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Abstract

We analyze the Fourier growth, i.e. the L1 Fourier weight at level k (denoted L1,k),
of various well-studied classes of “structured” F2-polynomials. This study is motivated
by applications in pseudorandomness, in particular recent results and conjectures due
to [CHHL19, CHLT19, CGL+20] which show that upper bounds on Fourier growth
(even at level k = 2) give unconditional pseudorandom generators.

Our main structural results on Fourier growth are as follows:

� We show that any symmetric degree-d F2-polynomial p has L1,k(p) ≤ Pr[p =
1] ·O(d)k, and this is tight for any constant k. This quadratically strengthens an
earlier bound that was implicit in [RSV13].

� We show that any read-∆ degree-d F2-polynomial p has L1,k(p) ≤ Pr[p = 1] ·
(k∆d)O(k).

� We establish a composition theorem which gives L1,k bounds on disjoint composi-
tions of functions that are closed under restrictions and admit L1,k bounds.

Finally, we apply the above structural results to obtain new unconditional pseudo-
random generators and new correlation bounds for various classes of F2-polynomials.



1 Introduction

1.1 Background: L1 Fourier norms and Fourier growth

Over the past several decades, Fourier analysis of Boolean functions has emerged
as a fundamental tool of great utility across many different areas within theoretical
computer science and mathematics. Areas of application include (but are not limited to)
combinatorics, the theory of random graphs and statistical physics, social choice theory,
Gaussian geometry and the study of metric spaces, cryptography, learning theory,
property testing, and many branches of computational complexity such as hardness
of approximation, circuit complexity, and pseudorandomness. The excellent book of
O’Donnell [O’D14] provides a broad introduction. In this paper we follow the notation
of [O’D14], and for a Boolean-valued function f on n Boolean variables and S ⊆ [n],
we write f̂(S) to denote the Fourier coefficient of f on S.

Given the wide range of different contexts within which the Fourier analysis of
Boolean functions has been pursued, it is not surprising that many different quantitative
parameters of Boolean functions have been analyzed in the literature. In this work we
are chiefly interested in the L1 Fourier norm at level k:

Definition 1 (L1 Fourier norm at level k). The L1 Fourier norm of a function
f : {−1, 1}n → {0, 1} at level k is the quantity

L1,k(f) :=
∑

S⊆[n]:|S|=k

|f̂(S)|.

For a function class F , we write L1,k(F) to denote maxf∈F L1,k(f).

As we explain below, strong motivation for studying the L1 Fourier norm at level
k (even for specific small values of k such as k = 2) is given by exciting recent results
in unconditional pseudorandomness. More generally, the notion of Fourier growth is a
convenient way of capturing the L1 Fourier norm at level k for every k:

Definition 2 (Fourier growth). A function class F ⊆ {f : {−1, 1}n → {0, 1}} has
Fourier growth L1(a, b) if there exist constants a and b such that L1,k(F) ≤ a · bk for
every k.

The notion of Fourier growth was explicitly introduced by Reingold, Steinke, and
Vadhan in [RSV13] for the purpose of constructing pseudorandom generators for space-
bounded computation (though we note that the Fourier growth of DNF formulas
was already analyzed in [Man95], motivated by applications in learning theory). In
recent years there has been a surge of research interest in understanding the Fourier
growth of different types of functions [Tal17, GSTW16, CHRT18, Lee19, GRZ20, Tal20,
SSW20, GRT21]. One strand of motivation for this study has come from the study
of quantum computing; in particular, bounds on the Fourier growth of AC0 [Tal17]
were used in the breakthrough result of Raz and Tal [RT19] which gave an oracle
separation between the classes BQP and PH. More recently, in order to achieve
an optimal separation between quantum and randomized query complexity, several
researchers [Tal20, BS21, SSW20] have studied the Fourier growth of decision trees,
with the recent work of [SSW20] obtaining optimal bounds. Analyzing the Fourier
growth of other classes of functions has also led to separations between quantum and
classical computation in other settings [GRT21, GRZ20, GTW21].
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Our chief interest in the current paper arises from a different line of work which has
established powerful applications of Fourier growth bounds in pseudorandomness. We
describe the relevant background, which motivates a new conjecture that we propose
on Fourier growth, in the next subsection.

1.2 Motivation for this work: Fourier growth, pseudoran-
domness, F2-polynomials, and the [CHLT19] conjecture

Pseudorandom generators from Fourier growth bounds. Constructing
explicit, unconditional pseudorandom generators (PRGs) for various classes of Boolean
functions is an important goal in complexity theory. In the recent work [CHHL19],
Chattopadhyay, Hatami, Hosseini, and Lovett introduced a novel framework for the
design of such PRGs. Their approach provides an explicit pseudorandom generator for
any class of functions that is closed under restrictions and has bounded Fourier growth:

Theorem 3 (PRGs from Fourier growth: Theorem 23 of [CHHL19]). Let F be a family
of n-variable Boolean functions that is closed under restrictions and has Fourier growth
L1(a, b). Then there is an explicit pseudorandom generator that ε-fools F with seed
length O(b2 log(n/ε)(log log n+ log(a/ε))).

Building on Theorem 3, in [CHLT19] Chattopadhyay, Hatami, Lovett, and Tal
showed that in fact it suffices to have a bound just on L1,2(F) in order to obtain an
efficient PRG for F :

Theorem 4 (PRGs from L1 Fourier norm bounds at level k = 2: Theorem 2.1 of
[CHLT19]). Let F be a family of n-variable Boolean functions that is closed under
restrictions and has L1,2(F) ≤ t. Then there is an explicit pseudorandom generator
that ε-fools F with seed length O((t/ε)2+o(1) · polylog(n)).

Observe that while Theorem 4 requires a weaker structural result than Theorem 3 (a
bound only on L1,2(F) as opposed to L1,k(F) for all k ≥ 1), the resulting pseudorandom
generator is quantitatively weaker since it has seed length polynomial rather than
logarithmic in the error parameter 1/ε. Even more recently, in [CGL+20] Chattopadhyay,
Gaitonde, Lee, Lovett, and Shetty further developed this framework by interpolating
between the two results described above. They showed that a bound on L1,k

1 for any
k ≥ 3 suffices to give a PRG, with a seed length whose ε-dependence scales with k:

Theorem 5 (PRGs from L1 Fourier norm bounds up to level k for any k: Theorem 4.3
of [CGL+20]). Let F be a family of n-variable Boolean functions that is closed under
restrictions and has L1,k(F) ≤ bk for some k ≥ 3. Then there exists a pseudorandom

generator that ε-fools F with seed length O

(
b
2+ 4

k−2 ·k·polylog(n
ε

)

ε
2

k−2

)
.

F2-polynomials and the [CHLT19] conjecture. The works [CHHL19] and
[CHLT19] highlighted the challenge of proving L1,k bounds for the class of bounded-degree
F2-polynomials as being of special interest. Let

Polyn,d := the class of all n-variate F2-polynomials of degree d.

1In fact, they showed that a bound on the weaker quantity M1,k(f) := maxx∈{−1,1}n |
∑
|S|=k f̂(S)xS |

suffices.
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It follows from Theorem 4 that even proving

L1,2(Polyn,polylog(n)) ≤ n0.49 (1)

would give nontrivial PRGs for F2-polynomials of polylog(n) degree, improving on
[BV10, Lov09, Vio09b]. By the classic connection (due to Razborov [Raz87]) between
such polynomials and the class AC0[⊕] of constant-depth circuits with parity gates,
this would also give nontrivial PRGs, of seed length n1−c, for AC0[⊕]. This would be a
breakthrough improvement on existing results, which are poor either in terms of seed
length [FSUV13] or in terms of explicitness [CLW20].

