∗ → {0, 1} computable in polynomial
time such that for every constant d there is a constant ε > 0 such that for every n
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and every circuit C of size nε·log n, depth d and with ε log2 n arbitrary symmetric gates,
the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nε·log n.

We now explain the techniques involved in proving Theorem 4.3. To simplify the
discussion we first focus on how to prove an average-case hardness result for ‘small’
constant-depth circuits with one arbitrary symmetric gate at the top, i.e. ‘small’
Sym ◦ AC0 circuits (Theorem 4.4). The extension to circuits with more arbitrary
symmetric gates is deferred to the paragraph “Circuits with more Arbitrary Symmet-
ric Gates” below. We obtain our average-case hardness result for ‘small’ Sym ◦ AC0

circuits through a modification of previous lower bounds. We now discuss these pre-
vious lower bounds, then we discuss why they are not sufficient for our purposes, and
then we sketch the proof of our average-case hardness result for ‘small’ Sym ◦ AC0

circuits.

Previous lower bounds: Babai, Nisan and Szegedy [BNS] prove that the “gen-
eralized inner product” function (i.e., GIPn,s(x) :=

⊕
i≤n

∧
j≤s xi,j) is very hard on

average for multiparty communication complexity protocols among ‘few’ parties that
communicate ‘little’.

H̊astad and Goldmann [HG] notice that any function computed by a ‘small’ depth
2 circuit with an arbitrary symmetric gate of unbounded fan-in at the top and (ar-
bitrary) gates of ‘small’ fan-in at the bottom can be computed by a multiparty com-
munication complexity protocol among ‘few’ parties communicating ‘little’. Thus, by
the above result [BNS], they obtain that GIP is average-case hard for that kind of
circuits. Now, by the so-called “ε-discriminator lemma”1 of Hajnal et. al. [HMP+]
they conclude that GIP cannot be computed, in the worst-case, by ‘small’ depth 3
circuits with one majority gate of unbounded fan-in at the top, arbitrary symmetric
gates of unbounded fan-in in the middle, and (arbitrary) gates of ‘small’ fan-in at the
bottom.

Razborov and Wigderson [RW] eliminate the constrain on the bottom fan-in: they
exhibit a new function RW that cannot be computed, in the worst-case, by ‘small’
depth 3 circuits with one majority gate at the top, symmetric gates in the middle, and
And gates at the bottom, where all the gates have unbounded fan-in (Maj ◦ Sym ◦ And
circuits). Their function RW is obtained from GIP by replacing each input variable
with a parity function, i.e. RW (x) :=

⊕
i≤n

∧
j≤log n

⊕
k≤n xi,j,k.

To explain their argument we introduce restrictions [FSS]. A restriction on m
variables x1, x2, . . . , xm is a map ρ : {x1, x2, . . . , xm} → {0, 1, ∗}. For a circuit C we
denote by C|ρ the circuit we get by doing the substitutions prescribed by ρ, followed

1This lemma states that if a function is computed by a ‘small’ circuit with a Majority gate at
the top, then some input circuit to the Majority gate computes the function ‘well’ on average.
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by all obvious cancellations made possible by applying ρ. The input variables of C|ρ
are the variables which were given the value * by ρ.

The argument in [RW] goes as follows: suppose that RW is computable by a
‘small’ Maj ◦ Sym ◦ And circuit C. Then there is a restriction ρ that accomplishes
simultaneously two things: (1) C|ρ has ‘small’ bottom fan-in and (2) C|ρ is still
computing GIP as a subfunction. Note that, by definition of RW and by the nature
of parity, (2) happens whenever for every i, j there is k such that ρ(xi,j,k) = ∗. But
(1) and (2) contradict the above result by H̊astad and Goldmann.

Finally, Hansen and Miltersen [HM] observed that RW actually cannot be com-
puted by ‘small’ circuits of any constant depth with one majority gate at the top, and
one layer of arbitrary symmetric gates immediately below it, where all the gates have
unbounded fan-in (Maj ◦ Sym ◦ AC0 circuits). The argument in [HM] goes as follows:
suppose that RW is computable by a ‘small’ Maj ◦ Sym ◦ AC0 circuit C. Then there
is a restriction ρ that accomplishes simultaneously two things: (1’) C|ρ is equivalent
to a ‘small’ Maj ◦ Sym ◦ And circuit and (2’) C|ρ is still computing RW on an input of
polynomially related size. (1’) is obtained through H̊astad’s switching lemma [H̊as],
and for (2’) they show that for every i, j there are ‘many’ k’s such that ρ(xi,j,k) = ∗.
But (1’) and (2’) contradict the above result by Razborov and Wigderson.

Why previous lower bounds are not sufficient to our purposes: The main
problem with these previous lower bounds is that they only give a function that is
worst-case hard for Sym ◦ AC0 circuits, while as explained before we need a function
that is average-case hard. In fact, the choice of parameters in the definition of RW
implies that Prx[RW (x) = 0] = 1/2 + Ω(1), and thus RW cannot be average-case
hard (since the constant size circuit that always outputs ‘0’ computes the function
fairly well on average). Moreover the choice of parameters for the restrictions in [RW]
does not guarantee that the reduction holds with high probability, which is needed
to establish average-case hardness.

We would like to stress that, even though in earlier chapters we saw several hard-
ness amplification results, none of the known hardness amplifications can be applied
to construct an average-case hard function for small Sym ◦ AC0 circuits starting from
a worst-case hard function for small Sym ◦ AC0 circuits. The reason for this is inves-
tigated in Chapter 6.

Proof sketch of our average-case hardness result for Sym ◦ AC0 circuits: We
define a function f (similar to RW , but with a different choice of parameters), and
we show that f is average-case hard for Sym ◦ AC0 circuits. Our argument simplifies
the previous ones and goes as follows: Suppose that C is a small Sym ◦ AC0 circuit
computing f . We argue that, with high probability

(
1− n−Ω(log n)

)
over the choice of

a random restriction ρ, both the following two events happen:

• Event E1 := the function computed by C|ρ is computable by a multiparty
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communication complexity protocol among ‘few’ parties communicating ‘little’.

• Event E2 := C|ρ is computing GIP as a subfunction.

To show E1 we use H̊astad’s switching lemma to argue that with high probability over
ρ, C|ρ is equivalent to a ‘small’ depth-2 circuit with a symmetric gate at the top (of
unbounded fan-in) and And gates of ‘small’ fan-in at the bottom, and then use H̊astad
and Goldmann’s connection [HG] between these circuits and multiparty communica-
tion complexity protocols (cf. paragraph “Previous Lower Bounds”). Now, when ρ
satisfies both E1 and E2 we have that Pry[C|ρ(y) 6= GIP(y)] ≥ 1/2 − n−Ω(log n) by
the multiparty communication complexity lower bound by Babai, Nisan and Szegedy
[BNS]. Since we can think of a random input x as being generated by first choos-
ing a random restriction ρ and then a random input y for the *’s of ρ (so that
C(x) = C|ρ(y)), we have that

Pr
x

[C(x) 6= f(x)]

≥ Pr
y

[
C|ρ(y) 6= GIP(y)

∣∣∣ ρ satisfies E1 and E2

]
· Pr

ρ

[
ρ satisfies E1 and E2

]
≥

(
1/2− n−Ω(log n)

)
·
(
1− n−Ω(log n)

)
= 1/2− n−Ω(log n).

We show that the above argument goes through for Sym ◦ AC0 circuits C of size
nΩ(log n) and this proves our average-case hardness result for Sym ◦ AC0 circuits.

Circuits with more arbitrary symmetric gates: Before discussing how to ex-
tend our techniques to get an average-case hardness result for ‘small’ constant-depth
circuits with ε log2 n arbitrary symmetric gates, we would like to mention two other
approaches that give weaker bounds. Beigel (Theorem 5.1 in [Bei2]) shows that for
every circuit of size s and depth d with σ arbitrary symmetric gates there is another
circuit of size s2σ+1 and depth d + 1 with one arbitrary symmetric gate at the top
computing the same function. Combining this with our average-case hardness result
for Sym ◦ AC0 circuits one obtains an average-case hardness result for constant-depth
circuits of size nε·log n with a constant number of arbitrary symmetric gates. But this
approach gives weaker bounds (than nΩ(log n)) if the circuits have σ = ω(1) arbitrary
symmetric gates; and it gives nothing at all if the circuits have σ = log log n arbitrary
symmetric gates.

Chattopadhyay and Hansen [CH] prove a worst-case hardness result for constant-
depth circuits of size nε·log n with ε log2 n arbitrary symmetric gates. They obtain this
result independently from ours. Subsequently to our results for Sym ◦ AC0 circuits,
they also prove an average-case hardness result for constant-depth circuits of size
nε·log n with fewer arbitrary symmetric gates, namely ε log n.
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Inspired by the work of Chattopadhyay and Hansen, we prove an average-case
hardness result for constant-depth circuits of size nε·log n with ε log2 n arbitrary sym-
metric gates (Theorem 4.3). The proof of our result has the same structure of our
result for Sym ◦ AC0 circuits discussed in the previous paragraph. The only differ-
ence is proving that, if C is a ‘small’ constant-depth circuit with ε log2 n arbitrary
symmetric gates, then with high probability over a random restriction ρ the function
computed by C|ρ is computable by a multiparty communication complexity protocol
P among ‘few’ parties communicating ‘little’ (cf. event E1 in the previous paragraph).
The idea is to let the protocol P compute the outputs of each arbitrary symmetric
gate in order. Specifically, first fix a topological order of the arbitrary symmetric
gates (the simple order induced by reading the gates level by level from the inputs
to the output node will do). Now consider the Sym ◦ AC0 subcircuit C1 whose root is
the first arbitrary symmetric gate in this order. We know that with high probability
over the restriction ρ, the function computed by C1|ρ is computable by a multiparty
communication complexity protocol P1 exchanging ‘few’ bits (cf. event E1 in the
previous paragraph). Our protocol P first simulates P1 to determine the output b1
of C1|ρ. Then it considers the Sym ◦ AC0 circuit C2 whose root is the second arbi-
trary symmetric gate, and where the first arbitrary symmetric gate is replaced with
the constant b1. Again, we argue that the function computed by C2|ρ is computable
by a multiparty communication complexity protocol P2 exchanging ‘few’ bits. Our
protocol P now simulates P2 to determine the output b2 of C2|ρ. We continue in this
way until all the arbitrary symmetric gates are computed. Assuming w.l.o.g. that the
output gate of the circuit is included in the arbitrary symmetric gates, the protocol
P computes C|ρ.

4.1.3 Organization

This chapter is organized as follows. In Section 4.2 we fix some notation. In
Section 4.3 we show how our average-case hardness result (Theorem 4.3) implies our
generator (Theorem 4.1). In Section 4.4 we prove our average-case hardness result for
Sym ◦ AC0 circuits. In Section 4.5 we extend this to our average-case hardness result
for constant-depth circuits with few arbitrary symmetric gates, thus proving Theorem
4.3. In Section 4.6 we elaborate on why our generator improves on the generator by
Luby, Velickovic, and Wigderson (Theorem 2 in [LVW]). In Section 4.7 we discuss
some open problems.

4.2 Preliminaries

An arbitrary symmetric gate (Sym) is a gate that computes an arbitrary symmetric
function, i.e. a function whose value depends only on the number of input bits being 1
(e.g. Parity, Majority). We use standard definitions of constant depth circuits, which
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we now briefly recall. Constant depth circuits consist of And, Or and possibly other
gates (e.g. one arbitrary symmetric gates). It is intended that all gates whose type
is not specified are either And or Or, and that And and Or gates are not counted
towards arbitrary symmetric gates. All circuit gates, unless specified otherwise, have
unbounded fan-in. Circuits take both input variables and their negations as input.
Bottom gates are the one adjacent to the input bits. The top gate is the output
gate. Levels are numbered from the bottom. So the input bits are at level 0, the
bottom gates at level 1 and so on. Gates at level i are connected to gates at levels
i− 1 and i+ 1 only. The depth of a circuit is the longest path from any input to the
output. The size of a circuit is the number of gates in it. Multiple edges between
pairs of nodes in the circuit are not allowed (otherwise an arbitrary symmetric gate
can compute any function; this convention is standard in the literature, e.g. [HG]).

4.3 From average-case hardness to pseudorandom-

ness

In this section we show how our average-case hardness result (Theorem 4.3) implies
our generator (Theorem 4.1). We restate the theorems for the reader’s convenience.

Theorem (4.1, restated). For every constant d there is a constant ε > 0 such that for
every l there is a generator G : {0, 1}l → {0, 1}m, where m = m(l) := lε log l, such that
for every circuit C of size m and depth d with logm(l) arbitrary symmetric gates, we
have: ∣∣∣∣ Pr

x∈{0,1}m
[C(x) = 1]− Pr

x∈{0,1}l
[C(G(x)) = 1]

∣∣∣∣ ≤ 1

m
,

and given x ∈ {0, 1}l, i ≤ m, we can compute the i-th output bit of G(x) in time
poly(l).

Theorem (4.3, restated). There is a function f : {0, 1}∗ → {0, 1} computable in
polynomial time such that for every constant d there is a constant ε > 0 such that
for every n and every circuit C of size nε·log n, depth d and with ε log2 n arbitrary
symmetric gates, the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nε·log n.

Proof of Theorem 4.1, assuming Theorem 4.3. The generator is obtained by plugging
the function from Theorem 4.3 into Nisan-Wigderson’s pseudorandom generator con-

struction [NW]. Specifically, they show how given a function f : {0, 1}
√

l/2 → {0, 1}
and a parameter m (which we set to be m(l) := lε·log l) to construct a generator
G : {0, 1}l → {0, 1}m such that every circuit C for which∣∣∣∣ Pr

x∈{0,1}m
[C(x) = 1]− Pr

x∈{0,1}l
[C(G(x)) = 1]

∣∣∣∣ > 1/m
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can be transformed into another circuit C ′ of size |C| + poly(m) that computes the
function f correctly with probability (over random input) greater than 1/2+1/m2 =
1/2 + 1/l2ε log l.

As observed in [Nis1, NW], C ′ is simply C with one more layer of And (or Or)
gates at the bottom, and possibly negating the output. Adding one layer of And (or
Or) gates at the bottom clearly does not increase the number of arbitrary symmetric
gates in C, and we can think of negating the output by, say, including the top gate
in the arbitrary symmetric gates and complementing it. Thus, if C is a circuit of
size m = m(l) = lε log l of depth d with logm(l) = ε log2 l arbitrary symmetric gates
we obtain another circuit C ′ of size lO(ε log l) of depth d+ 1 with 1 + ε log2 l arbitrary

symmetric gates that computes f : {0, 1}
√

l/2 → {0, 1} with probability greater than
1/2 + 1/l2ε log l. This contradicts Theorem 4.3 for sufficiently small ε.

The complexity of the generator follows from the arguments in [Nis1, NW] and
the fact that f is computable in time poly(l).

4.4 Average-case hardness for Sym ◦ AC0 circuits

In this section we prove our average-case hardness result for ‘small’ constant-depth
circuits with one arbitrary symmetric gate at the top.

Theorem 4.4. There is a function f : {0, 1}∗ → {0, 1} computable in polynomial
time such that for every constant d there is a constant ε > 0 such that for every n
and every circuit C of size nε·log n, depth d, with 1 arbitrary symmetric gate at the
top, the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nε·log n.

In the rest of this section we prove Theorem 4.4. In the proof we use two re-
sults which we describe in the following two subsections. The first is a version of
H̊astad’s switching lemma [H̊as] due to Beame [Bea], and the second is the multi-
party communication complexity lower bound for GIP by Babai, Nisan and Szegedy
[BNS].

4.4.1 Switching Lemma

We now describe the switching lemma we use in the proof of Theorem 4.4. As
in [HM], the crucial property that we need is that the DNF obtained after applying
the restriction is such that all the terms are mutually contradictory, i.e. no input
satisfies more than one term. This allows us to merge the top Or gate of the DNF in
the symmetric gate at the top (cf. Fact 4.6). The fact that this property holds for
H̊astad’s switching lemma was already noted by Boppana and H̊astad in [H̊as] (inside
the proof of Lemma 8.3). However, there does not seem to be a full proof of this fact
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in the literature. For this reason we use a slightly different version of the H̊astad’s
switching lemma, due to Beame [Bea].

A restriction on m variables x1, x2, . . . , xm is a map ρ : {x1, x2, . . . , xm} →
{0, 1, ∗}. For a function f : {0, 1}m → {0, 1} we denote by f |ρ the function we
get by doing the substitutions prescribed by ρ. f |ρ will be a function of the variables
that were given the value * by ρ. Similar conventions hold for circuits. If ρ and ρ′ are
restrictions, and ρ′ is defined on the variables mapped to * by ρ we write ρρ′ for the
restriction obtained by combining ρ and ρ′, so that f |ρρ′ = (f |ρ) |ρ′ . Let Rδ·m

m denote
the uniform distribution on restrictions on m variables assigning exactly δm variables
to ∗, and assigning random values to the others.

A decision tree on m variables is a labelled binary tree where edges and leaves are
labelled with 0 or 1, and internal nodes with variables. A decision tree computes a
function in the intuitive way, starting at the root and following the path according
to the values of the input variables, and outputting the value at the reached leaf.

Lemma 4.5 ([Bea]). Let ϕ be a DNF or a CNF formula in m variables with bottom
fan-in at most r. For every s ≥ 0, p < 1/7, the probability over ρ ∈ Rp·m

m that the
function computed by ϕ|ρ is not computable by a decision tree of height strictly less
than s is less than (7pr)s.

We will use Lemma 4.5 in combination with the following fact.

Fact 4.6. Let f be a symmetric function of s decision trees of height h. Then f is
computable by a depth 2 circuit of size s · 2h + 1 with a symmetric gate of unbounded
fan-in at the top and And gates of fan-in h at the bottom.

Proof. Write each decision tree as a DNF with bottom fan-in h, where each term
corresponds to a path leading to 1. The number of terms in each DNF is at most 2h,
i.e. at most the number of paths in a decision tree of height h. Because every input to a
decision tree follows a unique path, each DNF we construct has the property that every
input satisfies at most one term. Thus we can merge the top Or gate of all these DNF’s
with the top symmetric gate of the circuit. Specifically, if the original symmetric gate
was ψ(x1, x2, . . . , xs) = g(

∑
i≤s xi) for some arbitrary function g : [s] → {0, 1}, the

new symmetric gate is simply ψ′(x1, x2, . . . , xs·2h) := g(
∑

i≤s·2h xi).

4.4.2 Multiparty communication complexity

In this section we describe some results on communication complexity that will be
used in the proof of our main results. The model of interest is the multiparty commu-
nication complexity model. In this model there are s parties, each having unlimited
computational power, who wish to collaboratively compute a certain function. The
input bits to the function are partitioned in s blocks, and the i-th party knows all
the input bits except those corresponding to the i-th block in the partition. The
communication between the parties is by “writing on a blackboard” (broadcast): any
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bit sent by any party is seen by all the others. The parties exchange messages ac-
cording to a fixed protocol. The measure of interest is the number of bits exchanged
by the parties. We refer the reader to the book by Kushilevitz and Nisan [KN] for
background on this model.

Babi, Nisan and Szegedy [BNS] prove a multiparty communication complexity
lower bound for the generalized inner product function GIPn,s : {0, 1}n·s → {0, 1},
which is defined as follows:

GIPn,s(x) :=
n⊕

i=1

s∧
j=1

xi,j.

Lemma 4.7 ([BNS]). There is a partition of the inputs to GIPn,s in s blocks such that
the following holds: Let P be a s-party communication complexity protocol exchanging
at most .1 · (n/4s − log(1/γ)) bits of communication, then

Pr
x∈{0,1}n·(.3 log n)

[
P (x) 6= GIPn,.3 log n(x)

]
≥ 1/2− γ.

H̊astad and Goldmann [HG] show that the function computed by a ‘small’
Sym ◦ And circuit with ‘small’ bottom fan-in can be computed by a multiparty com-
munication complexity protocol among ‘few’ parties exchanging ‘few’ bits.

Lemma 4.8 ([HG]). Let C be a depth-2 circuit of size s with an arbitrary symmetric
gate (of unbounded fan-in) at the top, and And gates of fan-in strictly less than s at
the bottom. Then the function computed by C can be computed (under any partition
of the input) by a s-party communication complexity protocol exchanging 1 + s log s
bits.