The authors of [CHLT19] in fact conjectured the following bound, which is much
stronger than Equation (1):

Conjecture 6 ([CHLT19]). For all d ≥ 1, it holds that L1,2(Polyn,d) = O(d2).

Extending the [CHLT19] conjecture. Given Conjecture 6, and in light of
Theorem 5, it is natural to speculate that an even stronger result than Conjecture 6
might hold. We consider the following natural generalization of the [CHLT19] conjecture,
extending it from L1,2(Polyn,d) to L1,k(Polyn,d):

Conjecture 7. For all d, k ≥ 1, it holds that L1,k(Polyn,d) = O(d)k.

We note that if p is the AND function on d bits, then an easy computation shows
that L1,k(p) = Pr[p = 1] ·

(
d
k

)
. Moreover, in Appendix A we provide a reduction showing

that this implies that the upper bound O(d)k in Conjecture 7 is best possible for any
constant k.

For positive results, the work [CHLT19] proved that L1,1(Polyn,d) ≤ 4d, and already

in [CHHL19] it was shown that L1,k(Polyn,d) ≤ (23d · k)k, but to the best of our
knowledge no other results towards Conjecture 6 or Conjecture 7 are known.

Given the apparent difficulty of resolving Conjecture 6 and Conjecture 7 in the
general forms stated above, it is natural to study L1,2 and L1,k bounds for specific
subclasses of degree-d F2-polynomials. This study is the subject of our main structural
results, which we describe in the next subsection.

1.3 Our results: Fourier bounds for structured F2-polynomials

Our main results show that L1,2 and L1,k bounds of the flavor of Conjecture 6 and
Conjecture 7 indeed hold for several well-studied classes of F2-polynomials, specifically
symmetric F2-polynomials and read-∆ F2-polynomials. We additionally prove a com-
position theorem that allows us to combine such polynomials (or, more generally, any
polynomials that satisfy certain L1,k bounds) in a natural way and obtain L1,k bounds
on the resulting combined polynomials.

Before describing our results in detail, we pause to briefly explain why (beyond the
fact that they are natural mathematical objects) such “highly structured” polynomials
are attractive targets of study given known results. It has been known for more than
ten years [BHL12, Lemma 2] that for any degree d < (1− ε)n, a random F2-polynomial
of degree d (constructed by independently including each monomial of degree at most d
with probability 1/2) is extremely unlikely to have bias larger than exp(−n/d). It follows
that as long as d is not too large, a random degree-d polynomial p is overwhelmingly
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likely to have L1,k(p) = on(1), which is much smaller than dk. (To verify this, consider
the polynomials pS obtained by XORing p with the parity function

∑
i∈S xi. Note that

the bias of pS is the Fourier coefficient of (−1)p on S. Now apply [BHL12, Lemma 2]
to each polynomial pS , and sum the terms.)

Since the conjectures hold true for random polynomials, it is natural to investigate
highly structured polynomials.

1.3.1 Symmetric F2-polynomials

A symmetric F2-polynomial over x1, . . . , xn is one whose output depends only on the
Hamming weight of its input x. Such a polynomial of degree d can be written in the
form

p(x) :=
d∑

k=0

ck
∑

|S|=k,S⊆[n]

∏
i∈S

xi,

where c0, . . . , cd ∈ {0, 1}. While symmetric polynomials may seem like simple objects,
their study can sometimes lead to unexpected discoveries; for example, a symmetric,
low-degree F2-polynomial provided a counterexample to the “Inverse conjecture for the
Gowers norm” [LMS11, GT09].

We prove the following upper and lower bounds on the L1 Fourier norm at level k
for any symmetric polynomial:

Theorem 8. Let p(x1, . . . , xn) be a symmetric F2-polynomial of degree d. Then
L1,k(p) ≤ Pr[p = 1] ·O(d)k for every k.

Theorem 9. For every k, there is a symmetric F2-polynomial p(x1, . . . , xn) of degree

d = Θ(
√
kn) such that L1,k(p) ≥ (e−k/2) ·

(
n
k

)1/2
= Ωk(1) · dk.

Theorem 8 verifies the [CHLT19] conjecture (Conjecture 6), and even the generalized
version Conjecture 7, for the class of symmetric polynomials. Theorem 9 complements
it by showing that the upper bounds in Theorem 8 are tight for k = O(1) when
d = Θ(

√
n).

Theorem 8 also provides a quadratic sharpening of an earlier bound that was implicit
in [RSV13] (as well as providing the “correct” dependence on Pr[p = 1]). In [RSV13]
Reingold, Steinke and Vadhan showed that any function f computed by an oblivious,
read-once, regular branching program of width w has L1,k(f) ≤ (2w2)k. It follows
directly from a result of [BGL06] (Lemma 17 below) that any symmetric F2-polynomial
p of degree d can be computed by an oblivious, read-once, regular branching program
of width at most 2d, and hence the [RSV13] result implies that L1,k(p) ≤ 8kd2k.

1.3.2 Read-∆ F2-polynomials

For ∆ ≥ 1, a read-∆ F2-polynomial is one in which each input variable appears in at most
∆ monomials. The case ∆ = 1 corresponds to the class of read-once polynomials, which
are simply sums of monomials over disjoint sets of variables; for example, the polynomial
x1x2 +x3x4 is read-once whereas x1x2 +x1x4 is read-twice. Read-once polynomials have
been studied from the perspective of pseudorandomness [LV20, MRT19, Lee19, DHH20]
as they capture several difficulties in improving Nisan’s generators [Nis92] for width-4
read-once branching programs.
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We show that the L1,k Fourier norm of read-∆ polynomials is polynomial in d and
∆:

Theorem 10. Let p(x1, . . . , xn) be a read-∆ polynomial of degree d. Then L1,k(p) ≤
Pr[p = 1] ·O(k)k · (d∆)8k.

The work [Lee19] showed that read-once polynomials satisfy an L1,k bound of O(d)k

and this is tight for every k, but we are not aware of previous bounds on even the L1

Fourier norm at level k = 2 for read-∆ polynomials, even for ∆ = 2.
As any monomial with degree Ω(log n) vanishes under a random restriction with

high probability, we have the following corollary which applies to polynomials of any
degree.

Corollary 11. Let p(x1, . . . , xn) be a read-∆ polynomial. Then L1,k(p) ≤ O(k)9k ·
(∆ log n)8k.

1.3.3 A composition theorem

The upper bounds of Theorem 8 and Theorem 10 both include a factor of Pr[p = 1].
(We observe that negating p, i.e. adding 1 to it, does not change its L1,2 or L1,k and keeps
p symmetric (respectively, read-∆) if it was originally symmetric (respectively, read-∆),
and hence in the context of those theorems we can assume that this Pr[p = 1] factor is
at most 1/2.) Level-k bounds that include this factor have appeared in earlier works for
other classes of functions [OS07, BTW15, CHRT18, Tal20, GTW21], and have been
used to obtain high-level bounds for other classes of functions [CHRT18, Tal20, GTW21]
and to extend level-k bounds to more general classes of functions [Lee19]. Having these
Pr[p = 1] factors in Theorem 8 and Theorem 10 is important for us in the context of
our composition theorem, which we now describe. We begin by defining the notion of a
disjoint composition of functions:

Definition 12. Let F be a class of functions from {−1, 1}m to {−1, 1} and let G be
a class of functions from {−1, 1}` to {−1, 1}. Define the class H = F ◦ G of disjoint
compositions of F and G to be the class of all functions from {−1, 1}m` to {−1, 1} of
the form

h(x1, . . . , xm) = f(g1(x1), . . . , gm(xm)),

where g1, . . . , gm ∈ G are defined on m disjoint sets of variables and f ∈ F .

As an example of this definition, the class of block-symmetric polynomials (i.e. poly-
nomials whose variables are divided into blocks and are symmetric within each block but
not overall) are a special case of disjoint compositions where G is taken to be the class
of symmetric polynomials. We remark that block-symmetric polynomials are known to
correlate better with parities than symmetric polynomials in certain settings [GKV17].

We prove a composition theorem for upper-bounding the L1 Fourier norm at level k
of the disjoint composition of any classes of functions that are closed under restriction
and admit a L1,k bound of the form Pr[f = 1] · a · bk:

Theorem 13. Let g1, . . . , gm ∈ G and let f ∈ F , where F is closed under restrictions.
Suppose that for every 1 ≤ k ≤ K, we have

1. L1,k(f) ≤ Pr[f = 1] · aout · bkout for every f ∈ F , and
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2. L1,k(g) ≤ Pr[g = 1] · ain · bkin for every g ∈ G.

Then for every ±1-valued function h ∈ H = F ◦ G, we have that

L1,K(h) ≤ Pr[h = 1] · aout · (ainbinbout)K .

See Theorem 31 for a slightly sharper bound. We remark that Theorem 13 does not
assume any F2-polynomial structure for the functions in F or G and thus may be of
broader utility.

1.4 Applications of our results

Our structural results imply new pseudorandom generators and correlation bounds.

1.4.1 Pseudorandom generators

Combining our Fourier bounds with the polarizing framework, we obtain new PRGs for
read-few polynomials. The following theorem follows from applying Theorem 5 with
some k = Θ(log n) and the L1,k bound in Corollary 11.

Theorem 14. There is an explicit pseudorandom generator that ε-fools read-∆ F2-
polynomials with seed length poly(∆, log n, log(1/ε)).

For constant ε, this improves on a PRG by Servedio and Tan [ST19a], which has a

seed length of 2O(
√

log(∆n)). (Note that read-∆ polynomials are also (∆n)-sparse.) We
are not aware of any previous PRG for read-2 polynomials with polylog(n) seed length.

Note that the OR function has L1 Fourier norm O(1). By expressing a DNF in the
Fourier expansion of OR in its terms, it is not hard to see that the same PRG also fools
the class of read-∆ DNFs (and read-∆ CNFs similarly) [ST19b].

1.4.2 Correlation bounds

Exhibiting explicit Boolean functions that do not correlate with low-degree polynomials
is a fundamental challenge in complexity. Perhaps surprisingly, this challenge stands in
the way of progress on a striking variety of frontiers in complexity, including circuits,
rigidity, and multiparty communication complexity. For a survey of correlation bounds
and discussions of these connections we refer the reader to [Vio09a, Vio17, Vio21].

For polynomials of degree larger than log2 n, the state-of-the-art remains the lower
bound proved by Razborov and Smolensky in the 1980s’ [Raz87, Smo87], showing that
for any degree-d polynomial p and an explicit function h (in fact, majority) we have:

Pr[p(x) = h(x)] ≤ 1/2 +O(d/
√
n).

Viola [Vio20] recently showed that upper bounds on L1,k(F) imply correlation
bounds between F and an explicit function hk that is related to majority and is defined
as

hk(x) := sgn

(∑
|S|=k

xS

)
.

In particular, proving Conjecture 6 or related conjectures implies new correlation
bounds beating Razborov–Smolensky. The formal statement of the connection is given
by the following theorem.
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Theorem 15 (Theorem 1 in [Vio20]). For every k ∈ [n] and F ⊆ {f : {0, 1}n →
{−1, 1}}, there is a distribution Dk on {0, 1}n such that for any f ∈ F ,

Pr
x∼Dk

[f(x) = hk(x)] ≤ 1

2
+

ek

2
√(

n
k

)L1,k(F).

For example, if k = 2 and we assume that the answer to Conjecture 6 is positive, then
the right-hand side above becomes 1/2 +O(d2/n), which is a quadratic improvement
over the bound by Razborov and Smolensky.

Therefore, Theorems 8 and 10 imply correlation bounds between these polynomials
and an explicit function that are better than O(d/

√
n) given in [Raz87, Smo87]. We

note that via a connection in [Vio09b], existing PRGs for these polynomials already
imply strong correlation bounds between these polynomials and the class of NP. Our
results apply to more general classes via the composition theorem, where it is not clear
if previous techniques applied. For a concrete example, consider the composition of a
degree-(nα) symmetric polynomial with degree-(nα) read-(nα) polynomials. Theorem 13
shows that such polynomial has L1,2 ≤ nO(α). For a sufficiently small α = Ω(1), we
again obtain correlation bounds improving on Razborov–Smolensky.

1.5 Related work

We close this introduction by discussing a recent work of Girish, Tal and Wu [GTW21]
on parity decision trees that is related to our results.

Parity decision trees are a generalization of decision trees in which each node queries
a parity of some input bits rather than a single input bit. The class of depth-d parity
decision trees is a subclass of F2 degree-d polynomials, as such a parity decision tree
can be expressed as a sum of products of sums over F2, where each product corresponds
to a path in the tree (and hence gives rise to F2-monomials of degree at most d).
The Fourier spectrum of parity decision trees was first studied in [BTW15], which
obtained a level-1 bound of O(

√
d). This bound was recently extended to higher levels

in [GTW21], showing that any depth-d parity decision tree T over n variables has
L1,k(T ) ≤ dk/2 ·O(k log n)k.

2 Our techniques

We now briefly explain the approaches used to prove our results. We note that each of
these results is obtained using very different ingredients, and hence the results can be
read independently of each other.

2.1 Symmetric polynomials (Theorems 8 and 9, Section 4)

The starting point of our proof is a result from [BGL06], which says that degree-d
symmetric F2-polynomials only depend on the Hamming weight of their input modulo
m for some m (a power of two) which is Θ(d), and the converse is also true. (See
Lemma 17 for the exact statement.) We now explain how to prove our upper and lower
bounds given this.
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For the upper bound (Theorem 8), since p(x) takes the same value for all strings x
with the same weights ` mod m, to analyze L1,k(p) it suffices to analyze E[(−1)x1+···+xk ]
conditioned on x having Hamming weight exactly ` mod m.

We bound this conditional expectation by considering separately two cases depending
on whether or not k ≤ n/m2. For the case that k ≤ n/m2, we use a (slight sharpening
of a) result from [BHLV19], which gives a bound of m−ke−Ω(n/m2). In the other case,
that k ≥ n/m2, in Lemma 19 we prove a bound of O(km/n)k. This is established via a
careful argument that gives a new bound on the Kravchuk polynomial in certain ranges
(see Claim 22), extending and sharpening similar bounds that were recently established
in [CPT20] (the bounds of [CPT20] would not suffice for our purposes).

In each of the above two cases, summing over all the
(
n
k

)
coefficients gives the desired

bound of O(m)k = O(d)k.
For the lower bound (Theorem 9), we first consider the symmetric function hk(x) :=

sgn(
∑
|S|=k(−1)

∑
i∈S xi). (Note that h1 is the majority function.) As hk has degree k, it

follows from a consequence of the hypercontractive inequality that L1,k(hk) ≥ e−k
(
n
k

)1/2
.