The idea in Lemma 4.8 is that since each bottom And gate has fan-in strictly
less than s then, for any partition of the input in s blocks, the input bits to each
And can lie in at most s − 1 distinct blocks. Therefore we can assign each And gate
to some party that knows all the input bits necessary to compute it. Now each party
broadcasts the number of And gates assigned to him that evaluate to 1, which takes
at most log s bits. Since the top gate is symmetric this information is sufficient to
compute the output of the circuit.

Our next lemma combines the above observation by H̊astad and Goldmann with
the “switching lemma” results from the previous section to argue the following: for
every small Sym ◦ AC0 circuit, with high probability over a suitable restriction ρ,
the function computed by C|ρ can be computed by a multiparty communication
complexity protocol among ‘few’ parties exchanging ‘few’ bits.

Lemma 4.9. For every constant d there is a constant ε > 0 such that the following
holds. Let C : {0, 1}n → {0, 1} be a circuit of size nε·log n, depth d, with 1 arbitrary
symmetric gate at the top. Let ρ be a random restriction on the n input variables
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that assigns * to a subset of the variables of relative size 1/n.1 , i.e. let ρ ∈ Rn/n.1

n .
Then with probability at least 1 − n−Ω(log n) over ρ, the function computed by C|ρ
is computable (under any partition of the input) by a .3 log n-party communication
complexity protocol exchanging log3 n bits of communication.

Proof. The proof amounts to a combination of the previous lemmas for some specific
setting of parameters.

Claim 4.10. With probability 1 − n−Ω(log n) over ρ ∈ Rn/n.1

n , the function computed
by C|ρ is computable by a depth-2 circuit of size |C| · 2.3 log n with a symmetric gate
(of unbounded fan-in) at the top and And gates of fan-in strictly less than .3 log n at
the bottom.

The lemma follows by the above claim using Lemma 4.8, which implies that the
function computed by a depth-2 circuit of size s = |C| · 2.3 log n ≤ nlog n with a sym-
metric gate (of unbounded fan-in) at the top and And gates of fan-in strictly less than
.3 log n at the bottom is computable by a .3 log n-party communication complexity
protocol exchanging 1 + (.3 log n) log s ≤ log3 n bits.

We now prove Claim 4.10. Similar calculations have already been done elsewhere
(e.g., Lemma 2 in [LMN]). However, we have not found the exact claim we need in
the literature.

Proof of Claim 4.10. We see the restriction ρ as d − 1 successive applications of re-
strictions ρ1, ρ2, . . . , ρd−1 each mapping to * a subset of variables of relative size 1/nα

of the (remaining) variables. Taking α = .1/(d − 1) we have that, after applying all
d− 1 restrictions, the total number of variables mapped to * is n · (1/nα)d−1 = n/n.1,

and so this distribution on restrictions is exactly R
n/n.1

n .
For every i ∈ [d−1] let DT i be the event that, after applying the first i restrictions

ρ1, ρ2, . . . , ρi, the function computed by every gate at level i is computable by a
decision tree of height strictly less than .3 log n. We now bound Prρ[ not DT d−1].
Note that it is at most

Pr
ρ1

[ not DT 1] + Pr
ρ1,ρ2

[ not DT 2|DT 1] + . . .+ Pr
ρ1,ρ2,...,ρd−1

[ not DT d−1|DT d−2].

We now bound each term. Fix any i ≤ d − 1 and consider
Prρ1,ρ2,...,ρi

[ not DT i|DT i−1] (if i = 1, think of the input variables as functions com-
puted by decision trees of depth 1, and define DT 0 := TRUE). Fix any gate ϕ at level
i. Without loss of generality assume ϕ is an Or gate (otherwise we can consider its
negation, apply the same reasoning, and then negate again). Since we are condition-
ing over DT i−1, all the functions computed by gates at level i − 1 can be computed
by decision trees of height (strictly) less than .3 log n. Write each such function as a
DNF with terms of size at most .3 log n (where each term corresponds to a path in
the decision tree leading to ‘1’). Merging the top Or gates of all these DNF’s with ϕ
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we see that, given DT i−1, the function computed by ϕ is a DNF with terms of size at
most r = .3 log n. By Lemma 4.5 the probability over the choice of the i-th restriction
ρi that the function computed by ϕ|ρ1ρ2···ρi

cannot be computed by a decision tree of
depth strictly less than s = .3 log n is at most

(7pr)s = (7 · (1/nα) · (.3 log n)).3 log n = n−Ω(log n).

Thus by a union bound we have that

Pr
ρ1,ρ2,...,ρi

[ not DT i|DT i−1]

is at most n−Ω(log n) times the number of gates at level i. Therefore, if the circuit C
has size nε log n for sufficiently small ε we have

Pr
ρ

[ not DT d−1] ≤ n−Ω(log n) · |C| = n−Ω(log n).

We have shown that with probability 1−n−Ω(log n) (over ρ) the function computed
by C|ρ is computable by a symmetric function of |C| decision trees of height strictly
less than .3 log n. By Fact 4.6 we can write each decision tree as a DNF and merge
the top Or gates of these DNF’s into the top symmetric gate of C, thus proving the
claim.

4.4.3 Proof of Theorem 4.4

We now prove Theorem 4.4. We restate the theorem for the reader’s convenience.

Theorem (4.4, restated). There is a function f : {0, 1}∗ → {0, 1} computable in
polynomial time such that for every constant d there is a constant ε > 0 such that for
every n and every circuit C of size nε·log n, depth d, with 1 arbitrary symmetric gate
at the top, the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nε·log n.

Proof of Theorem 4.4. Similarly to [RW], we consider the function obtained by at-
taching Parity gates on n bits at the bottom of GIPn,.3 log n. That is, let fn :
{0, 1}n2(.3 log n) → {0, 1} be defined as

fn(x) :=
n⊕

i=1

.3 log n∧
j=1

n⊕
k=1

xi,j,k.

We will prove Theorem 4.3 with fn as hard function. While fn is a function on
m = m(n) := n2(.3 log n) bits, it will be convenient to parameterize it by n. Since we
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will prove nΩ(log n) lower bounds for fn and the input length of fn is m = poly(n), we
also obtain mΩ(log m) lower bounds for fn (for a different hidden constant in the Ω(·)).

It is easy to see that fn is computable in polynomial time.

Let C : {0, 1}m → {0, 1} be a circuit as in the statement of Theorem 4.4, for a
sufficiently small constant ε. Let ρ be a random restriction on the m input variables

that assigns * to a subset of the variables of relative size 1/m.1 , i.e. let ρ ∈ Rm/m.1

m .

Consider the following two events.

• Event E1 := the function computed by C|ρ is computable (under any partition
of the input) by a .3 log n-party communication complexity protocol exchanging
n.2 bits.

• Event E2 := for every i ∈ [n], j ∈ [.3 log n] there is k ∈ [n] such that ρ(xi,j,k) = ∗.
(In other words, for each of the n · (.3 log n) bottom parity functions of fn, ρ
maps some of its input variable to *.)

Claim 4.11. Pr
ρ∈R

m/m.1
m

[E1 ∧ E2] ≥ 1− n−Ω(log n).

Before proving Claim 4.11 let us see how we can use it to prove Theorem 4.4.

Suppose that some ρ ∈ Rm/m.1

m satisfies both E1 and E2. Then

Pr
y∈{0,1}m/m.1

[C|ρ(y) 6= fn|ρ(y)] ≥ 1/2− n−Ω(log n). (4.1)

This holds by Lemma 4.7. Specifically, fix any restriction ρ′ taken on the variables
mapped to * by ρ, such that for every i ∈ [n], j ∈ [.3 log n] there is exactly one k ∈ [n]
such that ρρ′(xi,j,k) = ∗. We then have that fn|ρρ′ equals GIPn,.3 log n (up to possibly
negating some input variables). If the function computed by C|ρ is computable by
a s-party communication complexity protocol exchanging n.2 bits then clearly the
same holds for the function computed by C|ρρ′ . Therefore by the multiparty commu-
nication complexity lower bound for GIP (Lemma 4.7) we obtain (noticing that for
s = .3 log n, γ = 2−n.3

we have .1 · (n/4s − log(1/γ)) = Ω(n.4 − n.3) > n.2):

Pr
z∈{0,1}n(.3 log n)

[C|ρρ′(z) 6= fn|ρρ′(y)] ≥ 1/2− 1/2nΩ(1) ≥ 1/2− n−Ω(log n).

Equation 4.1 follows noticing that we can think of a random y as choosing first a
random ρ′ as above and then a random z ∈ {0, 1}n(.3 log n) for the *’s of ρ′ (so that
C|ρ(y) = C|ρρ′(z)).
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Thus we have:

Pr
x

[C(x) 6= fn(x)]

= Pr
ρ∈R

m/m.1
m ,y∈{0,1}m/m.1

[C|ρ(y) 6= fn|ρ(y)]

≥ Pr
ρ∈R

m/m.1
m ,y∈{0,1}m/m.1

[C|ρ(x) 6= fn|ρ(x)|E1 ∧ E2] · Pr[E1 ∧ E2]

≥
(
1/2− n−Ω(log n)

)
·
(
1− n−Ω(log n)

)
(by Equation 4.1 and Claim 4.11)

= 1/2− n−Ω(log n),

which proves Theorem 4.3.
It is only left to prove Claim 4.11.

Proof of Claim 4.11. We show that E1 and E2 each do not happen with probability
at most n−Ω(log n).

The bound on Prρ[not E1] is given by Lemma 4.9. (The direct application of
Lemma 4.9 gives communication complexity poly log(n) � n.2 for circuits of size
mε log m ≥ nε log n).

We now bound Prρ[not E2]. Fix i ∈ [n], j ∈ [.3 log n]. The probability that
for every k ∈ [n] we have ρ(xi,j,k) 6= ∗ is the probability that a random subset
A ⊆ [m] of size m/m.1 = m.9 does not intersect a fixed subset B ⊆ [m] of size n.
This probability is at most the probability that m.9 independent random elements
uniformly distributed in [m] all fall outside B (to see this, think of choosing the
random subset A one element at the time, and note that when an element falls outside
B it is more likely for the next element to fall inside B). This latter probability is(

1− n

m

)m.9

≤ exp(−m.9n/m) ≤ exp(−mΩ(1))� n−Ω(log n)

where we used that m = n2 · (.3 log n). By a union bound we have

Pr[not E2] ≤ n · (.3 log n) · n−Ω(log n) = n−Ω(log n).

We point out that Theorem 4.4 is tight for the particular choice of

fn(x) =
n⊕

i=1

.3 log n∧
j=1

n⊕
k=1

xi,j,k.

Namely, fn is computable by Parity ◦ And circuits of size nO(log n). This can be seen by
writing the function computed by each And as a Parity of nO(log n) And’s (cf. [RW]).
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4.5 Fooling circuits with more arbitrary symmet-

ric gates

In this section we prove our average-case hardness result for constant-depth cir-
cuits of size nε log n with ε log2 n arbitrary symmetric gates (Theorem 4.3). The proof
has the same structure as the proof of our average-case hardness result for circuits
with one arbitrary symmetric gate (Theorem 4.4). The only difference is that now
we want to argue that event E1 happens with high probability even for circuits with
ε log2 n arbitrary symmetric gates, i.e. we want to show that with high probability
over the restriction ρ, the function computed by C|ρ is computable by a multiparty
communication complexity protocol among ‘few’ parties exchanging ‘few’ bits. Thus
the proof of Theorem 4.3 follows from the next lemma.

Lemma 4.12. For every constant d there is a constant ε > 0 such that the following
holds. Let C : {0, 1}n → {0, 1} be a circuit of size nε·log n, depth d, with ε log2 n
arbitrary symmetric gates. Let ρ be a random restriction on the n input variables

that assigns * to a subset of the variables of relative size 1/n.1 , i.e. let ρ ∈ Rn/n.1

n .
Then with probability at least 1 − n−Ω(log n) over ρ, the function computed by C|ρ
is computable (under any partition of the input) by a .3 log n-party communication
complexity protocol exchanging log5 n bits of communication.

Proof. Assume without loss of generality that the output gate of the circuit C is
included in the arbitrary symmetric gates. Fix a topological order of the arbitrary
symmetric gates (the simple order induced by reading the gates level by level from
the inputs to the output node will do). For every i ∈ {1, . . . , ε log2 n}, z ∈ {0, 1}i−1,
define Ci,z as the subcircuit of C whose output gate is the i-th arbitrary symmetric
gate but where the previous arbitrary symmetric gates are replaced with z (i.e., the
j-th gate is replaced with the j-th bit in z). Note Ci,z is a Sym ◦ AC0 circuit.

Claim 4.13. For a sufficiently small constant ε > 0, with probability 1−n−Ω(log n) over

ρ ∈ Rn/n.1

n we have that for every i ∈ {1, . . . , ε log2 n} and z ∈ {0, 1}i−1 the function
computed by Ci,z|ρ is computable (under any partition of the input) by a .3 log n-party
communication complexity protocol Pi,z exchanging log3 n bits of communication.

Proof. The claim follows by noting that the number of Sym ◦ AC0 circuits Ci,z is at
most (

ε log2 n
)
· 2ε log2 n ≤ n1+ε log n

and then using a union bound and Lemma 4.9, which states that for each fixed
circuit Ci,z, with probability 1− n−Ω(log n) over ρ, the function computed by Ci,z|ρ is
computable by a .3 log n-party communication complexity protocol exchanging log3 n
bits.
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The lemma follows by noting that whenever ρ satisfies the conclusion of the above
claim we have (under any partition of the input bits) the following .3 log n-party
communication complexity protocol P for C|ρ: On input x compute C|ρ(x) as follows.
Simulate P1 to compute b1 = C1|ρ(x). Then simulate P2,b1 to compute b2 = C2,b1|ρ(x).
Then simulate P3,b1◦b2 to compute b3 = C3,b1◦b2|ρ(x). Continue in this way until
Cε log2 n,z(x) = C|ρ(x) (this last equality is easy to verify).

Since each protocol Pi,z exchanges at most log3 n bits of communication, and we
simulate ε log2 n of these protocols, the total number of bits exchanged by the protocol
P is at most log5 n.

It is perhaps interesting to note that, unlike the corresponding protocol in the
proof of Theorem 4.4, the protocol in the above lemma is not simultaneous, i.e. the
bits sent by a party in general depend on the bits previously sent by other parties (cf.
[KN] for background on simultaneous protocols). Thus in our proof we are taking
advantage of the fact that the lower bound for GIP (Lemma 4.7) holds even for non-
simultaneous protocols. We do not know how to prove the same result starting from
a multiparty communication complexity lower bound for simultaneous protocols.

4.6 Our PRG vs. Luby, Velickovic, and Wigder-

son’s

In this section we elaborate on why our generator (Theorem 4.1) improves on the
generator by Luby, Velickovic, and Wigderson (Theorem 2 in [LVW]). Recall that
the generator in [LVW] fools ‘small’ depth 2 circuits with one arbitrary symmetric
gate at the top (Sym ◦ And circuits). On the other hand our generator fools ‘small’
circuits of any constant depth with ‘few’ arbitrary symmetric gates.

We note that there are several results (e.g. [Raz, Smo, All, Yao2, BRS, BT])
showing that ‘small’ circuits in certain ‘rich’ constant-depth circuit classes can be
converted into ‘not-too-big’ Sym ◦ And circuits. Thus one may wonder whether we
can use these results to deduce that the generator in [LVW] is already powerful enough
to give our main result (Theorem 4.1), i.e. whether it can fool ‘small’ constant-depth
circuits with ‘few’ arbitrary symmetric gates.

The problem with this idea is that in all these conversion results the blow-up in
the circuit size is bigger than the saving of the generator. More specifically, these
conversion results show how to convert, say, a AC0 circuit of size s into a Sym ◦ And
circuit of size quasi -polynomial, i.e. slogO(1) s, where the constant in the O(1) depends

on the depth of the original circuit. However, to fool a circuit of size slogO(1) s, the
generator in [LVW] needs a seed of length at least s, and therefore it is of no use in
this particular setting.

It seems natural to ask whether the known conversion results are the best possible,
i.e. if the quasi-polynomial blow-up is inherent in the conversion. There are works
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(e.g. [BRS, RW]) suggesting that this is indeed the case. We give another result of
this flavor.

Specifically, we show how to modify the lower bound in Theorem 4.4 to get a func-
tion computable by polynomial size Parity ◦ AC0 circuits that is average-case hard for
superpolynomial size Sym ◦ And circuits. The idea is to change the fan-in of the
bottom parities of f so that they are computable by polynomial size AC0 circuits
(specifically we change their fan-in from n to log3 n). While our lower bound is only
‘slightly’ superpolynomial (i.e. nΩ(log log n)), it shows that the parameters of our gener-
ator (Theorem 4.1) cannot be obtained combining a conversion result with Theorem
2 in [LVW], even if we only want to fool Parity ◦ AC0 circuits.

Theorem 4.14. There is a function f : {0, 1}∗ → {0, 1} computable by uniform
polynomial size Parity ◦ AC0 circuits and a constant ε > 0 such that for every n and
every Sym ◦ And circuit C of size nε·log log n, the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nε·log log n.

Proof of Theorem 4.14. The proof follows closely the proof of Theorem 4.4. Let

gn : {0, 1}n(.3 log n) log3 n → {0, 1}

be defined as

gn(x) :=
n⊕

i=1

.3 log n∧
j=1

log3 n⊕
k=1

xi,j,k.

We will prove Theorem 4.14 with gn as hard function. While gn is a function on
m = m(n) := n · (.3 log n) · (log3 n) bits, it will be convenient to parameterize it by
n. Since we will prove nΩ(log log n) lower bounds for gn and the input length of gn is
m = n · poly log n, we also obtain mΩ(log log m) lower bounds for gn (for a different
hidden constant in the Ω(·)).

Note that gn is computable by a (uniform) polynomial size circuit of depth 5 with
one Parity gate at the top. To see this note that each of the bottom parities in the
definition of gn is only on log3 n bits, and therefore it can be computed by a (uniform)
circuit of size poly(n) and depth 4 (see e.g. [H̊as], Theorem 2.2).

Let C : {0, 1}m → {0, 1} be a circuit as in the statement of Theorem 4.14,
for a sufficiently small constant ε. Let ρ be a random restriction on the m input
variables that assigns * to a subset of the variables of relative size 1/ log(n) , i.e. let

ρ ∈ Rm/ log(n)
m .

Consider the following two events.

• Event E ′1 := the function computed by C|ρ is computable (under any partition
of the input) by a .3 log n-party communication complexity protocol exchanging
n.2 bits.
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• Event E ′2 := for every i ∈ [n], j ∈ [.3 log n] there is k ∈ [log3 n] such that
ρ(xi,j,k) = ∗. (In other words, for each of the n·(.3 log n) bottom parity functions
of fn, ρ maps some of its input variable to *.)

As before, Theorem 4.14 follows from the next claim (cf. the proof of Theorem
4.4).

Claim 4.15. Pr
ρ∈R

m/ log(n)
m

[E ′1 ∧ E ′2] ≥ 1− n−Ω(log log n).

Proof. We show that E ′1 and E ′2 each do not happen with probability at most
n−Ω(log log n).

We now bound Prρ[not E ′1]. Analogously to the proof of Lemma 4.9, the main
step is proving the following claim: with high probability

(
1− n−Ω(log log n)

)
over ρ ∈

R
m/ log(n)
m , the function computed by C|ρ is computable by a depth 2 circuit of size
|C| · 2.3 log n = nε·log log n · 2.3 log n with a single symmetric gate (of unbounded fan-in) at
the top and And gates of fan-in strictly less than .3 log n at the bottom.

While this probability can be bound directly, similarly to what is done in [RW],
it seems simpler to use again the Switching Lemma. Fix a bottom And gate ϕ of
C, and think of the input variables to ϕ as clauses of size r = 1. By Lemma 4.5
the probability over the choice of ρ that the function computed by ϕ|ρ cannot be
computed by a decision tree of depth strictly less than s = .3 log n is at most

(7pr)s = (7 · (1/ log(n)) · 1).3 log n = n−Ω(log log n).

Therefore if the circuit C has size nε log log n for sufficiently small ε we have, by a
union bound, that with probability 1 − n−Ω(log log n) (over ρ) the function computed
by C|ρ is computable by a symmetric function of |C| decision trees of height strictly
less than .3 log n. By Fact 4.6 we can write each decision tree as a DNF and merge
the top Or gates of these DNF’s into the top symmetric gate of C, and thus E ′1 holds.

We now bound Prρ[not E ′2]. Fix i ∈ [n], j ∈ [.3 log n]. The probability that
for every k ∈ [log3 n] we have ρ(xi,j,k) 6= ∗ is is the probability that a random subset
A ⊆ [m] of size m/ log(n) does not intersect a fixed subset B ⊆ [m] of size log3 n. This
probability is at most the probability that m/ log(n) independent random elements
uniformly distributed in [m] all fall outside B (to see this, think of choosing the
random subset A one element at the time, and note that when an element falls outside
B it is more likely for the next element to fall inside B). This latter probability is(

1− log3 n

m

)m/ log(n)

≤ exp(−Ω(log2 n))� n−Ω(log log n).

By a union bound we have

Pr[not E ′2] ≤ n · (.3 log n) · n−Ω(log log n) = n−Ω(log log n).
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4.7 Open problems

Can the techniques in this chapter be used to prove (average-case) hardness results
for constant-depth circuits with ω(log2 n) arbitrary symmetric gates? Such a hardness
result would follow from a positive answer to the following open question: Let C be
constant-depth circuit of size nε log n with ω(log2 n) arbitrary symmetric gates, and
let ρ be a restriction as in the statement of Lemma 4.9. Is it true that with high
probability over ρ the function computed by C|ρ is computable by a .9 log n-party
communication complexity protocol exchanging n.9 bits?



Chapter 5

Probabilistic Time versus
Alternating Time

We study the power of probabilistic time. In particular, we study the rela-
tionship relationship between probabilistic time, BPTime (t), and alternating time,
ΣO(1)Time (t). This relationship is closely related to the circuit complexity of Ap-
proximate Majority, which is the problem of computing Majority of a given bit string
whose fraction of 1’s is bounded away from 1/2 (by a constant).

5.1 Introduction

Understanding the power of probabilistic computation is a central problem in
theoretical computer science, and one for which little is known. Essentially, the
only non-trivial upper bound that we have on the power of probabilistic computa-
tion is the result that probabilistic polynomial time is in the second level of the
polynomial-time hierarchy, i.e. BPP ⊆ ΣP

2 , which was proven in ’83 by Sipser and
Gács [Sip], and independently by Lautemann [Lau].1 The results in [Sip, Lau] ac-
tually show that probabilistic time t = t(n) with error 1/3 can be simulated deter-
ministically, using one alternation, with a quadratic blow-up in the running time,
i.e. BPTime (t) ⊆ Σ2Time (t2 · poly log t). To the knowledge of the author, there
has been no result on whether this quadratic blow-up is necessary. The question
of whether the above quadratic blow-up is necessary is closely related to the circuit
complexity of Approximate Majority, which is the problem of computing Majority of
a given bit string whose fraction of 1’s is bounded away from 1/2 (by a constant).
In addition to its implications for probabilistic time, the complexity of Approxi-
mate Majority is a per se interesting problem which has been widely studied (e.g.,

1It is actually known that BPP ⊆ MA ⊆ SP
2 ⊆ ΣP

2 [Can, RS]. See [GZ] for discussion of these
inclusions. These strengthenings are not directly relevant to our work which, unlike [Can, RS, GZ],
focuses on the running time of the simulation.

78
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[Ajt1, ABO, Sto, Ajt2, CR]). In this chapter we prove new results on the circuit
complexity of Approximate Majority, and we apply these results to obtain new rela-
tionships between probabilistic time and alternating time.

First, we prove that
(
2n.1

)
-size depth-3 circuits for Approximate Majority on

n bits have bottom fan-in Ω(log n). As a corollary, we obtain that BPTime (t) 6⊆
Σ2Time (o(t2)) with respect to some oracle. This shows that the above mentioned
quadratic blow-up in the running time of Σ2 simulations of BPTime (t) is in fact
necessary for relativizing techniques (such as those in [Sip, Lau]).

The above result naturally raises the question of whether the quadratic blow-
up in the running time of the simulation can be avoided at some higher level of
the polynomial-time hierarchy. An involved result by Ajtai [Ajt2] implies that this
is indeed possible at some level, namely that BPTime (t) ⊆ ΣcTime (t) for some
constant c. Ajtai does not bound the constant c, and an analysis of his proof only
gives a large constant c� 3. In this chapter, we show that there is a quasilinear-time
simulation at level c = 3, i.e. we show that BPTime (t) ⊆ Σ3Time (t · poly log t). Our
techniques relativize and thus c = 3 is optimal for them, as implied by our oracle result
stated in the preceding paragraph. Again, the complexity of Approximate Majority
is closely related to our result that BPTime (t) ⊆ Σ3Time (t · poly log t). With a
slight modification of the techniques used in deriving this result, we also obtain the
following: Approximate Majority is computable by uniform polynomial-size circuits
of depth 3. Prior to our work, the only known polynomial-size depth-3 circuits for
Approximate Majority were non-uniform [Ajt1]. Tables 5.1 and 5.2 summarize the
results discussed so far.

The study of the relationship between probabilistic time and alternating time is
also motivated by the challenge of proving lower bounds on the running time of prob-
abilistic algorithms for some ‘natural’ problem. Of course, it is unknown how to prove
superlinear time lower bounds on general computational models (such as multi-tape
Turing machines). This is already true for deterministic computation, and probabilis-
tic computation only makes the challenge harder. However, there has been progress in
proving lower bounds on restricted models of computation. Much of this progress cru-
cially relies on clever simulations of these restricted models by alternating-time com-
putations. Using our above result that BPTime (t) ⊆ Σ3Time (t · poly log t), among
other ideas, we prove new lower bounds for solving QSAT3 ∈ Σ3Time (n · poly log n)
on probabilistic computational models. As it will be apparent from the proofs, our
negative result that BPTime (t) 6⊆ Σ2Time (o(t2)) with respect to some oracle shows
that substantially different techniques are required to prove similar lower bounds for
computing SAT = QSAT1 or QSAT2 (as opposed to QSAT3 in our results).

We now describe our lower bounds in more detail. The first model we consider is
that of probabilistic random-access Turing machines using little space, say at most
n.9. The works by Beame et al. [BSSV], Allender et al. [AKR+], and Diehl et al. [DvM]
prove lower bounds on this model; in particular, Allender et al. [AKR+] and Diehl
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Table 5.1: Results on the complexity of computing Approximate Majority on n bits.

Previous Results

Complexity of Approximate Majority Uniformity Reference

Computable by depth-3 poly(n)-size circuits non-uniform [Ajt1]

Computable by depth-O(1) poly(n)-size circuits Dlogtime-uniform [Ajt2]

Our Results

Complexity of Approximate Majority Uniformity Reference

Not computable by depth-3 2n.1
-size circuits non-uniform Th. 5.1

with bottom fan-in (log n)/2

Computable by depth-3 poly(n)-size circuits P-uniform Th. 5.2

and van Melkebeek [DvM] prove time lower bounds t = n1+Ω(1) on this model, but
their results hold only for machines with one-way access to the random bits. We prove
a t = n1+Ω(1) lower bound for solving QSAT3 ∈ Σ3Time (n · poly log n) on machines
with two-way (sequential) access to the random bits. To the best of our knowledge,
this is the first lower bound of the form t = n1+Ω(1) on a probabilistic model with
random access to the input and two-way access to the random bits. (We elaborate
on this model in Section 5.1.3.)

We then consider the model of Turing machines with two tapes, i.e. the read-only
random-access input tape and one sequential-access work tape with no space restric-
tions. Maass and Schorr [MS] prove a lower bound of the form t ≥ n1.22 for simulating
Σ1Time (n) on this model. This bound was independently rediscovered in [vMR] where
it is also shown that the same bound holds for solving SAT ∈ Σ1Time (n · poly log n).
While the model in [MS, vMR] is deterministic, we prove that a bound of the form
t = n1+Ω(1) holds, for solving QSAT3 ∈ Σ3Time (n · poly log n), even if the work tape is
initialized with random bits and the machine allowed to err with small probability. To
the best of our knowledge, no lower bound was previously known on this randomized
model.

5.1.1 Our results on the complexity of Approximate Major-
ity

We now describe our results regarding the complexity of Approximate Majority.
Our main results are summarized and compared to previous work in Table 5.1.

Approximate Majority is a promise problem [ESY] where the task is computing
Majority of a given bit string that is promised to have either at least a 2/3 fraction
of bits set to 1, or at most a 1/3 fraction of bits set to 1. In this chapter we prove
the following new lower bound on the bottom fan-in of depth-3 (unbounded fan-in)
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Table 5.2: Results on simulating probabilistic time by alternating time.

Previous Results

Inclusion Oracle Reference

BPTime (t) ⊆ Σ2Time (t2 · poly log t) Holds for every oracle [Sip, Lau]

BPTime (t) ⊆ ΣO(1)Time (t) Holds for every oracle [Ajt2]

Our Results

Inclusion Oracle Reference

BPTime (t) ⊆ Σ3Time (t · poly log t) Holds for every oracle Th. 5.3

BPTime (t) 6⊆ Σ2Time (o(t2)) Holds for some oracle Th. 5.5

circuits for Approximate Majority, where the bottom fan-in is defined to be the fan-in
of the gates adjacent to the input bits.

Theorem 5.1. Let C be a depth-3 circuit computing approximate majority on n bits.
If the bottom fan-in of C is at most log(n)/2 then the size of C is at least 2n.2

, for
big enough n.

We point out that in ’83 Ajtai [Ajt1] gave a striking probabilistic construction
of non-uniform polynomial-size depth-3 circuits for approximate majority.2 Ajtai’s
circuits have bottom fan-in O(log n), which is optimal up to constant factors by
Theorem 5.1. Since Ajtai’s construction [Ajt1] is non-uniform, it is natural to ask
whether Approximate Majority has uniform polynomial-size depth-3 circuits. We
remark that in [Ajt2] Ajtai gives another construction of polynomial-size circuits for
Approximate Majority; these circuits are uniform, but they have large constant depth
c > 3. In this chapter we show that approximate majority is computable by uniform
polynomial-size depth-3 circuits.

Theorem 5.2. Approximate majority is computable by P-uniform polynomial-size
depth-3 circuits.

5.1.2 Our results on simulating probabilistic time by alter-
nating time

We now describe our results regarding simulating probabilistic time by determin-
istic alternating time. Our main results are summarized and compared to previous
work in Table 5.2.

On the positive side, we show the following new quasilinear-time simulation of
BPTime (t), which holds in any reasonable model of computation that can compute

2While Ajtai [Ajt1] does not explicitly bound the depth of his circuits, it can be verified easily
that it equals 3.
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Fourier transforms in time O(n · poly log n) (see, e.g., [CLRS]). This simulation was
independently obtained by Diehl and van Melkebeek (personal communication, Oct.
2005).

Theorem 5.3. BPTime (t) ⊆ Σ3Time (t · poly log t) for every constructible function
t = t(n).

Since BPTime (t) is closed under complement, we obtain the following corollary,
which plays a crucial role in our lower bounds discussed in sections 5.1.3 and 5.1.4
below.

Corollary 5.4. If Σ3Time (n) ⊆ BPTime (n · poly log(n)) then the quasilinear-
time hierarchy collapses to the third level, i.e.

⋃
c ΣcTime (n · poly log(n)) =

Σ3Time (n · poly log(n)).

On the negative side, we prove the following quadratic lower bound on the running
time of Σ2 simulations that relativize, i.e. hold with respect to any oracle. We note
that all previous simulations [Sip, Lau, Ajt2, Can, RS], as well as ours (Theorem 5.3),
relativize.

Theorem 5.5. For every constructible function t = t(n), BPTime (t) 6⊆
Σ2Time (o(t2)) with respect to some oracle.

Theorem 5.5 shows that, for relativizing techniques, the running time of the Sipser-
Gács-Lautemann [Sip, Lau] Σ2 simulation of BPTime (t) is optimal (up to logarithmic
factors), and that consequently the level of our quasilinear-time simulation in Theo-
rem 5.3 is also optimal, in the sense that it cannot be reduced to 2. For completeness,
let us point out that Stockmeyer [Sto] proves that BPP 6⊆ PNP ⊆ ΣP

2 with respect
to some oracle. His result is incomparable to our Theorem 5.5 which addresses the
running time of Σ2 simulations.

5.1.3 Our results on time-space lower bounds

We now discuss our results on time-space lower bounds for probabilistic machines.
We prove a new time-space lower bound for simulating Σ3Time (n) and, in particular,
for solving QSAT3, the problem of deciding the validity of a given Boolean first-order
formula with at most 2 quantifier alternations. (The results for QSAT3 will not be
stated explicitly but follow from techniques in [FLvMV].) The computational model
on which we prove this negative result is that of a probabilistic Turing machine that
can access the tape cells on the input and work tapes by writing a logarithmic-sized
index on an associated index tape (random access), while it can only move to adjacent
tape cells on the random-bit3 tape in one time step (sequential access).

3It will be always clear from the context whether the word ‘random’ refers to the machine’s ability
of addressing tape cells by writing down their index, or to the machine being probabilistic.
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In what follows we define our computational model, and then state our lower
bound.

Definition 5.6. We denote by
←→
BPTiSp (t, s) the set of languages accepted by proba-

bilistic Turing machines, with two-sided error, that run simultaneously in time t and
space s, with random access to input and work tapes, and two-way sequential access
to the random-bit tape.

Theorem 5.7. For every constant ε > 0, Σ3Time (n) 6⊆
←→
BPTiSp

(
n1+o(1), n1−ε

)
.

Theorem 5.7 is the first lower bound of the form t = n1+Ω(1) on a probabilistic
computational model with random access to the input tape and two-way access to its
random bits (for a function computable in, say, linear space). We now elaborate on
the strength of models with two-way access to random bits, and then compare our
result to the previous ones.

On one-way vs. two-way access to random bits: To appreciate the difference
between one-way access and two-way access to random bits, consider log-space com-
putation (L). If one extends L by allowing one-way access to random bits, then one
gets a complexity class (BPL) that is contained in P. On the other hand, if one allows
for two-way access to random bits, then one gets a richer complexity class (BP · L),
the power of which is essentially unknown, and conceivably contains NEXP. To fur-
ther appreciate this difference, we refer to a paper by Nisan [Nis3] which shows that
every probabilistic logspace algorithm with one-way access to the random bits can be
simulated by a probabilistic logspace algorithm with two-way access to the random
bits with zero error (i.e., BPL ⊆ ZP · L).

An example where two-way access to random bits can be proven to give more
power than one-way access is the language of palindromes: it can be recognized
in linear time on a sequential one-tape Turing machine with two-way access to the
random-bit tape, while it requires time Ω(n · log n) if we only allow one-way access
to the random-bit tape.4

The above discussion begs the question of how large a time bound one can prove
on probabilistic computational models with two-way access to the random bits. Our
Theorem 5.7 is a qualitatively new answer to this question.

Comparison with previous lower lounds: Beame et al. [BSSV] prove that there
is a function in P that requires time Ω(n

√
log(n/s)/ log log(n/s)) on non-uniform ran-

domized branching programs using space at most s. Since branching programs are
more powerful than random-access machines, their lower bound applies to our model

4The linear-time upper bound can be obtained as follows: On input xy, we accept iff 〈x, u〉 =
〈yR, u〉, where 〈., .〉 denotes inner product, yR the reverse of y, and u the random bits. The lower
bound can be derived from the fact that palindromes requires Ω(log n) communication for random-
ized private-coin protocols; see [KN], Example 3.1.
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(Def. 5.6), but the time lower bound of Ω(n
√

log n) they achieve is weaker than
our n1+Ω(1) bound. Allender et al. [AKR+] prove an n1+Ω(1) time lower bound on
probabilistic random-access machines that have one-way access to random bits and
use space at most n1−ε, for a function in the counting hierarchy (not believed to
be in the polynomial-time hierarchy). In recent and interesting work, Diehl and van
Melkebeek [DvM] prove that probabilistic random-access machines that have one-way
access to random bits and use space at most nε require time at least nc−ε to simulate
ΣcTime (n), for every constant c ≥ 2. In [DvM] they also point out that their space
bound becomes n.25−ε on machines running in time n1+ε. This space bound (for the
particular case of machines running in time n1+ε) later has been improved to n.5−ε

(for simulating Σ2Time (n)) and to n1−ε (for simulating Σ3Time (n)). These improve-
ments have been obtained by Diehl and van Melkebeek (personal communication,
Oct. 2005), and independently by us.

5.1.4 Our results on time lower bounds

We now discuss our results about time lower bounds on probabilistic machines.
We prove a new lower bound on a probabilistic extension of the two-tape Turing
machine model (i.e. a Turing machine with a read-only input tape and one sequential-
access work tape with no space restrictions). Our probabilistic extension, denoted
BPTime1 (t), is obtained by initializing the work tape of the machine with random
bits, and allowing the machine to err with small probability.

Theorem 5.8. Σ3Time (n) 6⊆ BPTime1

(
n1+o(1)

)
.

Theorem 5.8 is the first lower bound on the model BPTime1 (t) (for a function
computable in, say, linear space). In fact, as we point out in Appendix 5.6, our lower
bound applies to a single model that simultaneously extends BPTime1

(
n1+o(1)

)
and

the previously considered
←→
BPTiSp

(
n1+o(1), n1−ε

)
(Def. 5.6).

5.1.5 Organization

This chapter is organized as follows. In Section 5.2 we prove our lower bound for
approximate majority (Theorem 5.1), and we prove that it implies our oracle sepa-
ration in Theorem 5.5. In Section 5.3 we prove that BPTime (t) ⊆ Σ3Time

(
t · log2 t

)
(Theorem 5.3). In Section 5.4 we prove that Approximate Majority is computable
by uniform polynomial-size circuits of depth 3 (i.e., Theorem 5.2). In Section 5.5
we prove our time-space lower bound (Theorem 5.7). Section 5.6 contains the proof
of our time lower bound on Turing machines (Theorem 5.8). Section 5.7 discusses
the dependence of our results on the error probability ε of the BPTime (t) machines,
while we set ε = 1/3 in the rest of the chapter. In Section 5.8 we mention a few open
problems.
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5.2 Lower bound for Approximate Majority

In this section we prove our lower bound on the bottom fan-in of (unbounded
fan-in) depth-3 circuits computing approximate majority. At the end of the section
we compare our techniques to previous ones, and informally discuss why our lower
bound implies our oracle separation in Theorem 5.5.

Let us begin by formally defining approximate majority and restating our main
result.

Definition 5.9. Approximate Majority is the following promise problem:
ApprMajY ES := {x : at least 2|x|/3 bits of x are set to 1},
ApprMajNO := {x : at most |x|/3 bits of x are set to 1}.

Theorem (5.1, restated). Let C be a depth-3 circuit computing approximate majority
on n bits. If the bottom fan-in of C is at most log(n)/2 then the size of C is at least
2n.2

, for big enough n.

We now explain the proof of Theorem 5.1. It is convenient to work with the follow-
ing distribution, which generates x ∈ ApprMajNO with sufficiently high probability
(for our purposes).

Definition 5.10. Let Dn be the distribution on {0, 1}n that sets each bit to 1 inde-
pendently with probability 1/3 (and to 0 with probability 2/3).

The core of the proof of Theorem 5.1 is the following lemma.

Lemma 5.11. Let ϕ be a DNF on n variables with terms of size at most k. If ϕ(x) = 1

for every x ∈ {0, 1}n with at least 2n/3 bits set to 1, then Prx∈Dn [ϕ(x) = 0] ≤ e−
n

3·k2·3k .

Before we explain the intuition for the proof of Lemma 5.11, let us see why it
implies Theorem 5.1.

Proof of Theorem 5.1 assuming Lemma 5.11. First note that Prx∈Dn [x ∈
ApprMajNO] ≥ 1/3 by the standard Central Limit Theorem,5 and therefore
we have that Prx∈Dn [C(x) = 0] ≥ 1/3.