We define our polynomial p so that on inputs x whose Hamming weight |x| is within
m = Θ(

√
kn) from n/2, it agrees with hk, and on other inputs its value is defined such

that p only depends on |x| mod 2m. By the converse of [BGL06], p can be computed
by a symmetric polynomial of degree less than 2m. Our lower bound then follows from

L1,k(f) ≤
(
n
k

)1/2
for any Boolean function f , and that by our choice of m, the two

functions p and hk disagree on e−Ω(k) fraction of the inputs.

2.2 Read-∆ polynomials (Theorem 10, Section 5)

Writing f := (−1)p for an F2-polynomial p, we observe that the coefficient f̂(S) is
simply the bias of pS(x) := p(x)+

∑
i∈S xi. Our high-level approach is to decompose the

read-few polynomial pS into many disjoint components, then show that each component
has small bias. Since the components are disjoint, the product of these biases gives an
upper bound on the bias of pS .

In more detail, we first partition the variables according to the minimum degree ti of
the monomials containing each variable xi. Then we start decomposing pS by collecting
all the monomials in p containing xi to form the polynomial pi. We observe that the
larger ti is, the more likely pi is to vanish on a random input, and therefore the closer
pi + xi is to being unbiased. For most S, we can pick many such pi’s (i ∈ S) from p so
that they are disjoint. For the remaining polynomial r, because ∆ and d are small, we
can further decompose r into many disjoint polynomials ri. Finally, our upper bound
on |f̂(S)| will be the magnitude of the product of the biases of the pi’s and ri’s. We
note that our decomposition of p uses the structure of S; and so the upper bound on
f̂(S) depends on S (see Lemma 27). Summing over each |f̂(S)| gives our upper bound.

2.3 Composition theorem (Theorem 13, Section 6)

As a warmup, let us first consider directly computing a degree-1 Fourier coefficient
ĥ({(i, j)}) of the composition. Since the inner functions gi depend on disjoint variables,
by writing the outer function f in its Fourier expansion, it is not hard to see that

ĥ({(i, j)}) =
∑
S3i

f̂(S)
∏

`∈S\{i}

E[g`] · ĝi({j}).
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When the gi’s are balanced, i.e. E[gi] = 0, we have f̂({(i, j)}) = f̂({i})ĝi({j}), and
it follows that L1,1(h) ≤ L1,1(F)L1,1(G). To handle the unbalanced case, we apply

an idea from [CHHL19] that lets us relate
∑

S3i f̂(S)
∏
`∈S\{i}E[g`] to the average of

f̂R({i}), for some suitably chosen random restriction R on f (see Claim 33). As F is
closed under restrictions, we can apply the L1,1(F) bound on fR, which in turns gives

a bound on
∑

S3i f̂(S)
∏
`∈S\{i}E[g`] in terms of L1,1(F) and E[gi].

Bounding L1,k(h) for k ≥ 2 is more complicated, as each ĥ(S) involves f̂(J) and
ĝi(T )’s, where the sets J and T have different sizes. We provide more details in Section 6.

3 Preliminaries

Notation. For a string x ∈ {0, 1}n we write |x| to denote its Hamming weight
∑n

i=1 xi.
We use Xw to denote {x : |x| = w}, the set of n-bit strings with Hamming weight w,
and X` mod m =

⋃
w:w≡` mod mXw = {x : |x| ≡ ` mod m}.

We recall that for an n-variable Boolean function f , the level-k Fourier L1 norm of
f is

L1,k(f) =
∑

S⊂[n]:|S|=k

|f̂(S)|.

We note that a function f and its negation have the same L1,k for k ≥ 1. Hence we
can often assume that Pr[f = 1] ≤ 1/2, or replace the occurrence of Pr[f = 1] in a
bound by min{Pr[f = 1],Pr[f = 0]} for a {0, 1}-valued function f (or by min{Pr[f =
1],Pr[f = −1]} for a {−1, 1}-valued function). If f is a {−1, 1}-valued function then
1−|E[f ]|

2 is equal to min{Pr[f = 1],Pr[f = −1]}, and we will often write 1−|E[f ]|
2 for

convenience.
Unless otherwise indicated, we will use the letters p, q, r, etc. to denoteF2-polynomials

(with inputs in {0, 1}n and outputs in {0, 1}) and the letters f, g, h, etc. to denote
general Boolean functions (where the inputs may be {0, 1}n or {−1, 1}n and the outputs
may be {0, 1} or {−1, 1} depending on convenience). We note that changing from {0, 1}
outputs to {−1, 1} outputs only changes L1,k by a factor of 2.

We use standard multilinear monomial notation as follows: given a vector β =
(β1, . . . , βn) and a subset T ⊆ [n], we write βT to denote

∏
j∈T βj .

4 L1,k bounds for symmetric polynomials

The main result of this section is Theorem 16, which gives an upper bound on L1,k(p)
for any symmetric F2-polynomial p of degree d, covering the entire range of parameters
1 ≤ k, d ≤ n:

Theorem 16 (Restatement of Theorem 8). Let p : {0, 1}n → {0, 1} be a symmetric
F2-polynomial of degree d. For every 1 ≤ k, d ≤ n,

L1,k(p) :=
∑
|S|=k

|p̂(S)| ≤ Pr[p(x) = 1] ·O(d)k.

9



Proof idea. As the polynomial p is symmetric, its Fourier coefficient p̂(S) only
depends on |S|, the size of S. Hence to bound L1,k it suffices to analyze the coefficient
p̂({1, . . . , k}) = Ex∼{0,1}n [p(x)(−1)x1+···+xk ].

Our proof uses a result from [BGL06] (Lemma 17 below), which says that degree-d
symmetric F2-polynomials only depend on the Hamming weight of their input modulo
m for some m = O(d). Given this, since p(x) takes the same value for strings x with
the same weights ` mod m, we can in turn bound each E[(−1)x1+···+xk ] conditioned on
x having Hamming weight exactly ` mod m, i.e. x ∈ X` mod m. We consider two cases
depending on whether or not k ≤ n/m2. If k ≤ n/m2, we can apply a (slight sharpening
of a) result from [BHLV19], which gives a bound of m−ke−Ω(n/m2). If k ≥ n/m2, in
Lemma 19 we prove a bound of O(km/n)k. In each case, summing over all the

(
n
k

)
coefficients gives the desired bound of O(m)k = O(d)k.

We now give some intuition for Lemma 19, which upper bounds the magnitude of
the ratio

E
x∼X` mod m

[(−1)x1+···+xk ] =

∑
x∈X` mod m

(−1)x1+···+xk

|X` mod m|
(2)

by O(km/n)k. Let us first consider k = 1 and m = Θ(
√
n). As most strings x have

Hamming weight within [n/2−Θ(
√
n), n/2 + Θ(

√
n)], it is natural to think about the

weight |x| in the form of n/2 + mZ + `′. It is easy to see that the denominator is
at least Ω(2n/

√
n), so we focus on bounding the numerator. Consider the quantity∑

x∈Xn/2+s E[(−1)x1 ] for some s. As we are summing over all strings of the same

Hamming weight, we can instead consider
∑

x∈Xn/2+s Ei∼[n][(−1)xi ] (see Equation (5)).

For any string of weight n/2 + s, it is easy to see that

E
i∼[n]

[(−1)xi ] = (1/2− s/n)− (1/2 + s/n) = −2s/n. (3)

Therefore, in the k = 1 case we get that∣∣∣∣ E
x∼X` mod m

[(−1)x1+···+xk ]

∣∣∣∣ ≤ 2
∑
c

(
n

n/2 + cm+ `′

)
|cm+ `′|

n
.