Assume that the output gate of C is an And gate (otherwise we can negate the
circuit and carry through essentially the same argument as below for approximate
majority with YES and NO swapped). So C =

∧
i ϕi, where each ϕi is a Or-And depth-

2 circuit, i.e. a DNF. Note that, by definition of And, for every x ∈ ApprMajY ES we
have ϕi(x) = 1 for all i, while for random x ∈ Dn we have that with probability
at least 1/3 there is an i such that ϕi(x) = 0. By an averaging argument we can
fix a DNF ϕ = ϕi such that: (1) for every x ∈ ApprMajY ES we have ϕ(x) = 1; (2)
Prx∈Dn [ϕ(x) = 0] ≥ 1/(3 · |C|), where |C| is the size of the circuit C, i.e. the number

5Alternatively, one can change the parameter 1/3 in the distribution Dn to any other smaller
constant, and prove, using Markov inequality, a bound which is enough to obtain our results modulo
different constants.
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of its gates. Note that if C has bottom fan-in at most k then the same holds for the
subcircuit ϕ fixed above, i.e. ϕ is a DNF with term size at most k. By Lemma 5.11,
we have

1

3 · |C|
≤ e−n/(3·k2·3k) = e−nΩ(1)

,

and so we conclude |C| ≥ enΩ(1)
. In fact, |C| ≥ 2n.2

, because 3k = n(log2 3)/2 ≈
n.792.

Overview of the proof of Lemma 5.11: The proof of Lemma 5.11 is an inductive
argument inspired by a recent switching lemma by Segerlind et al. [SBI], which we
discuss later in this section. A similar argument is also a component of a technically
intricate lower bound on the round complexity of protocols for two-party random
selection [SV2].

Let us define a covering of a DNF ϕ as a subset Γ of the variables such that
each term in ϕ contains at least one variable, possibly negated, in Γ. For example,
the smallest covering of the DNF ϕ(x1, x2, x3, x4) := (x1x2x3) ∨ (¬x1) ∨ (x2x4) is
Γ := {x1, x2}. To prove Lemma 5.11 we then argue as follows. Consider the smallest
covering Γ of ϕ. There are two cases: Either |Γ| > n/(3k) or |Γ| ≤ n/(3k). (Recall
k = (log n)/2 is the maximum term size of ϕ.)

Case |Γ| > n/(3k): In this case ϕ must contain at least |Γ|/k = n/ poly log(n)
disjoint terms, where disjoint means that no two terms share a variable. Such terms
can be found greedily, using the fact that the terms are of size at most k. Now, the
probability that ϕ(x) = 0 for random x ∈ Dn is at most the probability that all these
n/ poly log(n) terms evaluate to 0. Since the terms are disjoint, this can be bound
by raising to the power of n/ poly log(n) the probability that a single term is 0. But
since terms have at most k = (log n)/2 variables, the probability that a term is 0 can
be shown to be at most (1− 1/nε), for a constant ε < 1. Thus we have

Pr
x∈Dn

[ϕ(x) = 0] ≤
(

1− 1

nε

)n/ poly log(n)

= 2−nΩ(1)

,

which proves Lemma 5.11.
Case |Γ| ≤ n/(3k): In this case by an averaging argument we fix the variables in

Γ and obtain a new DNF ϕ′ such that Prx∈Dn [ϕ′(x) = 0] ≥ Prx∈Dn [ϕ(x) = 0]. Then
we iterate the argument on ϕ′ (i.e. we consider the size of the smallest covering of ϕ′,
etc.).

We keep iterating the argument until we obtain a DNF ϕ′ whose smallest covering
has size at least n/(3k), or a DNF ϕ′ that computes a constant function. By con-
struction, Prx∈Dn [ϕ′(x) = 0] ≥ Prx∈Dn [ϕ(x) = 0], so we only need to worry about the
case ϕ′ ≡ 0 (otherwise Lemma 5.11 is proven as stated above). We rule out the case
ϕ′ ≡ 0 by exhibiting x ∈ ApprMajY ES such that ϕ(x) = 0, which contradicts the
hypothesis of Lemma 5.11. To construct such an x, note that each iteration assigns
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values to the variables in a covering of the DNF, and so at each iteration the term
size of the DNF decreases (since each term has at least one variable in the covering).
Therefore we iterate the argument at most k times. Since each iteration fixes at most
n/(3k) variables, in the end we have fixed at most k · n/(3k) = n/3 variables. By
setting all the remaining variables to 1 we set at least 2n/3 variables to 1 and thus we
have x ∈ ApprMajY ES such that ϕ(x) = ϕ′(x) = 0, which contradicts the hypothesis
of Lemma 5.11 and concludes this proof sketch.

We now present the formal proof of Lemma 5.11.

Proof of Lemma 5.11. We define a covering Γ of a DNF ϕ to be a subset of variables
such that each term in ϕ contains at least one variable in Γ (possibly negated).
Consider the following procedure:

Procedure(ϕ)
If ϕ computes a constant function then stop.
Remove all terms in ϕ that compute the constant function 0 (e.g. x1 ∧ ¬x1).
Let Γ be a minimum-size covering of the terms of ϕ.
If |Γ| ≥ n/(3 · k) then stop.
Partition the v variables of ϕ(x) into x = y

⋃
z, where y = Γ and z

⋂
Γ = ∅.

Fix an assignment y = a such that Prz∈Dv−|Γ| [ϕ(a · z) = 0] ≥ Prx∈Dv [ϕ(x) = 0].
(Such an assignment exists by an averaging argument.)
Consider the new DNF ϕ′(z) := ϕ(a · z) obtained by hardwiring a in ϕ.
Repeat the procedure on the DNF ϕ′.

Claim 5.12. The procedure stops after at most k iterations.

Proof. At each iteration we fix the variables y in a covering Γ of ϕ. Since by definition
of covering each term of ϕ contains a variable from Γ, this decreases the maximum
term size of ϕ. When the term size is 0 then the DNF is a constant and we stop.

The procedure constructs a sequence of DNF’s ϕ = ϕ1, ϕ2, . . . , ϕt, where DNF ϕi

is on ni variables. We have t ≤ k by the above claim. Also, by construction we have

Pr
x∈Dn

[ϕ(x) = 0] = Pr
x∈Dn1

[ϕ1(x) = 0] ≤ Pr
x∈Dn2

[ϕ2(x) = 0] ≤ . . . ≤ Pr
x∈Dnt

[ϕt(x) = 0].

(5.1)
To finish the proof, we simply analyze what happens when the procedure stops.

If the procedure stops at the i-th iteration because ϕi computes a constant function,
we argue as follows: If ϕi(x) = 1 for every x then Prx∈Dni [ϕi(x) = 0] = 0, and by
Equation (5.1) we have Prx∈Dn [ϕ(x) = 0] ≤ 0, which proves the lemma.

If ϕi(x) = 0 for every x then notice that at each iteration we fix at most n/(3k)
variables, and therefore by Claim 5.12 ϕi equals ϕ with at most k · n/(3k) = n/3
variables fixed. By setting all the remaining variables to 1, we have found an input x̂
with at least 2n/3 bits set to 1 such that ϕ(x̂) = 0, which contradicts the hypothesis
of the lemma.
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Otherwise, the procedure stops at the i-th iteration because every covering of ϕi

has size at least n/(3k). Therefore there is a set S of at least n/(3k2) disjoint terms,
where disjoint means that no two terms share a variable. To see why this is true, let
S be a maximal set of disjoint terms. The union of the variables in the terms in S is
a covering of ϕi of size at most |S| · k: if it were not a covering, we could add a term
to S, contradicting its maximality. Thus |S| ≥ (n/3k)/k.

Then we can bound Prx[ϕ(x) = 0] as follows:

Pr
x∈Dn

[ϕ(x) = 0] ≤ Pr
x∈Dni

[ϕi(x) = 0] ≤
(

1− 1

3k

)n/(3k2)

≤ e−
n

3·k2·3k ,

where the first inequality follows by Equation (5.1), and the second follows by con-
sidering the terms on disjoint sets of variables in ϕi. Specifically, we notice that the
probability that any of them is 0 is at most (1 − 1/3k). This holds because in the
procedure we always remove terms computing the constant function 0, and thus each
term must be 1 under at least one assignment of its (at most k) variables. This assign-
ment is picked under the distribution Dni with probability at least 1/3k. Moreover,
these events are independent for the n/(3 · k2) terms with disjoint variables.

Why one cannot use previous techniques to prove our circuit lower bound:
A standard approach to prove lower bounds for constant-depth circuits is to use a
switching lemma (see, e.g., [H̊as]). H̊astad’s switching lemma [H̊as] cannot be used
directly to prove lower bounds for the promise problem Approximate Majority. This
is because to apply this lemma to a circuit with bottom fan-in k, we need to assign
values to at least a (1 − 1/k) fraction of the variables. The switching lemma would
assign 0 to roughly half of this fraction of variables, and so as soon as k ≥ 3, we
would produce an input x 6∈ ApprMajY ES

⋃
ApprMajNO.

Recently, Segerlind et al. [SBI] proved a new switching lemma that assigns values
to much fewer variables than does H̊astad’s switching lemma. One can apply this
switching lemma [SBI] to prove that small depth-3 circuits for approximate majority
on n bits require bottom fan-in at least Ω(

√
log n); however, we were unable to apply

their results to circuits with bigger bottom fan-in, such as (log n)/2. Our proof is also
conceptually simpler than a proof based on the switching lemma.

5.2.1 Oracle separation

For completeness, in this section we prove why why our circuit lower bound for
approximate majority in Theorem 5.1 implies our oracle separation in Theorem 5.5.
We start with some intutition and then we present a formal proof.

Intuition behind the oracle separation: Consider simulating a probabilistic ma-
chine M ∈ BPTime (t) by a machine in Σ2Time (t′). Given an input x, by definition
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of BPTime (t) we are promised that either Pru[M(x;u) = 1] ≥ 2/3 or Pru[M(x;u) =
1] ≤ 1/3. This corresponds to an approximate majority instance Y of exponential
length |Y | = 2|u| = 2t, where the i-th bit of Y is M(x; i) (the equality 2|u| = 2t holds
because the machine runs time t). Thus, intuitively, the task of the Σ2 machine is
to distinguish Y ∈ ApprMajY ES from Y ∈ ApprMajNO. By standard techniques
reviewed in Appendix B, the Σ2 computation can be seen as an unbounded fan-in
circuit of depth 3: the two quantifiers give rise to the first two levels of the circuit
(Or-And). After its quantifications, the Σ2 simulation is followed by a deterministic
computation running in time t′. Since computing M(x;u) for fixed (x;u) takes (de-
terministic) time t, the Σ2 computation can depend on at most k := t′/t evaluations
of M . We can write this part of the Σ2 computation as a depth-2 (And-Or) circuit
with bottom fan-in k. Finally, by collapsing the top And gate of this circuit with
the And arising from the second quantifier, we obtain a small circuit of depth 3 with
bottom fan-in k = t′/t. By our lower bound (Theorem 5.1), small depth-3 circuit for
Approximate Majority on |Y | bits have bottom fan-in Ω(log |Y |) = t, and therefore
we obtain that t′ ≥ Ω(t2).

The above sketch can be shown to be exact for relativizing simulations, using
the standard convention that the oracle tape is erased after each query (see, e.g.,
[BDG]). We stress that this convention is natural: it is intuitively capturing the
fact that the Σ2Time (t′) machine cannot run the code of the BPTime (t) machine
more than t′/t times, since each execution of the latter runs in time t. Finally, we
would like to point out that our result in Theorem 5.5 also applies to simulations
of BPTime (t) by Σ2Time (t′) that are black-box (as opposed to relativizing), because
black-box simulations relativize (folklore).

We now present a formal proof.

Proof of Theorem 5.5 assuming Theorem 5.1. The overall structure of the proof fol-
lows standard arguments (see e.g., [FSS], or Theorem 14.5 in [Pap]). Fix a time
bound t = t(n). Consider the collection of oracles A where for every A ∈ A and for
every integer m, the fraction of strings of length m in the oracle A is at least 2/3 or
at most 1/3. For A ∈ A we consider the language

LA :=

{
0n : Pr

x:|x|=t(n)
[x ∈ A] ≥ 2/3

}
.

For every A ∈ A we have that LA ∈ BPTime (t) with oracle access to A: on input 0n,
we simply query the oracle at a random x of length t(n) and return its answer.

On the other hand, we show that there is A ∈ A such that LA 6∈ Σ2Time (o(t2))
with oracle access to A. The construction of A proceeds by diagonalization. Consider
an enumeration M1,M2, . . . of Σ2Time (o(t2)) machines. We assume that these ma-
chines only make oracle queries of length t(n), on input of length n. This assumption
can be removed by standard arguments, e.g. by considering ‘sufficiently sparse’ input
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lengths. We make this assumption because it simplifies the proof while preserving all
the main ideas, and also because it holds for all known simulations (in particular all
those in Table 5.2).

At stage i we fix a finite initial segment of the oracle A in such a way that LA 6=
MA

i . Stage i works as follows. Let Mi run in time t′ = o(t2). By standard techniques
reviewed in Appendix B the machine Mi gives rise to an unbounded fan-in circuit of
depth 3 as follows. The input to the circuit is the truth table of length T = T (n) := 2t

of the oracle (as well as the bit-wise complement of this truth table). The top and the
middle fan-ins of the circuit are 2O(t′(n)) (where the top fan-in is defined as the fan-in of
the output gate), while the bottom fan-in is k = k(n) := t′(n)/t(n) = o(t2/t) = o(t).
The bottom fan-in corresponds to the maximum number of oracle queries the machine
makes on any computation path. Since each query is of length t and the oracle tape
is erased after each query (see, e.g., [BDG]), the machine can only ask t′(n)/t(n)
queries.

We are now in the apply our Theorem 5.1. For sufficiently large n, a circuit with
the above parameters cannot compute approximate majority on T = 2t bits. (Note
that the bottom fan-in of the circuit is k = o(t) = o(log T ).) Therefore we can
augment the oracle A in such a way that LA 6= MA

i , while still keeping A ∈ A.

5.3 BPTime (t) ⊆ Σ3Time (t · poly log t)

In this section we prove that BPTime (t) ⊆ Σ3Time (t · poly log t), i.e. Theorem
5.3. The ideas in the proof of this result will also be a component of our proof that
Approximate Majority has uniform polynomial-size circuits of depth-3, i.e. Theorem
5.2, though more work is needed for that (see Section 5.4). We start with some
intuition and then we present a formal proof.

Intuition for BPTime (t) ⊆ Σ3Time (t · poly log t): Let us focus on the case t = n
and review Lautemann’s proof of BPTime (n) ⊆ Σ2Time (n2 · poly log n), as this is
the starting point of our argument. Let M(x;u) be a probabilistic machine using
n random bits u. Lautemann’s approach is to guess n ‘shifts’ w1 ∈ {0, 1}n, w2 ∈
{0, 1}n, . . . , wn ∈ {0, 1}n and check if for every u ∈ {0, 1}n we have(

M(x;u⊕ w1) = 1
) ∨ (

M(x;u⊕ w2) = 1
) ∨

. . .
∨ (

M(x;u⊕ wn) = 1
)
. (5.2)

Noting that we use two quantifiers, each ranging over at most n2 bits, and that
the computation in Equation 5.2 takes time n2, we have that this is a Σ2Time (n2)
simulation. The proof of correctness is a counting argument, which we omit.6

6Actually, this approach requires that the error probability of M is at most 1/n2. We can achieve
this by paying an extra O(log n) factor in the running time, if M starts off with error 1/3. We ignore
this issue to simplify the exposition.
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There are two reasons why this simulation takes at least quadratic time. The first
is that the computation in Equation (5.2) runs M for n times (over fixed random
bits). Since M runs in time O(n), this takes at least time n2. The second reason is
that we initially guess n2 = |w1, w2, . . . , wn| bits.

Let us focus on the first problem, that is, the fact that computing Equation (5.2)
requires quadratic time. This problem cannot be avoided using relativizing tech-
niques: Our negative result (Theorem 5.5) shows that every relativizing Σ2 simulation
must run M at least Ω(n) times, and thus must have total run time at least n2. As a
first step towards our quasilinear Σ3 simulation, we observe that the computation in
Equation (5.2) is an Or over n evaluations of M ; thus, we can use another quantifier
for this Or, and then run M once.

To obtain a Σ3 simulation that runs in quasilinear time, we still have to solve
the second problem, the quantification over w1, w2, . . . , wn. As it turns out, the
only property of these wi’s that is used in Lautemann’s proof is a hitting property,
i.e. for any ‘big’ set A ⊆ {0, 1}n, the probability over random w1, w2, . . . , wn that
none of the wi’s lands in A is exponentially small in n. It is well known that there
are more ‘randomness-efficient’ ways to generate wi’s with this property (see, e.g.,
[Gol2]). In particular, it is possible to generate such wi’s using a hitting generator
with a seed of length |σ| = O(n). We use this approach: instead of guessing n2 bits
for w1, w2, . . . , wn, we only guess O(n) bits σ and let wi := G(σ)i, where G(σ) =
G(σ)1 ·G(σ)2 · · ·G(σ)n ∈ ({0, 1}n)n for an appropriate generator G.

However, for our simulation we need a generator that runs in quasilinear time in
the sense that given σ and i we need to compute the i-th output G(σ)i = wi ∈ {0, 1}n
of the generator in quasilinear time. Well-known generators based on random walks
on expander graphs achieve seed length O(n) (see, e.g., [Gol2]), but we do not know
how to compute any of them in less than quadratic time.7

Instead, we use a generator by Nisan [Nis2] which has slightly worse seed length
|σ| = O(n · log n), but which on the other hand can be computed in time O(n ·
poly log n): to compute one output of the generator we only have to evaluate log n
pairwise independent hash functions h : {0, 1}n → {0, 1}n. Using hash functions based
on convolution or finite field arithmetic, one can compute each such hash function in
time O(n · poly log n) using the Fast Fourier Transform.

We now present a formal proof.

Theorem (5.3, restated). BPTime (t) ⊆ Σ3Time (t · poly log t) for every constructible
function t = t(n).

The proof of Theorem 5.3 uses as a component a hitting generator by Nisan.

7Concurrently with our work, Diehl and van Melkebeek show how to compute walks on the
Margulis-Gabber-Galil expander graph [Mar, GG, JM] in quasilinear time (personal communication,
Oct. 2005).
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Lemma 5.13 ([Nis2], Theorem 3). For every r and k ≤ 2r, there exists a generator

Nk : {0, 1}l → ({0, 1}r)k , Nk(σ) = Nk(σ)1 ·Nk(σ)2 · · ·Nk(σ)k,

such that:

1. Nk has seed length l = |σ| = O(r log k),

2. for every set A ⊆ {0, 1}r we have∣∣∣∣∣Pr
σ

[∀i ≤ k : Nk(σ)i ∈ A]−
(
|A|
2r

)k
∣∣∣∣∣ ≤ 4−r,

3. given a seed σ and i ≤ k we can compute Nk(σ)i ∈ {0, 1}r in time (r ·
poly log r) log k.

Proof. Items (1) and (2) in Lemma 5.13 are proven in Nisan’s paper [Nis2]. To
prove Item (3), we note that computing one r-bit output of the generator requires
computing log k pairwise independent hash functions. Using hash functions based on
convolution or finite field arithmetic one can compute each such hash function in time
O(r · poly log r) using the Fast Fourier Transform (see, e.g., [Nis2] Section 2.2 for the
definition of hash functions based on convolution, and Theorem 30.8 in [CLRS] for
the use of the Fast Fourier Transform to compute convolution).

Proof of Theorem 5.3. We prove BPTime (n) ⊆ Σ3Time (n · poly log n), the inclusion
for generic time bound t = t(n) then follows by a standard padding argument (see,
e.g., [Pap]). Let M be an algorithm in BPTime (n) and let us write M(x;u) for
algorithm M on input x and random bits u.

Claim 5.14. Let M be an algorithm in BPTime (n). There is an algorithm M ′ that
accepts the same language as M such that: M ′ has error probability at most 1/n2, M ′

uses O(n) random bits, and given x, u we can compute M ′(x;u) in time O(n · log n).

We postpone the proof of Claim 5.14 and we proceed with the proof of the theorem.
(Note that if one is willing to have M ′ use O(n log n) random bits, instead of O(n),
then one can obtain such a M ′ by simply taking the majority of O(log n) repetitions of
M(x) with independent random bits. Using this instead of Claim 5.14 and proceeding
with the proof gives a simulation with worse running time, but still n · poly log n.
However, the better parameters achieved here are used later in Section 5.4.)