Using the fact that
(

n
n/2+cm+`′

)
is exponentially decreasing in |c|, in Claim 20 we show

that this is at most O(2n/n). So the ratio in (2) is at most O(1/
√
n), as desired, when

k = 1.
However, already for k = 2, a direct (but tedious) calculation shows that

E
i<j

[(−1)xi+xj ] =
4s2 − 2ns+ n

n(n− 1)
, (4)

which no longer decreases in s like in (3). Nevertheless, we observe that this is bounded
by O(1/n+ (|s|/n)2), which is sufficient for bounding the ratio by O(1/n). Building
on this, for any k we obtain a bound of 2O(k)((k/n)k/2 + (|s|/n))k in Claim 22, and by
a more careful calculation we are able to obtain the desired bound of O(km/n)k on
Equation (2).
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4.1 Proof of Theorem 16

We now prove the theorem. We will use the following result from [BGL06], which says
that degree-d symmetric F2-polynomials only depend on their input’s Hamming weight
modulo O(d).

Lemma 17 (Corollaries 2.5 and 2.7 in [BGL06], p = 2). Let p : {0, 1}n → {0, 1} be
any function and m be a power of two. If p is a symmetric F2-polynomial of degree d,
where m/2 ≤ d < m, then p(x) only depends on |x| mod m. Conversely, if p(x) only
depends on |x| mod m, then it can be computed by a symmetric F2-polynomial of degree
less than m.

We will also use two bounds on the biases of parities under the uniform distribution
over X` mod m, one holds for k ≤ n/(2d)2 ≤ n/m2 (Claim 18) and the other for
k ≥ n/(2d)2 ≥ n/(4m2) (Lemma 19). Claim 18 is essentially taken from [BHLV19].
However, the statement in [BHLV19] has a slightly worse bound, so below we explain
the changes required to give the bound of Claim 18. The proof of Lemma 19 involves
bounding the magnitude of Kravchuk polynomials. As it is somewhat technical we defer
its proof to Section 4.2.

Claim 18 (Lemma 10 in [BHLV19]). For every 1 ≤ k ≤ n/m2 and every integer `,

2−n
∣∣∣ ∑
x∈X` mod m

(−1)x1+···+xk
∣∣∣ ≤ m−(k+1)e−Ω(n/m2),

while for k = 0, ∣∣∣2−n|X` mod m| − 1/m
∣∣∣ ≤ m−1e−Ω(n/m2).

Lemma 19. For k ≥ n/(4m2), we have(
n

k

)
·max

`

∣∣∣∣∣
∑

x∈X` mod m
(−1)x1+···+xk

|X` mod m|

∣∣∣∣∣ ≤ O(m)k.

We now use Claim 18 and Lemma 19 to prove Theorem 16.

Proof of Theorem 16. As p is symmetric, all the level-k coefficients are the same, so it
suffices to give a bound on p̂({1, 2, . . . , k}). Let p̃ : {0, . . . , n} → {0, 1} be the function
defined by p̃(|x|) := p(x1, . . . , xn). By Lemma 17, we have p̃(`) = p̃(` mod m) for some
d < m ≤ 2d where m is a power of 2. Using the definition of p̂({1, . . . , k}), we have

|p̂({1, . . . , k})| =
∣∣∣∣ E
x∼{0,1}n

[
p(x)(−1)x1+···+xk

]∣∣∣∣
=

∣∣∣∣∣
m−1∑
`=0

p̃(`)
|X` mod m|

2n
·
∑

x∈X` mod m
(−1)x1+···+xk

|X` mod m|

∣∣∣∣∣
≤ E[p] · max

0≤`≤m−1

∣∣∣∣∣
∑

x∈X` mod m
(−1)x1+···+xk

|X` mod m|

∣∣∣∣∣,
where we use the shorthand E[p] = Ex∼{0,1}n [p(x)] in the last step.

11



When k ≤ n/(2d)2 ≤ n/m2, by Claim 18 (using the first bound for the numerator
and the second k = 0 bound for the denominator) we have

max
0≤`≤m−1

∣∣∣∣∣
∑

x∈X` mod m
(−1)x1+···+xk

|X` mod m|

∣∣∣∣∣ ≤ m−(k+1)e−Ω(n/m2)

m−1(1− e−Ω(n/m2))
≤ O(1) ·m−ke−Ω(n/m2),

where the last inequality holds because 1 ≤ k ≤ n/m2 and hence the (1− e−Ω(n/m2))
factor in the denominator of the left-hand side is Ω(1). Hence, summing over all the(
n
k

)
level-k coefficients, we get that

L1,k(p) ≤ E[p]·
(
n

k

)
·O(1)·m−ke−Ω(n/m2) ≤ E[p]·O(1)·mk

( ne

km2

)k
e−Ω(n/m2) ≤ E[p]·O(m)k,

where the last inequality is because for constant c, the function (x/k)ke−cx is maximized
when x = k/c, and is O(1)k.

When k ≥ n/(2d)2 ≥ n/(4m2), by Lemma 19 we have

L1,k(p) ≤ E[p] ·
(
n

k

)
max

0≤`≤m−1

∣∣∣∣∣
∑

x∈X` mod m
(−1)x1+···+xk

|X` mod m|

∣∣∣∣∣ ≤ E[p] ·O(m)k.

It remains to prove Claim 18 and Lemma 19.

Proof of Claim 18. The second inequality (i.e. when k = 0) is explicitly shown in
[BHLV19, Lemma 10]. For the first inequality (i.e. when k ≥ 1), following the proof
of [BHLV19, Lemma 10] but without using the last inequality in the proof of their
Claim 11, we have∣∣∣∣∣∣

∑
x∈X` mod m

(−1)x1+···+xk

∣∣∣∣∣∣ ≤ 2n

m

m−1∑
j=0

∣∣∣cos
jπ

m

∣∣∣n−k∣∣∣sin jπ
m

∣∣∣k.
For 0 < θ < π/2, we have cos θ ≤ e−θ2/2 and sin θ ≤ θ. So

m−1∑
j=0

∣∣∣cos
jπ

m

∣∣∣n−k∣∣∣sin jπ
m

∣∣∣k = 2
∑

0<j<m/2

(
cos

jπ

m

)n−k(
sin

jπ

m

)k
≤ 2

∑
0<j<m/2

e−
n−k
2

(
jπ
m

)2(jπ
m

)k
.

We now observe that each term in the above summation is at most half of the previous
one. This is because for every j ≥ 1 we have

exp
(
− (n−k)(j+1)2π2

2m2

)(
(j+1)π
m

)k
exp
(
− (n−k)j2π2

2m2

)(
jπ
m

)k ≤ exp
(
−π

2(n− k)

m2
j
)
·
(

1 +
1

j

)k
≤ exp

(
−π

2(n− k)

m2

)
· 2k

≤ exp
(
−3π2

4
k
)
· 2k
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≤ exp
(
−3π2

4

)
· 2

≤ 1

2
,

where the third step holds because w.l.o.g. m ≥ 2 and 1 ≤ k ≤ n/m2 ≤ n/4, and hence
(n− k)/m2 ≥ 3k/4. For these reasons, we can deduce that

m−1∑
j=0

∣∣∣cos
jπ

m

∣∣∣n−k∣∣∣sin jπ
m

∣∣∣k ≤ 2e−
π2(n−k)

2m2

( π
m

)k ∑
1≤j<m/2

21−j ≤ m−k exp
(
−Ω(n/m2)

)
.