Let M ′ be the algorithm from Claim 5.14 and let r = r(n) = O(n) be the number
of random bits used by M ′ on input of length n. Let Nk : {0, 1}l → ({0, 1}r)k be
the generator from Lemma 5.13 with k = r. Note that the seed length of Nk is
|σ| = l = O(r log k) = O(n · log n).

Now consider the Σ3 machine that accepts input x if and only if

∃σ ∈ {0, 1}l ∀u ∈ {0, 1}r ∃i ≤ k : M ′ (x;Nk(σ)i ⊕ u) = 1,



Chapter 5: Probabilistic Time versus Alternating Time 93

where ⊕ denotes bitwise xor.

Correctness: Assume M ′(x) = 1. We must show that the Σ3 machine accepts.
Consider

Pr
σ

[∃u ∈ {0, 1}r ∀i ≤ k : M ′ (x;Nk(σ)i ⊕ u) = 0]. (5.3)

We show that this probability is less than 1 and therefore that the machine accepts.
By a union bound this probability (5.3) is at most

2r · Pr
σ

[∀i ≤ k : M ′ (x;Nk(σ)i) = 0].

(Note we removed⊕u because this just shifts the space of random bits of the algorithm
and does not change the probability.) Since M ′(x) = 1, and M ′ has error at most
1/n2, we get by Lemma 5.13 that the probability is at most (recall k = r)

2r
(
(1/n2)k + 4−r

)
< 1.

Now assume that M ′(x) = 0. Fix any seed σ, we must show that ∃u ∈ {0, 1}r∀i ≤
k : M ′ (x;Nk(σ)i ⊕ u) = 0, and thus the machine rejects. Consider

Pr
u

[∃i ≤ k : M ′ (x;Nk(σ)i ⊕ u) = 1.

Again, we show that this probability is less than 1 and therefore that the machine
accepts. By a union bound this probability is at most

k · Pr
u

[M ′ (x;u) = 1].

(Note again we removed Nk(σ)i⊕ because this just shifts the space of random bits
of the algorithm and does not change the following analysis.) Since M ′ has error at
most 1/n2 this probability is at most k/n2 = r/n2 = O(n · log n)/n2 < 1.

Complexity: The machine uses three quantifiers, each on at most O(n · log n) bits,
by inspection. Each computation branch only runs M ′ (x;Nk(σ)i ⊕ u) once. Nk(σ)i

can be computed in time (r · poly log r) · log k = n · poly log n by Lemma 5.13, and
for given x, u′, M ′(x;u′) can be computed in time O(n · log n) by Claim 5.14.

Proof sketch of Claim 5.14. We use the O(n) random bits of M ′ to encode a walk
w1, w2, . . . , wl of length l = O(log n) on an expander graph of 2O(n) vertices. We
then define M ′(x;u) := Majj≤lM(x;wj). The bound on the error probability of the
algorithm follows by the Chernoff Bound for random walks on expander graphs [Gil].
Using the expander graph in [Mar] (the expansion of which is analyzed in [GG, JM]),
we can compute all the wi’s in time O(n · log n): computing wi from wi−1 amounts to
a constant number of additions, which can be done in time O(n).
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5.4 Uniform depth-3 circuits for Approximate Ma-

jority

In this section we prove the following theorem regarding the complexity of com-
puting approximate majority.

Theorem (5.2, restated). Approximate majority is computable by P-uniform
polynomial-size depth-3 circuits.

The proof of Theorem 5.2 makes use of the following hitting generator (see Section
5.3 for a discussion of hitting generators).

Lemma 5.15. For every n there exists a polynomial-time computable generator

Z : {0, 1}O(n) → ({0, 1}n)k , Z(σ) = Z(σ)1 · Z(σ)2 · · ·Z(σ)k,

with k = O(n/ log n), such that for every set A ⊆ {0, 1}n of size |A| ≤ 2n/n2 we have

Pr
σ

[∀i ≤ k : Z(σ)i ∈ A] ≤ 4−n.

Proof sketch of Lemma 5.15. Use the input σ to encode a random walk (started at a
random vertex) of length c ·n/ log n on an nO(1)-regular expander graph on 2n vertices
with second largest eigenvalue λ = 1/n2, for a constant c to be determined later.8

Note that one can encode such a walk using (c · n/ log n) · log nO(1) = O(n) bits.
Kahale [Kah] shows that the probability that all the t steps of the random walk fall
inside a fixed set of density µ := 1/n2 can be bounded as

µ · (µ+ (1− µ) · λ)t−1 ≤ (1/nΩ(1))c·n/ log n ≤ 4−n,

where the last inequality holds by choosing a sufficiently large constant c.

We now proceed with the proof of Theorem 5.2.

Proof of Theorem 5.2. The main ideas of the proof are the same as those of the proof
of Theorem 5.3. It is convenient to think of an approximate majority instance of
length N as M(0) ·M(1) · · ·M(N), where M(i) is the i-th bit of the instance.

Let Z : {0, 1}O(n) → ({0, 1}n)k be the hitting generator from Lemma 5.15, where
k = O(n/ log n). We decide approximate majority by checking whether the following
equation is true:

∃σ ∈ {0, 1}O(n) ∀u ∈ {0, 1}n ∃i ≤ k : M ′ (Z(σ)i ⊕ u) = 1, (5.4)

8Such an expander G can be obtained by taking a λ-biased set S ⊆ {0, 1}n of size poly(n)
[NN, AGHP] and setting G := ({0, 1}n, {(x, y) : x− y ∈ S}). Alternatively, we can take a O(log n)
power of a constant-degree expander.
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where ⊕ denotes bitwise xor, and M ′ denotes the machine with error 1/n2 from Claim
5.14, which we think of as an approximate majority instance with amplified gap (i.e.,
either at least a 1− 1/n2 fraction of input bits is set to 1, or at most a 1/n2 fraction
of input bits is set to 1).

Correctness: The proof of correctness is the same as that of Theorem 5.3.

Computable by uniform poly(N)-size circuits of depth 3: We note that the compu-
tation of M ′ (G(σ)i ⊕ u) is the majority of O(log n) evaluations of M , and therefore
the computation of

∃i ≤ k : M ′ (G(σ)i ⊕ u) = 1

only depends on k ·O(log n) = O(n) evaluations of M . We write this computation as
a CNF of size 2O(n) = poly(N). We then collapse the output And of this CNF with the
second quantifier in Equation (5.4). Finally, since the first two quantifiers in Equation
(5.4) range over O(n) bits, they give rise to gates with fan-in 2O(n) = poly(N), and
thus the whole computation in Equation (5.4) can be written as a poly(N)-size circuit
of depth 3.

It is easy to check that the circuit can be constructed in time poly(N). (Note that
the generator Z in Lemma 5.15 is computable in time poly(n) = poly logN .)

On Depth-3 circuits vs. Σ3 time: The above proof of Theorem 5.2 is similar to the
proof of Theorem 5.3 (which is the result that BPTime (t) ⊆ Σ3Time (t · poly log t)),
and thus it is worth pointing out why the two results (Theorem 5.2 and Theorem 5.3)
actually are incomparable.

The depth-3 circuit in the above proof of Theorem 5.2 is P-uniform, i.e. it can be
constructed in time polynomial in its size. P-uniformity is too loose to obtain The-
orem 5.3 for which one needs the circuit to satisfy the following stronger uniformity
condition: given the indices to two gates in the circuit, it is possible to decide whether
the two gates are connected in time quasilinear in the length of their indices. It is
conceivable that the circuit does satisfy this stronger uniformity condition, but this
does not seem straightforward to us.

Conversely, the circuit obtained in Theorem 5.3 (i.e. BPTime (t) ⊆
Σ3Time (t · poly log t)) does satisfy the above stronger uniformity condition, but has
superpolynomial size and depth 4. (The circuit has depth 4 because the 3 alternations
are followed by a computation that depends on several evaluations of the BPTime (t)
machine. This computation gives rise to another layer of gates in the circuit.)

5.5 Time-space lower bound

In this section we prove our time-space lower bound (Theorem 5.7). We start with
an informal overview of the techniques, and then proceed with a formal proof sketch.
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Overview of techniques: Our time-space lower bound for Σ3Time (n) is inspired
by an interesting recent paper by Diehl and van Melkebeek [DvM] which, among

other results, proves that Σ3Time (n) 6⊆
−→
BPTiSp (n1+ε, nε) for some constant ε, where

−→
BPTiSp (t, s) denotes the class of problems that can be solved simultaneously in time
t and space s on a probabilistic random-access Turing machine with one-way ac-
cess to its random bits. It is convenient for this exposition to think of the ap-

proach in [DvM] as giving a sublinear-time Σ3 simulation of
−→
BPTiSp (n1+ε, nε), in

other words, proving that
−→
BPTiSp (n1+ε, nε) ⊆ Σ3Time (o(n)). Their result that

Σ3Time (n) 6⊆
−→
BPTiSp (n1+ε, nε) then follows by a standard time hierarchy for alter-

nating time.9 To prove this simulation one argues as follows. First one derandomizes

the
−→
BPTiSp (n1+ε, nε) machine using a pseudorandom generator by Nisan [Nis2] that

has seed length nε. This gives
−→
BPTiSp (n1+ε, nε) ⊆ BPnε

TiSp (n1+ε, nε), where ‘BPnε

’
means ‘using at most nε random bits.’ (Note we do not specify anymore if the machine
has one-way or two-way access to its random bits, because now the machine simply
could copy its nε random bits onto a random-access work tape.) Second, one replaces
the nε random bits by two quantifiers, using Lautemann’s result [Lau] discussed in
Section 5.1. For this replacement, Lautemann’s result needs to quantify over (nε)2

bits, and thus one obtains BPnε

TiSp (n1+ε, nε) ⊆ ∃n2ε∀n2ε
TiSp

(
n1+O(ε), nε

)
. By using

another quantifier to speed up the running time of the simulation (cf. [vM]), one gets
−→
BPTiSp (n1+ε, nε) ⊆ Σ3Time (o(n)).

We now explain the difficulties we encounter in the proof of our result that

Σ3Time (n) 6⊆
←→
BPTiSp

(
n1+o(1), n1−ε

)
. Following the above outline, our task is to show

the following simulation:
←→
BPTiSp (n1+ε, n1−ε) ⊆ Σ3Time (o(n)). The main difficulty

that we face in this extension to machines with two-way access to random bits is that
in this setting only generators much weaker than Nisan’s [Nis2] are known. Specif-
ically, we use a generator by Impagliazzo et al. [INW], which raises two problems.
The first problem is that, regardless of the amount of space used by the machine,
this generator always has seed length |σ| �

√
n (as opposed to nε). This is prob-

lematic because, as explained above, the approach in [DvM] is to replace the random
bits for the seed σ of the generator by alternations. However, Lautemann’s approach
would need to quantify over |σ|2 � n bits, which would prevent us from obtain-
ing a sublinear-time simulation. We solve this problem using our quasilinear-time
simulation of probabilistic time (Theorem 5.3) instead of Lautemann’s simulation.

The second problem is that we do not know how to compute the generator of
[INW] in less than time |σ|2 � n. Again, this seems to prevent us from obtaining a
sublinear-time simulation. In fact, the argument in [DvM] directly exploits the fact
that Nisan’s generator [Nis2] is computable quickly. We solve this problem as follows.
First we notice that the generator in [INW] can be computed time-efficiently using

9This is a simplification of the techniques in [DvM]: in [DvM] they obtain the stronger result
that Σ3Time (n) 6⊆

−→
BPTiSp

(
n3−ε, nε

)
using a more involved argument.
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alternations. Then we apply our Corollary 5.4, which shows that our assumption

(Σ3Time (n) ⊆
←→
BPTiSp

(
n1+o(1), n1−ε

)
⊆ BPTime

(
n1+o(1)

)
) implies a time-efficient

collapse of the alternating-time hierarchy to the third level.

We now restate our time-space lower bound and then prove it.

Definition (5.6, restated). We denote by
←→
BPTiSp (t, s) the set of languages accepted

by probabilistic Turing machines, with two-sided error, that run simultaneously in time
t and space s, with random access to input and work tapes, and two-way sequential
access to the random-bit tape.

Theorem (5.7, restated). For every constant ε > 0, Σ3Time (n) 6⊆
←→
BPTiSp

(
n1+o(1), n1−ε

)
.

We use the following generator by Impagliazzo, Nisan, and Wigderson.

Lemma 5.16 ([INW], Theorem 4). For every sufficiently small constant ε > 0
and sufficiently large n, there exists a pseudorandom generator G : {0, 1}m1−δ →
{0, 1}m1+δ

, with m = m(n) := n2 and δ = ε/4, that satisfies the following:

• Pseudorandomness: Let M be a machine in
←→
BPTiSp (t,m1−ε) where t = t(n) =

m1+o(1). For every fixed x ∈ {0, 1}n,∣∣∣∣∣ Pr
u∈{0,1}t

[M(x;u) = 1]− Pr
σ∈{0,1}m1−δ

[M(x;G(σ)) = 1]

∣∣∣∣∣ ≤ 1/9.

• Complexity: Given a seed σ ∈ {0, 1}m1−δ
and the index i ≤ m1+δ to an output

bit, the i-th output bit of G(σ) is computable simultaneously in time poly(m)
and space O(m1−δ).

Remark 5.17 (Remark on the proof of Lemma 5.16). In [INW] they sketch a proof
that one can fool Turing machines running simultaneously in time t and space s using
a generator G with seed length O(

√
t · s · log t). We now explain why this implies

Lemma 5.16 above.
First note that in our case t = t(n) = m1+o(1) and s = m1−ε. When t ≤ m1+δ then

the generator in [INW] has seed length O(
√
m1+δ+1−ε · logm) = O(m1−3·ε/8 · logm) ≤

m1−ε/4 = m1−δ for sufficiently large m.
In [INW], they only argue that the generator fools Turing machines (as opposed to

←→
BPTiSp (t, s)). However, their proof is only exploiting that the machine has sequential
access to the random-bit tape, and that the state of the machine can be described by

s bits, both of which hold in our model
←→
BPTiSp (t, s). In particular, their proof does

not rely on Turing machines being a uniform model of computation, and thus their
generator works even after we hardwire an arbitrary input x.
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Finally, the authors of [INW] claim without proof (Section 4 in [INW]) that the
generator can be computed “in polynomial time and polylog space in the size of the
output of the generator.” We do not see how to do that when the seed is polynomially
related to the size of the output of the generator. However, it is not too hard to see
that, given a seed, the generator is computable simultaneously in polynomial time and
linear space (details omitted).

Notation for the proof of Theorem 5.7: The proof of Theorem 5.7 involves
a series of inclusions between complexity classes. To reason about these classes,
it is convenient to give the following definitions. We denote by TiSp (t, s) the set
of (languages accepted by) Turing machines running simultaneously in time t and
space s, with random access to input and work tapes (cf. [vM, FLvMV]). For a
complexity class C (e.g. TiSp (t, s)) and a function f = f(n) we define the class
BPfC to be the set of languages L for which there exists M(x;u) ∈ C such that
x ∈ L⇒ Pru∈{0,1}f [M(x;u) = 1] ≥ 2/3, and x 6∈ L⇒ Pru∈{0,1}f [M(x;u) = 1] ≤ 1/3,
where the complexity of M is measured in terms of |x| (as opposed to |x|+ |u|). We
analogously define ∃fC (namely x ∈ L⇔ ∃u ∈ {0, 1}f : M(x;u) = 1), and ∀fC.

Proof of Theorem 5.7. We assume that Σ3Time (n) ⊆
←→
BPTiSp

(
n1+o(1), n1−ε

)
, and de-

rive a contradiction to the time hierarchy for alternating time, namely Σ3Time (m) ⊆
Σ3Time (o(m)) (see, e.g., Section 3.1 in [vM]). Let m = m(n) := n2 (any m = n1+Ω(1)

would do). We have the following contradiction:

Σ3Time (m) ⊆
←→
BPTiSp

(
m1+o(1),m1−ε

)
(5.5)

⊆ BPm1−δ

TiSp
(
poly(m),m1−δ

)
(5.6)

⊆ ∃m1−δ/2∀m1−δ/2∃m1−δ/2

TiSp
(
poly(m),m1−δ/2

)
(5.7)

⊆ ΣO(1) (5.8)

⊆ Σ3Time (o(m)) (5.9)

contradiction. (5.10)

Inclusion (5.5) holds by assumption plus a padding argument (see, e.g., [Pap]).
Inclusion (5.6) follows by using the INW generator from Lemma 5.16. More

specifically, let M be a machine in
←→
BPTiSp

(
m1+o(1),m1−ε

)
and let G : {0, 1}m1−δ →

{0, 1}m1+δ
be the generator from Lemma 5.16. Now consider the machine M ′ that

uses m1−δ random bits σ, and simulates the machine M , but whenever M accesses
the i-th random bit, M ′ computes on the fly the i-th output bit of G(σ) and uses
that instead. By reusing the same space to compute G(σ) every time M accesses a
random bit, and because G is computable simultaneously in time poly(m) and space

O(m1−δ) by Lemma 5.16, we have that M ′ ∈ BPm1−δ

TiSp
(
poly(m),m1−δ

)
. Also, for

every input x we have M(x) = M ′(x) by the pseudorandomness property of INW in
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Lemma 5.16 (assuming without loss of generality that the error probability of M is a
sufficiently small constant).

Inclusion (5.7) follows by (a variant of) Theorem 5.3. Specifically, it is easy to
check that Theorem 5.3 can be extended to obtain the following inclusion, which
implies Inclusion (5.7): For any t = t(n) and r = r(n) ≤ t(n) polynomially related to
n, we have

BPrTiSp (t, r) ⊆ ∃r′∀r′∃r′TiSp (t′, r′) ,

where r′ = r · poly log(n) and t′ = t · poly log(n).
Inclusion (5.8) follows by the fact, usually credited to [Nep], that one can trade

alternations for time in sublinear-space computations. More formally, one can prove
the following inclusion (see e.g. [vM], Section 3.2):

TiSp (t, s) ⊆ Σ2kTime
(
(t · sk)1/(k+1)

)
.

(The number of alternations in the above inclusion can be reduced to k + 1 from 2k
[FLvMV]. This gives a better constant for the Ω(1) term in our lower bound n1+Ω(1).)

Inclusion (5.9) follows by a collapse similar to Corollary 5.4. Specifically, by

assumption we have that Σ3Time (n) ⊆
←→
BPTiSp

(
n1+o(1), n1−ε

)
⊆ BPTime

(
n1+o(1)

)
.

Since probabilistic time is closed under complement, by Theorem 5.3 we get that
BPTime

(
n1+o(1)

)
⊆ Π3Time

(
n1+o(1)

)
. Combining the two things we get

Σ3Time (n) ⊆ Π3Time
(
n1+o(1)

)
. (5.11)

Intuitively, this means that whenever we have a computation with three quan-
tifiers we can complement them only paying a subpolynomial blow up in the run-
ning time, which gives the collapse. More formally, consider a computation in
ΣO(1)Time

(
m1−δ/4

)
. We can assume that 1−δ/4 ≥ 2/3 without loss of generality, and

thus the ΣO(1)Time
(
m1−δ/4

)
machine runs in time m1−δ/4 ≥ n4/3 ≥ n. Consequently,

Equation (5.11) implies that

Σ3Time
(
m1−δ/4

)
⊆ Π3Time

(
(m1−δ/4)1+o(1)

)
by padding. Applying this padded Equation (5.11) a constant number of times
and collapsing adjacent quantifiers, we obtain that ΣO(1)Time

(
m1−δ/4

)
collapses to

Σ3Time (m′), where m′ is m1−δ/4 raised, a constant number of times, to an exponent
that is 1 + o(1), and so m′ = m(1−δ/4)(1+o(1)) = m1−Ω(1) = o(m).

The contradiction (5.10) is obtained by diagonalization (see, e.g., Section 3.1 in
[vM]).

5.6 Lower bound on stronger computational mod-

els

In this section we prove our time lower bound on two-tape Turing machines (The-
orem 5.8). Rather than working directly in the model BPTime1 (t) (introduced in
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Section 5.1.4), which is incomparable to the previously considered space-bounded
model (Def. 5.6), we proceed by extending the space-bounded model so that it in-
cludes BPTime1 (t) as a special case, and we prove a lower bound on this stronger

model. Specifically, we extend
←→
BPTiSp (t, s) (Def. 5.6) by allowing machines to write

on the random-bit tape, and denote this extension by
←→
BPwTiSp (t, s). By ignoring the

space-bounded random-access tapes, we see that
←→
BPwTiSp (t, s) includes the model

BPTime1 (t) as a special case. Let us formally define
←→
BPwTiSp (t, s) and then state

our lower bound.