4.2 Proof of Lemma 19

In this section, we prove Lemma 19. Let K(n, k, w) :=
∑

x∈Xw(−1)x1+···+xk be the
Kravchuk polynomial. We recall the “symmetry relation” for this polynomial (see
e.g. [Wik21]):(

n

k

)
K(n, k, w) =

∑
y∈Xk

∑
x∈Xw

(−1)〈y,x〉 =
∑
x∈Xw

∑
y∈Xk

(−1)〈x,y〉 =

(
n

w

)
K(n,w, k). (5)

Using Equation (5), we have(
n

k

)
max

0≤`≤m−1

∣∣∣∣∣
∑

x∈X` mod m
(−1)x1+···+xk

|X` mod m|

∣∣∣∣∣ = max
`

|
∑

w≡` mod m

(
n
k

)
K(n, k, w)|∑

w≡` mod m

(
n
w

)
= max

`

|
∑

w≡` mod m

(
n
w

)
K(n,w, k)|∑

w≡` mod m

(
n
w

)
≤ max

`

∑
c

(
n

bn/2c+cm+`

)
|K(n, bn/2c+ cm+ `, k)|∑

c

(
n

bn/2c+cm+`

)
≤ 2 max

`

∑
c≥0

(
n

bn/2c+cm+`

)
|K(n, bn/2c+ cm+ `, k)|∑

c≥0

(
n

bn/2c+cm+`

) ,

(6)

where the indices of c are integers that iterate over bn/2c+ cm+ ` ∈ {0, . . . , n}, and
the last line uses the symmetry of

(
n
w

)
K(n,w, k) around w = n/2.

Later in this section, we will prove (in Claim 22) that

|K(n, bn/2c+ s, k)| ≤ 2O(k)

((n
k

) k
2

+

(
|s|
k

)k)
.

Plugging this bound into Equation (6), we have

(6) ≤ 2O(k) max
`

(∑
c≥0

(
n

bn/2c+cm+`

)(
(n/k)k/2 + ((cm+ `)/k)k

)∑
c≥0

(
n

bn/2c+cm+`

) )

= O(n/k)
k
2 +

2O(k)

kk
max
`

(∑
c≥0

(
n

bn/2c+cm+`

)
(cm+ `)k∑

c≥0

(
n

bn/2c+cm+`

) )
. (7)

We will prove the following claim which bounds the ratio of the two summations.
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Claim 20. For any ` ∈ {0, . . . ,m− 1} and k ≥ n/(2m)2, we have∑
c≥0

(
n

bn/2c+cm+`

)
(cm+ `)k∑

c≥0

(
n

bn/2c+cm+`

) ≤ O(mk)k.

Therefore, as (n/k)1/2 ≤ 2m, we have

(7) ≤ O(n/k)
k
2 +

2O(k)

kk
·O(mk)k = O(m)k.

This completes the proof of Lemma 19.

It remains to prove Claims 20 and 22. We begin with Claim 20.

Proof of Claim 20. Fix any ` ∈ {0, . . . ,m− 1}, we first bound∑
c≥0

(
n

bn/2c+cm+`

)
(cm+ `)k∑

c≥0

(
n

bn/2c+cm+`

)
with some quantity that does not depend on `. First, observe that the denominator is
at least

(
n

bn/2c+`
)
. Next, we have(

n
bn/2c+`+cm

)(
n

bn/2c+`
) =

cm∏
i=1

(
n− bn/2c − `− cm+ i

bn/2c+ `+ i

)

=
cm∏
i=1

(
1− 2`+ cm+ bn/2c − dn/2e

bn/2c+ `+ i

)
≤
(

1− 2`+ cm− 1

n

)cm
≤ exp

(
−cm(cm− 1)

n

)
≤ e · exp(−(cm)2/n) (ecm/n ≤ e)
≤ e · exp(−(c2/4k)) (k ≥ n/(2m)2).

Finally, we have ` ≤ m and (cm+ `) ≤ (c+ 1)m ≤ 2cm for c ≥ 1. Therefore∑
c≥0(cm+ `)k

(
n

bn/2c+cm+`

)∑
c≥0

(
n

bn/2c+cm+`

) ≤
∑

c≥0(cm+ `)k
(

n
bn/2c+cm+`

)(
n

bn/2c+`
)

≤ mk + e
∑
c≥1

(2cm)ke−
c2

4k

= mk + e(2m)k
∑
c≥1

cke−
c2

4k .

In Claim 21 below we will show that the summation in the last line is bounded by
O(kk). Applying this bound completes the proof.

Claim 21.
∑

c≥1 c
ke−

c2

4k ≤ O(kk) for any k ≥ 1.
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Proof. Consider the function

λa(x) := xk · e−ax2 ,

for some parameter a > 0. Its derivative is λ′a(x) = (k − 2ax2)xk−1e−ax
2
; so for x ≥ 0,

λa(x) is increasing when x ≤
√
k/(2a), and is decreasing when x ≥

√
k/(2a). For such

a (nonnegative) first-increasing-then-decreasing function, it can be seen that∑
c≥1

λa(c) ≤ max{λa(x) : x ≥ 0}︸ ︷︷ ︸
A

+

∫ ∞
0

λa(x)dx︸ ︷︷ ︸
B

.

The first term (A) is exactly equal to

(A) = λa

(√
k/(2a)

)
=

(
k

2ea

)k/2
.

Using the substitution u = ax2, the second term (B) is equal to

(B) =

∫ ∞
0

xke−ax
2
dx =

1

2
a−

k+1
2 · Γ

(
k + 1

2

)
.

where Γ(k) :=
∫∞

0 xk−1e−xdx is the Gamma function. It is known (see, for example,

[OLBC10, Equation (5.6.1)]) that Γ(k+1
2 ) ≤

√
2π · e

1
12 · ( k2e)

k/2 for each integer k ≥ 1.
Plugging this upper bound into the above formula gives

(B) ≤ e
1
12 ·
√

π

2a
·
(

k

2ea

)k/2
≤ 2√

a
·
(

k

2ea

)k/2
.

By setting a = 1/(4k), we deduce that

(A) + (B) ≤
(
1 + 4

√
k
)
·
(
2k2/e

)k/2
=

1 + 4
√
k

(e/2)k/2
· kk = O(1) · kk,

proving the claim.

It remains to prove Claim 22, which gives a bound onK(n,w, k) :=
∑

x∈Xk(−1)x1+···+xw .

Claim 22. |K(n, bn/2c+ s, k)| ≤ 2O(k)((n/k)k/2 + (|s|/k)k) for any k ≥ 1.

A similar claim was also made in [CPT20, Claim 4.10], but the bounds we obtain
here are more general and sharper for larger |s|, which is crucial for our application.
We start with a preliminary claim.

Claim 23. For any positive integer s,

bk/2c∑
i=0

ni

i!

sk−2i

(k − 2i)!
≤

{
(2e)k

(
n
k

)k/2
if s ≤

√
nk

(2e)k
(
s
k

)k
if s ≥

√
nk.
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Proof. Write s = (cn)1/2 for some c > 0. Then nisk−2i = (cn)k/2/ci, and

bk/2c∑
i=0

ni

i!

sk−2i

(k − 2i)!
= (cn)

k
2

bk/2c∑
i=0

1

cii!(k − 2i)!
. (8)

We can write
1

i!(k − 2i)!
=

(2i)!

k!i!

k!

(2i)!(k − 2i)!
=

(2i)!

k!i!

(
k

2i

)
.

So

(8) =
(cn)

k
2

k!

bk/2c∑
i=0

(2i)!

cii!

(
k

2i

)

≤ (cn)
k
2

k!
max

0≤i≤b k
2
c

(
2i

c

)i
·
bk/2c∑
i=0

(
k

2i

)

≤ 2k · (cn)
k
2

k!
max

0≤i≤b k
2
c

(
2i

c

)i
.

If c ≤ k, then for 0 ≤ i ≤ bk/2c, we have 2i/c ≤ k/c and thus (2i/c)i ≤ (k/c)i ≤ (k/c)k/2

because k/c ≥ 1. Hence,

2k · (cn)
k
2

k!
max

0≤i≤b k
2
c

(
2i

c

)i
≤ 2k

(cn)
k
2

k!

(
k

c

) k
2

≤ (2e)k
(n
k

)k/2
.

If c ≥ k, then for 0 ≤ i ≤ bk/2c, we have (2i/c)i ≤ 1, and thus

2k · (cn)
k
2

k!
max

0≤i≤b k
2
c

(
2i

c

)i
≤ (2e)k

(cn
k2

) k
2

= (2e)k
( s
k

)k
.

Proof of Claim 22. Observe that

(1− x)w(1 + x)n−w =

n∑
k=0

K(n,w, k)xk,

Our goal is to bound above its k-th coefficient. We will assume n is even, otherwise we
can apply the bound for n+ 1, which affects its magnitude by at most a factor of 2. By
the symmetry of K(n, u, k) around u = n/2, for Claim 22 we may take w = n/2 − s,
and for this choice of w we have

n∑
k=0

K(n, n/2− s, k)xk = (1− x)
n
2
−s(1 + x)

n
2

+s = (1− x2)
n
2

(
1 + x

1− x

)s
. (9)

We bound from above the coefficients of the power series expansion of the two terms
on the right hand side. The i-th coefficient of (1 − x2)n/2 is

(n/2
i/2

)
if i is even and

is 0 otherwise (because the function is even). For (1+x
1−x)s, we will assume that s is

nonnegative as this only affects the sign of its coefficients. Since 1+x
1−x = 1 +

∑
j≥1 2xj
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and 1
1−2x = 1 +

∑
j≥1(2x)j for |x| < 1/2 in their power series expansion, the j-th

coefficient of (1+x
1−x)s is at most the j-th coefficient of (1− 2x)−s, which is

2j · s · (s+ 1) · · · (s+ j − 1)

1 · 2 · · · j
=

(
s+ j − 1

j

)
2j .

Therefore, the magnitude of the k-th coefficient of Equation (9) is at most

bk/2c∑
i=0

(
n/2

i

)(
|s|+ k − 2i− 1

k − 2i

)
2k−2i. (10)

Using
(
n
k

)
≤ nk/k! , we have

(10) ≤
bk/2c∑
i=0

ni

i!

(|s|+ k − 2i− 1)k−2i

(k − 2i)!
2k−2i.

Note that (s+ t)j ≤ 2j max{sj , tj} and so

(|s|+ k − 2i− 1)k−2i

(k − 2i)!
≤ 2k−2i

(
max{|s|k−2i, (k − 2i− 1)k−2i}

(k − 2i)!

)
≤ 2k−2i

(
max{|s|k−2i, kk−2i}

(k − 2i)!

)
.

Therefore, (10) is bounded by

22k

bk/2c∑
i=0

ni

i!

max{|s|k−2i, kk−2i}
(k − 2i)!

 .

The claim then follows from Claim 23.

4.3 Proof of Theorem 9

In this subsection, we give examples of symmetric polynomials p with L1,k(p) = Ωk(1)·dk
for d = Θ(

√
n), matching our upper bound up to a constant factor when k = O(1). We

restate our theorem for convenience.

Theorem 24 (Restatement of Theorem 9). For every k, there is a symmetric F2-

polynomial p(x1, . . . , xn) of degree d = Θ(
√
kn) such that L1,k(p) ≥ (e−k/2) ·

(
n
k

)1/2
=

Ωk(1) · dk.

Proof. Let m := C
√
kn for some constant 4 ≤ C ≤ 8 such that m is a power of two.

Consider the function hk : {0, 1}n → {−1, 1} defined by

hk(x) = sgn

( ∑
|S|=k

(−1)
∑
i∈S xi

)
.

Let h̃k : {0, . . . , n} → {−1, 1} be the symmetrization of hk so that h̃k(|x|) := hk(x).
Now consider the periodic function p̃ : {0, . . . , n} → {−1, 1} that on input z ∈ {0, . . . , n}
such that

z + 2tm ∈ [n/2−m,n/2 +m) for some t ∈ Z,
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evaluates to p̃(z) := h̃k(z + 2tm). We define the F2-polynomial p by p(x1, . . . , xn) :=
p̃(|x|). Since p(x) depends only on |x| mod 2m, by Lemma 17, it can be computed by a
symmetric F2-polynomial of degree d < 2m. Moreover, p(x) agrees with hk(x) when
|x| ∈ [n/2−m,n/2 +m). Let f = (−1)p. We have (note that from here on we switch
from x ∈ {0, 1}n to x ∈ {−1, 1}n)

L1,k(f) ≥

∣∣∣∣∣∑
|S|=k

f̂(S)

∣∣∣∣∣ =

∣∣∣∣∣∑
|S|=k

E
x

[
f(x)xS

]∣∣∣∣∣
=

∣∣∣∣∣∑
|S|=k

E
x

[
hk(x)xS

]
+ E

x

[(
f(x)− hk(x)

)
xS
]∣∣∣∣∣

=

∣∣∣∣∣Ex
[
hk(x)

∑
|S|=k

xS

]
+ E

x

[(
f(x)− hk(x)

) ∑
|S|=k

xS

]∣∣∣∣∣
≥

∣∣∣∣∣∣
∣∣∣∣∣Ex
[
hk(x)

∑
|S|=k

xS

]∣∣∣∣∣−
∣∣∣∣∣Ex
[(
f(x)− hk(x)

) ∑
|S|=k

xS

]∣∣∣∣∣
∣∣∣∣∣∣ .

We proceed to lower bound the first term and upper bound the second term. For the first

term we use the same lower bound of e−k
(
n
k

)1/2
in the proof of [Vio20, Theorem 1]; for

completeness we include the argument here. One can verify that Ex[(
∑
|S|=k x

S)2] =
(
n
k

)
.

Applying [O’D14, Theorem 9.22], which states that E[|h(x)|] ≥ e−k E[h(x)2]1/2 for any
h : {−1, 1}n → R of degree k, we get

e−k
(
n

k

)1/2

= e−k E
x

[(∑
|S|=k

xS

)2]1/2

≤ E
x

[∣∣∣∣∣∑
|S|=k

xS

∣∣∣∣∣
]
≤ E

x

[(∑
|S|=k

xS

)2]1/2

=

(
n

k

)1/2

.

So for the first term we have

E
x

[
hk(x)

∑
|S|=k

xS

]
= E

x

∣∣∣∣∣∑
|S|=k

xS

∣∣∣∣∣
 ≥ e−k(n

k

)1/2

.

We now bound above the second term. As |f(x) − hk(x)| ≤ 2 for every x, by the
Cauchy–Schwarz inequality, we get∣∣∣∣∣∣Ex

[(
f(x)− hk(x)

) ∑
|S|=k

xS

]∣∣∣∣∣∣ ≤ 2 ·Pr
x

[
2
∣∣∣∑
i

xi

∣∣∣ ≥ m]E
x

(∑
|S|=k

xS

)2
1/2

= 2 ·Pr
x

[
2
∣∣∣∑
i

xi

∣∣∣ ≥ m](n
k

)1/2

≤ (e−k/2) ·
(
n

k

)1/2

,

where the last inequality follows from the Chernoff bound recalling our choice of

m = Θ(
√
kn). Therefore L1,k(f) ≥ (e−k/2) ·

(
n
k

)1/2
, proving the theorem.
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5 L1,k bounds for read-∆ polynomials

In this section, we give our L1,k bounds on read-few polynomials, which are restated
below for convenience.