Definition 5.18. We denote by
←→
BPwTiSp (t, s) the extension of

←→
BPTiSp (t, s) obtained

by allowing machines to write on the random-bit tape. In other words, we denote by←→
BPwTiSp (t, s) the set of languages accepted by probabilistic Turing machines, with
two-sided error, running in time t, which have the following tapes:

• a random-access input tape,

• several random-access work tapes for at most s bits, and

• one sequential-access two-way read-write tape that is initially filled with random
bits.

Theorem 5.19. For every constant ε > 0, Σ3Time (n) 6⊆
←→
BPwTiSp

(
n1+o(1), n1−ε

)
,

and in particular QSAT3 6∈
←→
BPwTiSp

(
n1+o(1), n1−ε

)
.

The outline of the proof of Theorem 5.19 is similar to that of the proof of Theorem
5.7 (cf. Section 5.5). The two main differences are: (1) we need to observe that the
INW generator in Lemma 5.16 also works if the machine is allowed to write on the
random-bit tape, and (2) we need to show that it is still possible to simulate the
machine using small space (and quantifiers). The observation (1) is in Remark 5.20
below, and the simulation (2) is proved in Claim 5.21 using ideas from a simulation
by Maass and Schorr [MS] which was recently rediscovered by van Melkebeek and
Raz [vMR].

Remark 5.20 (On the pseudorandomness property of the INW generator). We point
out that the INW generator in Lemma 5.16 also fools machines that are allowed to

write on the sequential two-way random bits tape, i.e.
←→
BPwTiSp (t, s) machines. While

this extension is not explicitly stated in [INW], it can be obtained using the techniques
in [INW]. Roughly, their communication-complexity simulation in the proof of The-
orem 5 in [INW] (which is only stated for machines with one tape) can be extended
to machines with several space-bounded work tapes, by having Alice and Bob also
communicate all the contents of the random-access work tapes (details omitted).
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Proof of Theorem 5.19. The outline of the proof follows closely that of the proof of
Theorem 5.7. Let m = m(n) := n2. We have the following contradiction:

Σ3Time (m) ⊆
←→
BPwTiSp

(
m1+o(1),m1−ε

)
(5.12)

⊆ BPm1−Ω(1)∃m1−Ω(1)

TiSp
(
poly(m),m1−Ω(1)

)
(5.13)

⊆ ∃m1−Ω(1)∀m1−Ω(1)∃m1−Ω(1)

TiSp
(
poly(m),m1−Ω(1)

)
(5.14)

⊆ ΣO(1)Time
(
m1−Ω(1)

)
(5.15)

⊆ Σ3Time (o(m)) (5.16)

contradiction. (5.17)

Inclusions (5.12), (5.14)-(5.16), and the final contradiction 5.17 can be obtained ex-
actly as in the proof of Theorem 5.7. The next claim proves Inclusion (5.13) and thus
concludes the proof of the theorem.

Claim 5.21. Let M(x;u) be a machine in
←→
BPwTiSp

(
m1+o(1),m1−ε

)
where ε > 0 is

any fixed constant and m = m(n) := n2. Let G : {0, 1}m1−δ → {0, 1}m1+δ
be the

generator from Lemma 5.16. Then the language {(x;σ) : M(x;G(σ)) = 1} is in

∃m1−Ω(1)
TiSp

(
poly(m),m1−Ω(1)

)
. In particular,

←→
BPwTiSp

(
m1+o(1),m1−Ω(1)

)
⊆ BPm1−Ω(1)∃m1−Ω(1)

TiSp
(
poly(m),m1−Ω(1)

)
.

Proof. Let t = m1+o(1) be the running time of the machine M , s = m1−ε the random-
access space used by M , and let us denote by τ the (two-way) read-write sequential
tape of M , which we will initially fill with the pseudorandom bits G(σ). We assume
that τ has tape squares numbered as 0, 1, 2, . . ., and that M starts with the head on
tape square 0 (the same proof carries through for the case where τ has tape squares
numbered as . . . ,−2,−1, 0, 1, 2, . . .).

We use the idea of crossing sequences, (see, e.g., [vMR] for background). Let us
divide τ in consecutive blocks where the first block is of size d and all the others are
of size b := m1−ε/3. The parameter d will be specified later. Note b and d completely
specify this subdivision in blocks. For fixed b, d, let us define a crossing to be a pair
(a→ a′, S) where a is an index to a block in τ , a′ = a± 1 and S completely specifies
the state of the machine M except the contents of τ . More specifically, S specifies
the content of the random-access tapes, the position of the head on the input tape,
and the internal state of the machine. As usual, we think of crossing (a → a′, S) as
meaning that M is crossing the boundary of block a towards block a′ while being in
state S (but let us stress again that S does not specify the content of τ).

Consider the computation M(x;G(σ)) that runs in time t. Since different values
of d ∈ {0, 1, . . . , b − 1} give rise to disjoint sets of blocks, it is not hard to see that
there must exist d < b such that the number of crossings induced by the computation
M(x;G(σ)) is at most t/b = m1+o(1)−1+ε/3 ≤ mε/2.
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Simulation: We simulate the machine M as follows: First we guess a shift d and a
sequence of t/b crossings. Then we check consistency of the computation. For this, let
us divide the space of the simulation in two parts: a current-block part of b bits and
a current-state part of s bits (jumping ahead, note b+ s = m1−ε/3 +m1−ε = m1−Ω(1)).

As a base case, we initialize the bits in current-block withG(σ)0·G(σ)1 · · ·G(σ)d−1,
and we simulate the machine, using current-state as its random-access space and
current-block as the first block of τ , until it crosses the block boundary towards block
1 (which starts at tape square d). (If the machine never crosses this boundary then
the simulation is easy.) When that happens, we look at the first crossing (a′ → a′′, S ′)
in the guessed list and check that a′ = 0, a′′ = 1, and current-state equals S ′.

Next, for every block number i, we proceed as follows. First we initialize the
bits in current-block with G(σ)d+ib · G(σ)d+ib+1 · · ·G(σ)d+ib+(b−1). Then we scan, in
order, the list of guessed crossings. Whenever we encounter a crossing of the form
(a→ i, S) we do the following. We copy S on current-state and we simulate M (using
current-state as the random-access space of M) until it crosses the block boundary
towards block a′. Then we look at the next crossing (α → α′, S ′) in the guessed list
and check that α = i, α′ = a′ and current-state equals S ′. We continue in this way
until the list is over.

Finally, we check that the last crossing corresponds to the accepting state of M .
(Without loss of generality we can assume that M , if it accepts, it does so by entering
its accepting state while crossing a block boundary.)

Correctness: It is easy to verify that the simulation accepts if and only if M does.
Complexity: Note that each crossing can be specified by O(m1−ε) bits, and there-

fore we guess at most O(m1−ε+ε/2) = m1−Ω(1) bits total. The rest of the computation
can be done simultaneously in time poly(m) and space m1−Ω(1). To see this, note
that the INW generator is computable in these resources by Lemma 5.16, while the
rest of the simulation only uses space for the current-block part of b bits and the
current-state part of s bits, which sum up to b+ s = m1−ε/3 +m1−ε = m1−Ω(1). (The
simulation is easily seen to run in polynomial time.)

The ‘in particular’ part of the claim follows by the first part of the claim plus the
pseudorandomness property of the INW generator in Lemma 5.16 (cf. remark 5.20).
(I.e. we use m1−Ω(1) random bits for the seed σ of the INW generator G.)

5.7 On the error parameter

In this section we discuss the dependence of our results on the error probability ε
of the BPTime (t) machines.

While we proved our results only for BPTime (t) machines with error ε = 1/3,
our results immediately generalize to any constant error 0 < ε < 1/2. In fact, they
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also apply to more general error parameters ε = ε(t) as we now discuss. For this
discussion, let ε−ApprMaj denote the promise problem of computing Majority on an
input bit string whose fraction of 1’s is promised to be either at least 1− ε or at most
ε. (Note that the previously considered approximate majority equals 1/3−ApprMaj.)
For the case where the error ε is shrinking (e.g. ε := 1/t2) it is possible to generalize
our Theorem 5.1 to show that computing ε−ApprMaj on n bits requires bottom fan-
in at least Ω(log(n)/ log(1/ε)), which implies that any relativizing Σ2 simulation of
BPTime (t) must have running time at least Ω(t2/ log(1/ε)) (e.g. Ω(t2/ log t) when
ε = 1/t2). In particular, polynomially small error does not give polynomial savings
in the running time, and even in this case our results show that the running time of
previous simulations [Sip, Lau] is optimal up to polylogarithmic factors for relativizing
techniques.

On the other hand, for large error ε = 1/2 − α where α = o(1), one can use
H̊astad’s switching lemma [H̊as] (using a restriction that leaves free a Ω(α) fraction
of bits) to argue that small depth-3 circuits for ε−ApprMaj need bottom fan-in at
least Ω(1/α) (details omitted). Again, this implies that any relativizing Σ2 simulation
of BPTime (t) must have running time at least Ω(t/α) (which is only better than
Theorem 5.5 when α = o(1/t)). This latter bound is met, up to a polynomial factor,
by first applying standard error reduction techniques to bring the error down to, say,
ε = 1/3, and then plugging in previous results [Sip, Lau].

5.8 Open problems

In this section we list a few open problems.

1. Prove an n1+Ω(1) time lower bound on probabilistic Turing machines using space
O(log n) with random access to both the input tape and the random-bit tape
(for a function computable in linear space). Our results (Theorem 5.19) only
apply to models with sequential access to the random-bit tape.

2. Prove a superlinear time lower bound on probabilistic Turing machines with
random-access to the input, two-way sequential access to the work tape with no
space restrictions, and one-way access to the random-bit tape (for a function
computable in linear space). Our results (Theorem 5.19) only apply to the
weaker model where the work tape is initialized with random bits.



Chapter 6

The Complexity of Decoding

6.1 Introduction

In this chapter we study the complexity of decoding error-correcting codes. Specif-
ically, we are interested in the complexity of the decoding procedures that are asso-
ciated with black-box hardness amplification. Before motivating this study and pre-
senting our contributions, let us recall the notion of black-box hardness amplification.

Definition 6.1. A [.25→ 1/2−ε]-black-box hardness amplification Amp : {0, 1}n →
{0, 1} for size s and length k is a map from functions f : {0, 1}k → {0, 1} to functions
Ampf : {0, 1}n → {0, 1} that satisfies the following: for every f : {0, 1}k → {0, 1}
and R : {0, 1}n → {0, 1} such that

Pr
x∈{0,1}n

[
R(x) 6= Ampf (x)

]
< 1/2− ε

there is a “decoder” circuit D of size at most s such that

Pr
x∈{0,1}k

[
DR(x) 6= f(x)

]
< .25.

(In the above definition we set δ = .75 for simplicity. It is also useful to think
of k = nΩ(1).) The rationale behind the above definition is that if the function f is
.25-hard for circuits of size g (e.g., g = kω(1)) then Ampf is (1/2− ε)-hard for circuits
of size g/s. To show this, we argue by contradiction as follows. Suppose that there
is a circuit R of size g/s that computes Ampf on a (1/2 + ε)-fraction of the inputs.
By definition of black-box hardness amplification there is a circuit D of size s such
that DR computes f on a .75 fraction of the inputs. Since the size of DR is at most
s · g/s = g, this contradicts our assumption that f is .25-hard for circuits of size s.

While we do not know of any explicit function (e.g. in NEXP) that is even worst-
case hard for superpolynomial size circuits, there has been much exciting progress in
exhibiting hard functions for restricted classes of circuits (we will see some examples

104
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in Section 6.1.1 below). Thus it is natural to ask whether hardness amplification
can be used to construct average-case hard functions for these restricted classes of
circuits. The answer to this question lies in the complexity of the decoder circuit D
in Definition 6.1. To see why this is the case, let us imagine to start with a function
f that is .25-hard for small circuits in a restricted class of circuits C (for simplicity
we now ignore the size parameter). Aiming to show that Ampf is (1/2− ε)-hard for
small circuits in C, and following the reasoning above, we suppose that there is a
small circuit R in C that computes Ampf on a (1/2 + ε)-fraction of the inputs. By
definition of black-box hardness amplification, there is a small circuit D such that
DR computes f on a .75 fraction of the inputs. This contradicts our assumption that
f is .25-hard for small circuits in C as long as we can argue that DR belongs to C.

In this chapter we suggest that the most restricted circuit class C where the circuit
D can be placed is that of constant-depth circuits with Majority gates (TC0 circuits).
In other words, we believe that to apply black-box hardness amplification we need
to start from an explicit function that cannot be computed by polynomial-size TC0

circuits. The existence of such a function is a major open problem in complexity
theory, and it has been shown by Razborov and Rudich [RR] that a large class of
proof techniques, which includes most of the known techniques, cannot be used to
prove the existence of such a function.

In the next section we describe two well-studied circuit classes where black-box
hardness amplification does not seem to be applicable. We highlight the reason for
the inapplicability, and this will motivate the presentation of our results in Section
6.1.2.

6.1.1 Motivation

Constant-depth circuits with parity gates: One of the open problems that
arguably best represents the current state of knowledge in computational complexity
is that it is not known whether there is an explicit function f : {0, 1}n → {0, 1} that
is

(
1/2− 1/nω(1)

)
-hard for polynomial-size constant-depth circuits with Parity gates

(AC0[⊕] circuits),1 i.e. such that for any polynomial-size AC0[⊕] circuit C:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nω(1).

This problem is perhaps most puzzling because we do know of explicit functions that
are Ω(1)-hard for AC0[⊕] circuits of size 2nΩ(1)

. An example is the Mod 3 function,
i.e. counting the number of 1’s mod 3 in a given n-bit input(see [Raz, Smo] and the
survey by Beigel [Bei1, Corollary 22]). Moreover, throughout this thesis we discussed

1For context, this problem is also open if C varies over GF(2) polynomials of degree 2 log(n).
This is a slightly different setting because these polynomials in general correspond to circuits of size
nΩ(log n). On the other hand, if the degree is ε log(n) then an explicit

(
1/2− 1/nω(1)

)
-hard function

is known [BNS, HG].
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several hardness amplification techniques that allow to construct a
(
1/2− 1/nω(1)

)
-

hard function starting from a Ω(1)-hard function. The problem is that we do not
know how to prove that any of these hardness amplification results holds for AC0[⊕]
circuits. In short, this is because the decoder circuit D in Definition 6.1 needs to
compute Majority, and AC0[⊕] circuits cannot compute Majority. We now elaborate
on this issue. Let us start by stating a celebrated result about the complexity of
computing Majority by AC0[⊕] circuits.

Theorem 6.2 ([Raz, Smo]). Let C be a AC0[⊕] circuit of depth d that computes

Majority on l bits. Then the size of C is at least s = 2lΩ(1/d)
.

We observe that with all known hardness amplifications, amplifying hardness up
to 1/2 − ε requires the decoder circuit D in Definition 6.1 to compute Majority on
1/ε bits. Combining this observation with Theorem 6.2, we see that, to construct
a

(
1/2− 1/nω(1)

)
-hard function for AC0[⊕] circuits, known hardness amplifications

require to start with a function on k ≤ n bits that cannot be computed by AC0[⊕]

circuits of size s = 2nω(1)/d
= 2nω(1)

, which of course does not exist. (Any function
on n bits can be computed by a depth-2 circuit of size poly(n) · 2n via simple table
look-up.)

Recall that in Chapter 4 (Theorem 4.3) we have constructed a function that is(
1/2− 1/nω(1)

)
-hard for small constant-depth circuits with few arbitrary symmetric

gates. Our result in particular gives a function that is
(
1/2− 1/nω(1)

)
-hard for nε·log n-

size circuits with ε·log n parity gates, but does not apply to circuits with an unbounded
number of Parity gates, such as AC0[⊕]. In fact, the hard function considered in
Chapter 4 (Theorem 4.3) is defined as the function computed by a polynomial-size
depth-3 AC0[⊕] circuit.

Constant-depth circuits with one Majority gate: Another puzzling case is
that of constant-depth circuits with one majority gate (Maj ◦ AC0 circuits). It is

known that the n-bits Parity function is Ω(1)-hard for Maj ◦ AC0 circuits of size 2nΩ(1)

[ABFR] (see also [Kli, Theorem 6]). However, it is not known whether there is an

explicit function f : {0, 1}n → {0, 1} that is
(
1/2− 1/2nΩ(1)

)
-hard for Maj ◦ AC0

circuits of size 2nΩ(1)
, or even

(
1/2− 1/nω(log n)

)
-hard for Maj ◦ AC0 circuits of size

nω(log n). The strongest result in this direction is our result from Chapter 4 (Theorem
4.3) that in particular gives a function that is

(
1/2− 1/nε·log n

)
-hard for Maj ◦ AC0

circuits of size nε·log n.
Even though these Maj ◦ AC0 circuits can trivially compute Majority, we still can-

not use hardness amplification to construct an average-case hard functions for small
Maj ◦ AC0 circuits. In short, this is because the decoder circuit in Definition 6.1 needs
to make many queries to its oracle, and this increases the number of Majority gates
up to an amount that we do not know how to handle (i.e., prove a lower bound for).
Specifically, all known hardness amplifications, to amplify hardness up to 1/2 − ε,
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require the decoder circuit D in Definition 6.1 to make 1/ε oracle queries. Thus,
even when starting with a circuit R with only one Majority gate, the circuit DR

in Definition 6.1 will have at least 1/ε Majority gates. Therefore, to construct a(
1/2− 1/nω(1)

)
-hard function for small Maj ◦ AC0 circuits, known hardness amplifi-

cations require to start from a function on k ≤ n bits that cannot be computed by
circuits of size s = nω(1) with s Majority gates, i.e., is not in TC0.

6.1.2 Our results and organization

In this chapter we state two conjectures on the complexity of the decoder circuit
D, and we prove some special cases of them. We now present our contributions in
more detail.

Decoding requires Majority gates (Section 6.2): We conjecture that any cir-
cuit class C where the decoder circuit in Definition 6.1 can be implemented also
contains a small circuit that can compute Majority on Ω(1/ε) bits (as long as C is
closed under AC0 reductions).

While we are unable to prove our full-fledged conjecture, we present a proof of the
conjecture in significant special cases where the decoder D achieves a certain strong
setting of parameters (jumping ahead, this setting of parameters has the number of
possible decoding circuits depend polynomially on 1/ε, as opposed to exponentially).
This strong setting of parameters is actually achieved by some known constructions
(e.g., [GL, STV]), and thus the presented result shows that the decoder circuits of
these constructions cannot be implemented in circuit classes that cannot compute
Majority (such as AC0[⊕]).

Decoding requires many queries (Section 6.3): We conjecture that the decoder
circuit in Definition 6.1 must make at least q = Ω(1/ε) oracle queries.

We prove that the weaker bound q = Ω(min{1/ε, k/ log k}) holds for decoder cir-
cuits that make non-adaptive oracle queries. We remark that in all known hardness
amplifications the decoder circuit D does indeed make non-adaptive oracle queries.
Thus, our result explains why known hardness amplification techniques cannot be
applied to construct, say, a (1/2−1/n)-hard function for poly(n)-size constant-depth
circuits with one Majority gate (see Section 6.1.1) or few arbitrary symmetric gates
(see Chapter 4): to construct such a function using known black-box hardness amplifi-
cation techniques we would need to start from an explicit function f : {0, 1}k → {0, 1}
that cannot be computed by poly(k)-size circuits with Ω(k/ log k) Majority gates.
Again, no such function is known to exist.
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6.2 Decoding requires Majority gates

Let us start by formally stating our conjecture that decoding requires Majority
gates. We use the terminology ‘class of circuits closed under AC0 operations’ to refer
to any set C of oracle circuits that contains the class of oracle AC0 circuits and is
closed under the operation of replacing oracle gates with circuits from C. An example
of a ‘class of circuits closed under AC0 operations’ is the class of oracle AC0[⊕] circuits.

Conjecture 6.3. Let C be a class of circuits closed under AC0 operations (e.g., C =
AC0[⊕] circuits). Let Amp be a map from functions f : {0, 1}k → {0, 1} to functions
Ampf : {0, 1}n → {0, 1}. Suppose that for every f : {0, 1}k → {0, 1} and R :
{0, 1}n → {0, 1} such that

Pr
x∈{0,1}n

[
R(x) 6= Ampf (x)

]
< 1/2− ε

there is a circuit D ∈ C of size s and depth d such that

Pr
x∈{0,1}k

[
DR(x) 6= f(x)

]
< 1/10.

Then, provided s ≤ 2k/2, there is a circuit C ∈ C of size poly(s/ε) and depth O(d)
that computes Majority on (1/ε)Ω(1) bits.

In particular, if the circuit D in Conjecture 6.3 is an AC0[⊕] circuit of size s and

depth d, then s ≥ 21/εΩ(1/d)

by Theorem 6.2.

While we do not know how to prove Conjecture 6.3, Madhu Sudan (personal
communication, 2005) pointed out a proof of the analogue of Conjecture 6.3 in the
‘standard’ list-decoding setting. We thank him for his permission to include a proof
of this result here. The ‘standard’ list-decoding setting is where the length of the
messages, the length of the codewords, the error parameter 1/ε, and the number of
possible messages the decoder outputs are all polynomially related. This should be
compared to the setting of Conjecture 6.3 where, for a given received word R, the
number of possible messages is only bounded by the number of circuits D of size s,
i.e. 2O(s·log s), which is exponential in 1/ε when s = poly(1/ε). (See Section 3.3 for
more on the connection between black-box hardness amplification and error-correcting
codes.)

Theorem 6.4 (List-decoding requires Majority gates). Let E : {0, 1}K → {0, 1}N be
a code. Suppose that there is a probabilistic circuit D of size s, for some s ≤ 2K/4,
that on input a received word r ∈ {0, 1}N outputs a list of (at most s) messages such
that the following holds: for every message m ∈ {0, 1}K whose encoding has relative
hamming distance at most 1/2− ε from r, m is in the list D(r) with high probability
(1− o(1)).

Then there is an oracle AC0-circuit C of size poly(s) and depth O(1) such that
CD computes majority on 1/(2 · ε) bits.
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In particular, if the circuitD in Theorem 6.4 is an AC0[⊕] circuit of size s and depth

d, then s ≥ 21/εΩ(1/d)

by Theorem 6.2. By contrast, if one does not restrict the decoder
D to be an AC0[⊕] circuit, then there are codes that can be list-decoded by circuits of
size s = poly(N/ε) (and thus in particular with lists of size poly(N/ε)). For example,
Guruswami and Sudan [GS] establish this for Reed-Solomon codes concatenated with
Hadamard codes.

We now prove Theorem 6.4. We start with some intuition and then we present
the formal proof.

Intuition for the proof of Theorem 6.4. The idea in the proof of Theorem 6.4
is the following. Assume that D is the decoder claimed in the theorem. First, it is
well-known that it is impossible to decode from error rate 1/2 (when the message
length K is close to the block length N). Therefore, we can fix a particular message
m̃ that cannot be decoded when its encoding E(m̃) is corrupted with error at rate
1/2. However, by assumption D can decode from error rate 1/2−ε, and consequently
can recover m̃ when E(m̃) is corrupted with error at rate 1/2− ε.

Our approach is to use D to solve the promise problem IsBal, which asks to
distinguish bit-strings of length 1/ε that are balanced (i.e. have one half of the bits
set to 1) from those that have less than one half of the bits set to 1. We then show
that solving IsBal is enough to compute Majority on 1/ε bits, and this concludes the
reduction.

To solve IsBal using D, we use an instance x of IsBal to generate an error vector
Nx and then try to decode the corrupted string E(m̃)⊕Nx using D. We then check
whether m̃ is in the output of the decoder, and decide accordingly. The error vector
Nx is obtained by independently setting each bit of Nx equal to a random bit of x. It
is evident that if x is balanced then Nx will correspond to error at rate 1/2. By what
we said above, in this case the decoder C will fail to recover m̃. Conversely, if x has
less than |x|/2 = ε−1/2 bits set to 1, then the error vector Nx will correspond to error
at rate (ε−1/2 − 1)/ε−1 = 1/2 − ε and, again by what we said above, the decoder D
will be able to recover m̃.

We now present a formal proof. Let us denote by C(x;u) a probabilistic circuit
on input x and coin tosses u, and let us define the problem IsBal.

Definition 6.5. The promise problem IsBal is defined on inputs of even length as
follows:

• IsBalYES := {x : weight(x) = |x|/2},

• IsBalNO := {x : weight(x) < |x|/2}.

We say that a probabilistic circuit C(x;u) solves IsBal if for every x:

• x ∈ IsBalYES ⇒ Pru[C(x;u) = 1] ≥ 2/3,
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• x ∈ IsBalNO ⇒ Pru[C(x;u) = 1] ≤ 1/2.

Lemma 6.6. Let C(x;u) be a probabilistic circuit that solves IsBal on instances of
length l, for even l. Then there is a deterministic oracle circuit A of size poly(l) and
depth O(1) such that AC computes Majority on l bits.

Proof. First, let us construct a deterministic circuit C ′ to solve IsBal. On input x,
we run poly(l) copies of C with independent random bits. By a Chernoff bound (see
Appendix A), we can fix the random bits of these poly(l) copies in such a way that
the following holds: if x ∈ IsBalYES then at least a .55 fraction of the copies will
output 1, while if x ∈ IsBalNO then at least a .55 fraction of the copies will output 0.
We are thus left with the task of distinguishing these two cases, namely distinguishing
strings of length poly(l) whose fraction of 1’s is at least .55 from those whose fraction
of 1’s is at most .45. This can be done by a poly(l)-size circuit of depth 3 by a result
by Ajtai [Ajt1], because the probabilities .55 and .45 are bounded away from 1/2 by
a constant. (The proof of a stronger result is given in Theorem 5.2, Chapter 5.) Thus
we have deterministic circuit C ′ = AC that decides IsBal, where A has size poly(l)
and depth O(1).

Then we decide Majority on l bits as follows. Given an input y ∈ {0, 1}l we
compute inputs y0, . . . , yl where yi is obtained from y by setting the first i bits to 0
(so y0 = y and yl = 0l). We then run a copy of C ′ in parallel on each of the yi’s and
we answer ‘yes’ if and only if we ever get two different values.

If y has less than l/2 1’s then all the circuits will output 0. Conversely, if y has
at least l/2 1’s then C ′(yl) = 0 but C ′(yi) = 1 where yi has exactly l/2 1’s.

It is easy to check that this new circuit that computes Majority is of the form AC

where A has size poly(l) and depth O(1).

We now prove Theorem 6.4.

Proof of Theorem 6.4. We start with the following claim that quantifies our intuition
that one cannot list-decode from error at rate 1/2. Let N1/2 denote a random string
chosen uniformly in {0, 1}N , and recall thatD is a probabilistic circuit of size s ≤ 2K/4
that on input a received word r ∈ {0, 1}N outputs a list of (at most s) messages.

Claim 6.7. There is a message m̃ ∈ {0, 1}K such that

Pr
N1/2

[
m̃ ∈ D(E(m̃) +N1/2)

]
≤ 1/4.

Proof. We have

Pr
M∈{0,1}K ,N1/2

[
m̃ ∈ D(E(M) +N1/2)

]
= Pr

M∈{0,1}K ,N1/2

[
M ∈ D(N1/2)

]
≤ s/2K

≤ 1/4,
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where the second to last inequality is a union bound, and the last inequality is our
assumption that s ≤ 2K/4. The claim follows by fixing M = m̃.

We can assume that ε ≥ 1/N . This is because if ε < 1/N then the decoder D is
decoding when half the bits of the encoded message are errors, which can be shown
to be impossible by an argument similar to the above Claim 6.7 (details omitted).

We further assume ε ≥ 1000/
√
N . This clearly does not change the conclusion of

the theorem, but lets the analysis below go through.
Now we construct a new circuit C that has m̃ and E(m̃) hardwired in it and

operates as follows. Given an instance x of IsBal of length 1/(2 · ε) (which we assume
to be an even integer w.l.o.g.) it constructs the error vector Nx, computes E(m̃)⊕Nx,
and answers 0 if and only if m̃ ∈ C(E(m̃) + Nx). As explained in the intuition
paragraph, the error vector Nx is obtained by independently setting each bit of Nx

equal to a random bit of x.
Analysis : If x ∈ IsBalYES then by Claim 6.7 the circuit outputs 0 with probability

at least 1/2. If x ∈ IsBalNO: suppose the relative Hamming weight of x is at most
(1/2 · 1/(2ε) − 1)/(1/2ε) = 1/2 − 2ε. By a Chernoff bound (see Appendix A) the
number of 1’s in Nx is at most 1/2− 2ε+ ε = 1/2− ε with probability very close to 1,
at least 2/3 + Ω(1) (recall ε ≥ 1000/

√
N). Whenever this is the case, by assumption,

m̃ appears in the list returned by the decoder D with high probability 1− o(1).
The new oracle circuit C is of the form C = AD where A has size poly(s) and

depth O(1), and is solving IsBal on instances of length 1/(2 · ε). The result follows
from Lemma 6.6.

6.2.1 List-decoding the Hadamard code requires Majority
gates

The Hadamard code, Had : {0, 1}k → {0, 1}2k
, is defined as Had(x)i := 〈x, i〉

where 〈·, ·〉 denotes inner product modulo 2. The Hadamard code is omnipresent in
the hardness amplification literature (see, e.g., [GL, GNW, STV] and the survey by
Trevisan [Tre3]). In particular, Yao’s Xor Lemma (see Section 2.1) can be proven by
first using a Direct Product Lemma to construct a non-boolean function that is very
hard on average and then using the Hadamard code to obtain a boolean function
(see [GNW]). It can be verified that the proof of correctness of the first step, i.e. the
Direct Product Lemma, carries through for constant-depth circuits (without Majority
gates). However, the proof of correctness of the second step does not carry through
for constant-depth circuits (without Majority gates). The proof of correctness of this
second step relies on a list-decoding algorithm for the Hadamard code, implicit in
[GL]. We obtain the following theorem that shows that the parameters achieved by
known decoding procedures of the Hadamard code cannot be achieved by constant-
depth decoders without Majority gates.
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Theorem 6.8. Let Had : {0, 1}k → {0, 1}2k
be the Hadamard code, and let C be a

class of circuits closed under AC0 operations (e.g., C = AC0[⊕] circuits). Suppose that
there is an oracle probabilistic circuit D ∈ C of size s and depth d such that for every
oracle R ∈ {0, 1}2k

, DR outputs a list of size s that, with high probability, contains
all the strings m ∈ {0, 1}k such that the relative hamming distance between R and
Had(m) is at most 1/2− ε.

Then there is a circuit C ∈ C of size poly(s) and depth O(d) that computes
Majority on 1/(2 · ε) bits.

In particular, if the circuit D in Theorem 6.8 is an AC0[⊕] circuit of size s and

depth d, then s ≥ 21/εΩ(1/d)

by Theorem 6.2. By contrast, if one does not restrict the
decoder to be an AC0[⊕] circuit, Goldreich and Levin [GL] show that s = poly(k/ε)
is achievable (see also [Tre3, Theorem 12]).

Proof of Theorem 6.8. Observe that if we have a message of the form m = z · 0k−k′ ,
where z ∈ {0, 1}k′ , then the value of the i-th bit of the codeword Had(m) only depends
on the first k′ bits of i. This follows easily from the definition of the Hadamard code.

The above observation suggests the following approach. Let k′ := 2 · log s and

consider the smaller Hadamard code Had′ : {0, 1}k′ → {0, 1}2k′
. From the decoder

D ∈ C one can easily derive a decoder D′ for Had′ of size poly(s) and depth O(d)
that does not use any oracle but rather is given as input the whole received word

in {0, 1}2k′
. Specifically, to decode the received word r′ ∈ {0, 1}2k′

, the decoder D′

simply simulates D answering any oracle query of D to location i ∈ {0, 1}k with the
bit of r′ indexed by the first k′ bits of i. The correctness of this decoding procedure
follows from our assumption on D and the observation at the beginning of this proof.

The result now follows from Theorem 6.4.

6.2.2 List-decoding the Reed-Muller code requires Majority
gates

We now describe the Reed-Muller code. For given parameters k and ε, which for
simplicity of exposition we assume to be such that ε ≥ 2−k, let F be a field of size
(k/ε)c, for a certain universal constant c ≥ 1 the exact magnitude of which is not
relevant here. Now let H ⊆ F be a set of size

√
|F|. We map any given function

f : {0, 1}k → {0, 1} into another function f ′ : {0, 1}O(k) → {0, 1} as follows. Let
v := k/ log(|H|), which again for simplicity of exposition we assume to be a positive
integer, and view f as a function f : Hv → {0, 1} ⊆ F . We define f ′ : Fv → F to
be the unique polynomial over F in v variables, of degree |H| in each variable, that
agrees with f on Hv.

To obtain a binary code, we concatenate this construction with the Hadamard
code, defined in Section 6.2.1, and obtain the following:

RMf (x1, . . . , xv, t) := 〈f ′(x1, . . . , xv), t〉,
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where f ′ is the extension of f defined above, xi ∈ F , and |t| = log |F |. Note that our
initial assumption that ε ≥ 2−k implies that the input length of RMf is O(k).

We have the following theorem.

Theorem 6.9. Let RM be the Reed-Muller code defined above, mapping functions
f : {0, 1}k → {0, 1} to functions RMf : {0, 1}O(k) → {0, 1}, and let C be a class of
circuits closed under AC0 operations (e.g., C = AC0[⊕] circuits).

Suppose that there is an oracle probabilistic circuit D(x;u;α) ∈ C of size s, where
s ≤ 2k/ε/4, and depth d, which uses coin tosses u and advice α ∈ {1, . . . , s}, such
that the following holds: for all f : {0, 1}k → {0, 1} and R : {0, 1}O(k) → {0, 1}, if

Pr
x1,...,xv ,t

[
R(x1, . . . , xv, t) 6= RMf (x1, . . . , xv, t)

]
< 1/2− ε

then with high probability (1 − o(1)) over the randomness u of D there is an advice
string α ∈ {1, . . . , s} such that for every x ∈ {0, 1}k:

DR(x;u;α) = f(x).

Then there is a circuit C ∈ C of size poly(s) and depth O(d) that computes
Majority on 1/(2 · ε) bits.

In particular, if the circuit D in Theorem 6.9 is an AC0[⊕] circuit of size s and

depth d, then s ≥ 21/εΩ(1/d)

(by Theorem 6.2). By contrast, Sudan, Trevisan, and
Vadhan [STV] show that if we do not restrict the circuit D to be an AC0[⊕] circuit
then s = poly(k/ε) is achievable.

Proof of Theorem 6.9. Observe that if we start with a message f whose value on
x1, . . . , xv only depends on x1, then the same is true for RMf , i.e. the value of RMf

on x1, . . . , xv, t only depends on x1 and t. (To see this, note that clearly there is a
univariate polynomial f ′ in the variable x1 of degree at most |H| that agrees with f
on Hv, and we know that such a polynomial is unique.)

The above observation suggests the following approach. Consider the new code
E with message length |H| = poly(k/ε) and block length |F|2 = poly(k/ε) defined as
follows: given a message m, view m as the truth table of a function f : Hv → {0, 1}
that only depends on the first variable x1 ∈ H. The (x, t) position of the codeword
E(m) (where x ∈ F , |t| = log |F|) is defined as RMf (x, 0, . . . , 0, t).

Now note that the assumption of the theorem implies that E can be list-decoded
by a circuit D′ ∈ C of size poly(s · k/ε) and depth O(d). This can be seen as follows.
Consider the probabilistic decoder D′ that given a received word r (a corrupted
codeword of E) of length poly(k/ε) operates as follows. First, it tosses coins u for
D. Second, it runs in parallel D(x;u;α) for every input x ∈ H and every possible
advice α ∈ {1, . . . , s}, answering the oracle queries of D as follows: whenever a query
(x1, x2, . . . , xv, t) is made, the query is replied by ignoring x2, . . . , xv, and by answering
with the position in the received word r indexed by (x1, t).



114 Chapter 6: The Complexity of Decoding

The correctness of this decoder D′ follows from our assumption on D and the
observation at the beginning of this proof. Thus, we have a decoder D′ ∈ C of size
poly(s · k/ε) and depth O(d) that list-decodes a code with message length and block
length poly(k/ε) from error 1/2 − ε. Recalling that s ≤ 2k/ε/4 in the hypothesis of
the theorem, the result follows by applying Theorem 6.4.

6.3 Decoding requires many queries

In this section we prove a lower bound on the number of oracle queries of non-
adaptive decoding procedures. We state our result in terms of decoding procedures
that take advice strings α ∈ {0, 1}s because this is more natural in a coding-theoretic
setting. This can be immediately translated to decoding procedures implemented by
a circuit of size s (as in Definition 6.1) by using the fact that a circuit of size s can
be described by a string of length O(s · log s).

Theorem 6.10 (Decoding requires many queries). Let Amp be a map from functions
f : {0, 1}k → {0, 1} to functions Ampf : {0, 1}n → {0, 1}. Let D(., .) be an oracle
decoding procedure satisfying the following: for every f : {0, 1}k → {0, 1} and R :
{0, 1}n → {0, 1} such that

Pr
x∈{0,1}n

[
R(x) 6= Ampf (x)

]
< 1/2− ε,

there is an advice string α ∈ {0, 1}s, s ≤ 2k/2, such that

Pr
x∈{0,1}k

[
DR(α, x) 6= f(x)

]
< .25.

If the oracle queries made by D are non-adaptive then D makes at least q ≥
min{1/(10 · ε), k/(5 · log k)} (for sufficiently large k, n and 1/ε).

Intuition for the proof of Theorem 6.10. Let us now explain the main ideas
behind the proof of Theorem 6.10. Let us choose F : {0, 1}k → {0, 1} to be a random
function, and N : {0, 1}n → {0, 1} to be a random function such that N(x) equals
1 with probability 1/2 − ε, independently for every x. Let us write AmpF ⊕ N for
the function that maps x to AmpF (x) ⊕ N(x). By our assumption, the decoder D
can always decode AmpF ⊕ N for some value of the advice. Therefore, by a union
bound, we can fix a particular advice string α ∈ {0, 1}s and hence a particular oracle
decoder C(·) := D(α, ·) such that

Pr
F,N

[
Pr

x∈{0,1}k

[
CAmpF⊕N(x) = f(x)

]
≥ .75

]
≥ 2−s. (6.1)

We would like to show that Equation (6.1) cannot hold.



Chapter 6: The Complexity of Decoding 115

Let us fix a particular input x and a particular query y ∈ {0, 1}n that C(x)
makes. Since N(y) = 1 with probability 1/2− ε, the statistical difference between the
answer AmpF (y) ⊕ N(y) to this query and an unbiased random bit is only ε. Since
by assumption C(x) makes only q queries, the statistical difference between all the q
query answers of C(x) and q unbiased and independent random bits will be at most
q ·ε which by assumption is very small, say .1. This suggests to consider a new decoder
C ′ without any oracle that simulates C and answers each oracle query C makes with
an unbiased random bit. By the above argument, for every x, C ′(x) = CAmpF⊕N(x)
with probability at least .9. Therefore, we expect C ′ and CAmpF⊕N to agree on a .9
fraction of the inputs. If we could prove that C ′ and CAmpF⊕N agree on a .9 fraction
of x’s almost always, say with probability 1− 2−s/2, then we could combine this fact
with the above Equation (6.1) and derive a contradiction with a counting argument.
Specifically, we would have that C ′ recovers a .9 fraction of the bits of the message
with probability at least 2−s−2−s/2 = 2−s/2, which contradicts a counting argument.

However, there remains the problem to show that C ′ and CAmpF⊕N agree on a .9
fraction of x’s almost always. We observe that if the queries made by C on different
inputs are disjoint, then the events that C ′ and CAmpF⊕N agree on a particular x
are independent for different x’s, and therefore we can apply a Chernoff bound to
argue that in fact C ′ and CAmpF⊕N agree on a large fraction of x’s almost always. Of
course, the queries that C makes need not be disjoint. The idea is then to reduce to
the case where the queries are indeed disjoint using an inductive argument based on
coverings that is very similar to the one used in the proof of Theorem 5.11.

Proof of Theorem 6.10. Assume for the sake of contradiction that q ≤ min{.1/ε, k/(5·
log k)}. It is also convenient to assume that q is sufficiently large, which we can do
without loss of generality because n, k and 1/ε are sufficiently large.

Let us choose F : {0, 1}k → {0, 1} to be a random function, and N : {0, 1}n →
{0, 1} to be a random function such that N(x) equals 1 with probability 1/2 − ε,
independently for every x. Let us write AmpF ⊕ N for the function that maps x to
AmpF (x)⊕N(x).

By the standard Central Limit Theorem we have that N(x) = 1 for at most 1/2−ε
fraction of inputs x with probability at least, say, .3. Combining this fact with our
assumption we have:

Pr
F,N

[
∃α ∈ {0, 1}s : Pr

x∈{0,1}k

[
DAmpF⊕N(α, x) = f(x)

]
≥ .75

]
≥ .3.

By a union bound we can fix a particular advice string α ∈ {0, 1}s and hence a
particular oracle decoder C(·) := D(α, ·) such that

Pr
F,N

[
Pr

x∈{0,1}k

[
CAmpF⊕N(x) = f(x)

]
≥ .75

]
≥ .3 · 2−s. (6.2)
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In the rest of the proof we show that Equation (6.2) cannot hold. For x ∈ {0, 1}k, and
a fixed decoder C (which will always be clear from the context) let us denote by Q(x)
the set of queries that C(x) makes. Note Q(x) is well-defined because we are dealing
with decoders that make non-adaptive oracle queries. A covering of sets of queries
Q1, Q2, . . . , Q2k is a subset Γ ⊆ {0, 1}n that intersects each of the Qi’s. Note that, if
we have sets of queries Q1, Q2, . . . , Q2k of size q each, either there exist d disjoint sets
of queries among them or else there must be a covering of Q1, Q2, . . . , Q2k of size at
most d · q. (To see why this is the case, see the analogous reasoning in the proof of
Theorem 5.11.) Let us define the sequence

gi := s · q2·i.

Consider the following procedure, starting with i := 1 and where C1 is the decoder
circuit C in Equation (6.2).

Procedure(Ci)
If there exist gi/q distinct x1, x2, . . . , xgi/q ∈ {0, 1}k such that

Q(x1), Q(x2), . . . , Q(xgi/q) are disjoint then stop.
Otherwise, let Γ be a covering of Q(1), Q(2), . . . , Q(2k) of size at most gi.
(Such a covering exists by the reasoning presented above.)
Let Ci+1 be the decoder that simulates Ci but answers queries in Γ with

unbiased and independent random bits.
Let i := i+ 1 and iterate the procedure.

Claim 6.11. The procedure stops.

Proof. In the above procedure, note that decoder Ci makes at most q− i+ 1 queries,
for every i. Thus, after q + 1 steps we have a decoder that makes 0 queries on every
input x, and therefore the query sets Q(1), Q(2), . . . , Q(2k) = ∅ are trivially disjoint.
We only need to argue that it is possible to find sufficiently many distinct inputs x’s
∈ {0, 1}k. In other words, we need that gq+1 = s · q2(q+1) ≤ 2k. This holds because
s ≤ 2k/2 and q ≤ k/(5 · log k).

Note that when going from Ci to Ci+1 the success probability multiplies by 2−gi ,
because Ci+1 is answering with random bits the queries in a set of size gi. More
formally, denoting by Coins(C) the random bits used by decoder C, we have:

Pr
F,N,Coins(Ci+1)

[
Pr

x∈{0,1}k

[
CAmpF⊕N

i+1 (x) = f(x)
]
≥ .75

]
≥

2−gi · Pr
F,N,Coins(Ci)

[
Pr

x∈{0,1}k

[
CAmpF⊕N

i (x) = f(x)
]
≥ .75

]
.

Combining this with Equation 6.2, and letting t be the number of times the procedure
is iterated, we obtain (note g0 = s):

Pr
F,N,Coins(Ct)

[
Pr

x∈{0,1}k

[
CAmpF⊕N

t (x) = f(x)
]
≥ .75

]
≥ .3 · 2−

P
0≤i≤t−1 gi . (6.3)
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Now let X be the set of at least gt/q distinct x1, x2, . . . , xgt/q ∈ {0, 1}k such that

Q(x1), Q(x2), . . . , Q(xgt/q)

are disjoint, as guaranteed by the fact that the procedure stops after t iterations.
Consider the decoder C ′ that simulates Ct but answers the queries with random bits.
Note that C ′ does not use any oracle. Also note that for every fixed f and over the
choice of N , the statistical difference (see Definition 2.5) between a query answer from
Ampf⊕N and a truly random bit is at most ε. Consequently, the statistical difference
between q query answers from Ampf⊕N and q truly random bits is at most q · ε ≤ .1
(see, e.g., Fact 2.3 in [SV1]). Therefore, for every fixed x ∈ X, we have that

Pr
F,N,Coins(Ct)

[
CAmpF⊕N

t (x) = C ′(x)
]
≥ .9.

Since the query sets associated to elements of X are disjoint, we can apply a Chernoff
Bound (see Appendix A) to argue that the probability (over N) that C ′ equals Ct for
at least a .8 fraction of the elements of X is at least 1− 2−Ω(|X|). Combining this fact
with Equation 6.3 we obtain that

Pr
F,N,Coins(C′)

[
Pr

x∈X
[C ′(x) = f(x)] ≥ .55

]
≥ .3 ·2−

P
0≤i≤t−1 gi−2−Ω(|X|) ≥ 2−2·|X|/q, (6.4)

where the last inequality is true because we are assuming (see the beginning of the
proof) that q is sufficiently large and because∑

0≤i≤t−1

gi = s
∑

0≤i≤t−1

q2i

≤ s
∑

0≤i≤2t−2

qi

= s · (q2t−1 − 1)/(q − 1)

≤ (2/q) · s · q2t/q

= (2/q) · gt/q = (2/q) · |X|.

When q is sufficiently large, Equation 6.4 contradicts the fact that there are only
2H(.45)|X| = 2(1−Ω(1))|X| strings of length |X| that are at relative Hamming distance
at most .45 from a fixed string of length |X|. Specifically, by an averaging argument
we can fix the choice of the coin tosses of C ′ while having the probability bound
in Equation (6.4) still hold. Now we can consider the fixed string z obtained by
concatenating the output of C ′ on every x ∈ X, that is, z :=©x∈XC

′(x). By Equation
(6.4) (after the fixing of the coins of C ′), the random string ©x∈XF (x) ∈ {0, 1}|X|
(for random F ) is at relative Hamming distance at most .45 from z with probability
at least 2−2·|X|/q, which contradicts the fact that there are only 2H(.45)|X| = 2(1−Ω(1))|X|

strings of length |X| that are at relative Hamming distance at most .45 from the fixed
string z of length |X|.



Bibliography

[AKS] M. Agrawal, N. Kayal, and N. Saxena. PRIMES in P. Ann. of Math.,
160(2):781–793, 2004.

[Ajt1] M. Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–

48, 1983.

[Ajt2] M. Ajtai. Approximate counting with uniform constant-depth circuits. In
Advances in computational complexity theory (New Brunswick, NJ, 1990),
pages 1–20. Amer. Math. Soc., Providence, RI, 1993.

[ABO] M. Ajtai and M. Ben-Or. A Theorem on Probabilistic Constant Depth
Computation. In ACM, editor, Proceedings of the sixteenth annual ACM
Symposium on Theory of Computing, Washington, DC, April 30–May 2,
1984, pages 471–474, 1984. ACM order no. 508840.

[All] E. Allender. A Note on the Power of Threshold Circuits. In 30th Annual
Symposium on Foundations of Computer Science, pages 580–584, Research
Triangle Park, North Carolina, 30 Oct.–1 Nov. 1989. IEEE.

[AKR+] E. Allender, M. Koucký, D. Ronneburger, S. Roy, and V. Vinay. Time-
Space Tradeoffs in the Counting Hierarchy. In Proceedings of the Sixteenth
Annual Conference on Computational Complexity, pages 295–302. IEEE,
June 18–21 2001.

[AGHP] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions
of almost k-wise independent random variables. Random Structures &
Algorithms, 3(3):289–304, 1992.

[And] I. Anderson. Combinatorics of finite sets. Dover Publications Inc., Mineola,
NY, 2002. Corrected reprint of the 1989 edition.

[ABFR] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of
voting polynomials. Combinatorica, 14(2):135–148, 1994.

[BFL] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has
two-prover interactive protocols. Comput. Complexity, 1(1):3–40, 1991.

118



Bibliography 119

[BFNW] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP Has Subexpo-
nential Time Simulations Unless EXPTIME has Publishable Proofs. Com-
putational Complexity, 3(4):307–318, 1993.

[BNS] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs. J. Comput. System Sci.,
45(2):204–232, 1992. Twenty-first Symposium on the Theory of Computing
(Seattle, WA, 1989).

[BGS] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question.
SIAM J. Comput., 4(4):431–442, 1975.

[BDG] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural complexity Theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1988.

[Bea] P. Beame. A switching lemma primer. Technical Report UW-
CSE-95-07-01, Department of Computer Science and Engineering, Uni-
versity of Washington, November 1994. Available from http://

www.cs.washington.edu/homes/beame/.

[BSSV] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds
for randomized computation of decision problems. J. ACM, 50(2):154–195
(electronic), 2003.

[BF] D. Beaver and J. Feigenbaum. Hiding Instances in Multioracle Queries.
In 7th Annual Symposium on Theoretical Aspects of Computer Science,
volume 415 of Lecture Notes in Computer Science, pages 37–48, Rouen,
France, 22–24 Feb. 1990. Springer.

[Bei1] R. Beigel. The polynomial method in circuit complexity. In Proceedings of
the Eighth Annual Structure in Complexity Theory Conference (San Diego,
CA, 1993), pages 82–95, Los Alamitos, CA, 1993. IEEE Comput. Soc.
Press.

[Bei2] R. Beigel. When do extra majority gates help? polylog(N) majority gates
are equivalent to one. Comput. Complexity, 4(4):314–324, 1994. Special
issue devoted to the 4th Annual McGill Workshop on Complexity Theory.

[BRS] R. Beigel, N. Reingold, and D. A. Spielman. The Perceptron Strikes Back.
In Structure in Complexity Theory Conference, pages 286–291, 1991.

[BT] R. Beigel and J. Tarui. On ACC. Comput. Complexity, 4(4):350–3–66, 1994.
Special issue devoted to the 4th Annual McGill Workshop on Complexity
Theory. Preliminary version in FOCS ’91.



120 Bibliography

[BL] M. Ben-Or and N. Linial. Collective Coin-Flipping. In S. Micali, editor,
Randomness and Computation, pages 91–115. Academic Press, New York,
1990.

[BM] M. Blum and S. Micali. How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits. SIAM J. on Computing, 13(4):850–864,
Nov. 1984.

[BT] A. Bogdanov and L. Trevisan. On Worst-Case to Average-Case Reduc-
tions for NP Problems. In 44th Annual Symposium on Foundations of
Computer Science, pages 308–317, Cambridge, Massachusetts, 11–14 Oct.
2003. IEEE.

[Bop] R. B. Boppana. The average sensitivity of bounded-depth circuits. Inform.
Process. Lett., 63(5):257–261, 1997.

[CPS] J.-Y. Cai, A. Pavan, and D. Sivakumar. On the Hardness of the Perma-
nent. In 16th International Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, Volume 1563, pages 90–99,
Trier, Germany, 1999. Springer-Verlag.

[CSS] J.-Y. Cai, D. Sivakumar, and M. Strauss. Constant Depth Circuits and the
Lutz Hypothesis. In 38th Annual Symposium on Foundations of Computer
Science, pages 595–604, Miami Beach, Florida, 20–22 Oct. 1997. IEEE.

[Can] R. Canetti. More on BPP and the polynomial-time hierarchy. Inform.
Process. Lett., 57(5):237–241, 1996.

[CH] A. Chattopadhyay and K. A. Hansen. Lower Bounds for Circuits With Few
Modular and Symmetric Gates. In L. Caires, G. F. Italiano, L. Monteiro,
C. Palamidessi, and M. Yung, editors, Proceedings of the 32th International
Colloquium on Automata, Languages and Programming (ICALP), Lecture
Notes in Computer Science, Lisboa, Portugal, 11–5 July 2005. Springer-
Verlag.

[CR] S. Chaudhuri and J. Radhakrishnan. Deterministic Restrictions in Circuit
Complexity. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, pages 30–36, Philadelphia, Pennsylvania, 22–
24 May 1996.

[Che] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Ann. Math. Statistics, 23:493–507, 1952.

[CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT Press, Cambridge, MA, second edition, 2001.



Bibliography 121

[DvM] S. Diehl and D. van Melkebeek. Time-Space Lower Bounds for the
Polynomial-Time Hierarchy on Randomized Machines. In L. Caires, G. F.
Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Proceedings
of the 32th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), Lecture Notes in Computer Science, pages 982–993,
Lisboa, Portugal, 11–5 July 2005. Springer-Verlag.

[ESY] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise prob-
lems with applications to public-key cryptography. Inform. and Control,
61(2):159–173, 1984.

[FL] U. Feige and C. Lund. On the Hardness of Computing the Permanent of
Random Matrices. Computational Complexity, 6(2):101–132, 1996.

[FF] J. Feigenbaum and L. Fortnow. Random-Self-Reducibility of Complete
Sets. SIAM J. on Computing, 22(5):994–1005, Oct. 1993.

[For] L. Fortnow. Balanced NP sets. Computational Complexity Weblog, 2003.
http://weblog.fortnow.com/archive/2003_09_07_archive.html.

[FLvMV] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-Space Lower
Bounds for Satisfiability. To appear in Journal of the ACM, Available from
http://www.cs.wisc.edu/vdieter/Research/sat-ts.html, 2005.

[FSS] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-
Time Hierarchy. Mathematical Systems Theory, 17(1):13–27, April 1984.

[GG] O. Gabber and Z. Galil. Explicit constructions of linear size superconcen-
trators. Journal of Computer and System Sciences, 22:407–420, 1981.

[Gil] D. Gillman. A Chernoff bound for random walks on expander graphs.
SIAM J. Comput., 27(4):1203–1220 (electronic), 1998.

[Gol1] O. Goldreich. A Sample of Samplers - A Computational Perspective on
Sampling (survey). Electronic Colloquium on Computational Complexity
(ECCC), 4(020), 1997.

[Gol2] O. Goldreich. Modern cryptography, probabilistic proofs and pseudoran-
domness, volume 17 of Algorithms and Combinatorics. Springer-Verlag,
Berlin, 1999.

[Gol3] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cam-
bridge University Press, Cambridge, 2001.



122 Bibliography

[GL] O. Goldreich and L. A. Levin. A Hard-Core Predicate for all One-Way
Functions. In Proceedings of the Twenty First Annual ACM Symposium
on Theory of Computing, pages 25–32, Seattle, Washington, 15–17 May
1989.

[GNW] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR lemma. Techni-
cal Report TR95–050, Electronic Colloquium on Computational Complex-
ity, March 1995. http://www.eccc.uni-trier.de/eccc.

[GZ] O. Goldreich and D. Zuckerman. Another proof that BPP ⊆ PH (and
more). Electronic Colloquium on Computational Complexity, Technical Re-
port TR97-045, September 1997. http://www.eccc.uni-trier.de/eccc.

[GS] V. Guruswami and M. Sudan. List decoding algorithms for certain concate-
nated codes. In Proceedings of the Thirty-second Annual ACM Symposium
on Theory of Computing, pages 181–190, 21–23 May 2000.

[GV] D. Gutfreund and E. Viola. Fooling Parity Tests with Parity Gates. In
Proceedings of the Eight International Workshop on Randomization and
Computation (RANDOM), Lecture Notes in Computer Science, Volume
3122, pages 381–392. Springer-Verlag, August 22–24 2004.

[HMP+] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Threshold
circuits of bounded depth. J. Comput. System Sci., 46(2):129–154, 1993.

[HM] K. A. Hansen and P. B. Miltersen. Some Meet-in-the-Middle Circuit Lower
Bounds. In Proceedings of the 29th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS), Lecture Notes in Computer
Science, Volume 3153, pages 334 – 345, August 22–27 2004.

[H̊as] J. H̊astad. Computational limitations of small-depth circuits. MIT Press,
1987.

[HG] J. H̊astad and M. Goldmann. On the power of small-depth threshold cir-
cuits. Comput. Complexity, 1(2):113–129, 1991.

[HVV] A. Healy, S. P. Vadhan, and E. Viola. Using Nondeterminism to Amplify
Hardness. SIAM J. Comput., 35(4):903–931, 2006.

[HV] A. Healy and E. Viola. Constant-Depth Circuits for Arithmetic in Fi-
nite Fields of Characteristic Two. In Proceedings of the 23rd International
Symposium on Theoretical Aspects of Computer Science (STACS), 2006.
To appear.



Bibliography 123

[Imp1] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In
36th Annual Symposium on Foundations of Computer Science, pages 538–
545, Milwaukee, Wisconsin, 23–25 Oct. 1995. IEEE.

[Imp2] R. Impagliazzo. A Personal View of Average-Case Complexity. In Pro-
ceedings of the Tenth Annual Structure in Complexity Theory Conference,
pages 134–147. IEEE, 1995.

[INW] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for Net-
work Algorithms. In Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on the Theory of Computing, pages 356–364, Montréal, Québec,
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Appendix A

Chernoff Bound

The following useful bound, due to Chernoff [Che], shows that if one has n inde-
pendent events, each which occurs with probability p, then roughly n · p of the events
occur with high probability.

Theorem A.1. Suppose X1, X2, . . . , Xn are independent random variables such that
for all i, Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p. Then, for every δ ≥ 0,

Pr

[∣∣∣∣
∑

i≤nXi

n
− p

∣∣∣∣ ≥ δ

]
≤ cn·δ

2

,

where c < 1 is a universal constant.

See Corollary 3.1.2 in [Ros] for a proof of Theorem A.1.

128



Appendix B

Alternating time versus
constant-depth circuits

For completeness, in this section we include a proof of the following connection
between alternating oracle computation and constant-depth circuits.

Theorem B.1 ([FSS]). Let M f : {0, 1}n′ → {0, 1} be an oracle machine, where
f : {0, 1}l → {0, 1}. Suppose that M uses d − 1 alternations and runs in time t for
every x ∈ {0, 1}n′ and every oracle f .

Then, for every x ∈ {0, 1}n′, there is a constant-depth circuit Cx of depth d + 1
and size 2O(d·t) that given the truth-table of f computes M f (x). Moreover, the bottom
fan-in of Cx is at most t/l.

Before proving the result, we would like to make a remark regarding oracle ma-
chines.

Remark B.2 (On the oracle tape). The bound on the bottom fan-in of the circuit
in the last sentence of the statement of the theorem is only needed in one result in
this thesis, specifically Theorem 5.5 in Chapter 5. The bound relies on the convention
that the oracle tape of an oracle machine is erased after each query, and thus in
particular that an oracle machine that runs in time t makes at most t/l oracle queries
of length l. This convention arises naturally when studying the running time of oracle
computations, is standard in the literature (see, e.g., [BDG]), and is discussed more
in Chapter 5 where we need it.

Proof. By a simple simulation, there is an oracle machine M̄ that satisfies

M f (x) = 1⇔ Q1y1Q2y2 . . . QdydM̄
f (x, y1, y2, . . . , yd) = 1, (B.1)

where Qi is either ∃ or ∀ according to the alternations of M , |yi| = t for every i,
and M̄ is a deterministic oracle algorithm whose number of oracle queries is bounded
from above by the maximum number of oracle queries M makes over all computation
paths. Since each oracle query is of length l and the oracle tape is erased after each
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query (see Remark B.2), the machine M can only ask t/l queries, and consequently
so does M̄ . Therefore, for fixed x, y1, y2, . . . , yd the output of M̄ depends on at most
t/l bits of the truth-table of f (possibly chosen adaptively). This computation can
be carried out by a circuit C̄ of depth 2 and size 2O(t/l) with bottom fan-in t/l in a
brute-force fashion. The output gate of C̄ can be chosen to be And or Or. The result
then follows by viewing the quantifiers in Equation B.1 as And and Or gates, and
collapsing the gates corresponding to Qd with the output gate of C̄.