Theorem 25 (Restatement of Theorem 10). Let p(x1, . . . , xn) be any read-∆ degree-d
polynomial. For every 1 ≤ k ≤ n,

L1,k(p) ≤ Pr[p = 1] ·O(k)k · (∆d)8k.

By observing that any degree-Ω(log n) monomial vanishes under a random restriction
with high probability, we can use Theorem 25 to obtain an upper bound for read-∆
polynomials that is independent of d:

Corollary 26 (Restatement of Corollary 11). Let p(x1, . . . , xn) be a read-∆ polynomial.
For any 1 ≤ k ≤ n,

L1,k(p) ≤ O(k)9k · (∆ log n)8k.

Proof. Let R be a ρ-random restriction that independently for each xi with probability
1−ρ sets xi to a uniform random bit and keeps xi alive with the remaining ρ probability.
For any f : {−1, 1}n → {−1, 1}, we have ER[f̂R(S)] = ρ|S|f̂(S). Thus,

L1,k(f) =
∑
|S|=k

|f̂(S)| =
∑
|S|=k

|ρ−k E
R

[f̂R(S)]| ≤ ρ−k E
R

[L1,k(fR)].

Let p(x1, . . . , xn) be any read-∆ polynomial. Note that L1,k(f) ≤ nk/2 for any f . Hence,
by Theorem 25, for any dmax and any ρ, we have

L1,k(p) ≤ ρ−k ·O(k)k(∆dmax)8k + ρ−k ·Pr
R

[deg(pR) ≥ dmax] · nk/2.

We now upper bound PrR[deg(pR) ≥ dmax]. Each monomial with degree greater than
dmax survives R with probability at most ρdmax , and there are at most (∆n)/dmax

such monomials in p. It follows by a union bound that PrR[deg(pR) ≥ dmax] ≤
ρdmax(∆n)/dmax. So setting ρ = 1/2 and dmax = 2k log n, we have

L1,k(p) ≤ O(k)k(∆ · dmax)8k +
ρdmax∆ · n1+k/2

ρkdmax

≤ O(k)9k · (∆ log n)8k.

Proof idea. We first observe that for f = (−1)p, the Fourier coefficient f̂(S) is
simply the bias of the F2-polynomial pS(x) := p(x) +

∑
i∈S xi. Assuming that pS

depends on all n variables, by a simple greedy argument we can collect n/poly(∆, d)
polynomials in pS so that each of them depends on disjoint variables, and it is not
hard to show that the product of the biases of these polynomials upper bounds the
bias of pS . From this is easy to see that any read-∆ degree-d polynomial has bias
exp(2−dn/poly(∆, d)). However, this quantity is too large to sum over

(
n
k

)
coefficients.

Our next idea (Lemma 27) is to give a more refined decomposition of the polynomial
p by inspecting the variables xi : i ∈ S more closely. Suppose the variables xi : i ∈ S
are far apart in their dependency graph (see the definition of Gp below), as must
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indeed be the case for most of the
(
n
k

)
size-k sets S. Then we can collect all the

monomials containing each xi to form a polynomial pi, and these pi’s will depend on
disjoint variables. Moreover, if every monomial in pi has high degree (see the definition
of Vt(p) below), then pi = 0 with high probability and therefore pi + xi is almost
unbiased. Therefore, we can first collect these pi and xi from pS ; then, for the remaining
m ≥ |S| · poly(∆, d) monomials in pS , as before we collect m/poly(∆, d) polynomials ri
so that they depend on disjoint variables, but this time we collect these monomials using
the variables in Vt(p), and give an upper bound in terms of the size |Vt(p)|. Multiplying
the biases of the pi + xi’s and the bias of r gives our refined upper bound on f̂(S) in
Lemma 27.

We now proceed to the actual proof. We first define some notions that will be used
throughout our arguments. For a read-∆ degree-d polynomial p, we define Vt(p) : t ∈ [d]
and Gp as follows.

For every t ∈ [d], define

Vt(p) := {i ∈ [n] : the minimum degree of the monomials in p containing xi is t}.

Note that the sets V1(p), . . . , Vd(p) form a partition of the input variables p depends on.
Define the undirected graph Gp on [n], where i, j ∈ [n] are adjacent if xi and xj

both appear in the same monomial in q. Note that Gp has degree at most ∆d. For
S ⊆ [n], we use N=d(S) to denote the indices that are at distance exactly i to S in Gp,

and use N≤d(S) to denote
⋃d
j=0N=j(S).

We first state our key lemma, which gives a refined bound on each f̂(S) stronger
than the naive bound sketched in the first paragraph of the “Proof Idea” above, and
use it to prove Theorem 25. We defer its proof to the next section.

Lemma 27 (Main lemma for read-∆ polynomials). Let p(x1, . . . , xn) be a read-∆ degree-
d polynomial. Let S ⊆ [n], |S| ≥ ` be a subset containing some ` indices i1, . . . , i` ∈ S
whose pairwise distances in Gp are at least 4, and let t1, . . . , t` ∈ [d] be such that each
ij ∈ Vtj (p). Let f = (−1)p. Then

|f̂(S)| ≤ O(1)|S| ·∆`
∏
j∈[`]

(
2−tj exp

(
−

2−tj |Vtj (p)|
` · (∆d)4

))
.

Proof of Theorem 25. Using a reduction given in the proof of [CMM+20, Lemma 2.2],
it suffices to prove the same bound without the acceptance probability factor, i.e. to
prove that for every 1 ≤ k ≤ n,

L1,k(p) ≤ O(k)k · (∆d)8k.

As [CMM+20] did not provide an explicit statement of the reduction, for completeness
we provide a self-contained statement and proof in Lemma 36 in Appendix A.

For every subset S ⊆ [n] of size k, there exists an ` ≤ k and i1, . . . , i` ∈ S such that
their pairwise distances in Gp are at least 4, each ij ∈ Vtj (p) for some tj ∈ [d], and each
of the remaining k − ` indices in S is within distance at most 3 to some ij .

Fix any i1, . . . , i`, and let us bound the number of subsets S ⊆ [n] of size k that
can contain i1, . . . , i`. Because |N≤3(j)| ≤ (∆d)3 + (∆d)2 + ∆d+ 1 ≤ 4(∆d)3 for every
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j ∈ [n], the remaining k − ` indices of S can appear in at most

∑
j1+···+j`=k−`

∏
b∈[`]

(
4(∆d)3

jb

)
=

(
4`(∆d)3

k − `

)

≤ (4(∆d)3)k · ek−`
(

`

k − `

)k−`
≤ (e∆d)3k

different ways, where the equality uses the Vandermonde identity, the first inequality
uses

(
n
k

)
≤ (en/k)k, and the last one uses ( `

k−`)
k−` ≤ (1 + `

k−`)
k−` ≤ e` and 4e < e3.

Therefore, by Lemma 27,

∑
S:|S|=k

|f̂(S)| ≤
k∑
`=1

∑
t⊆[d]`

(∏
j∈[`]

|Vtj (p)|

)
· (e∆d)3k ·O(1)k∆`

∏
j′∈[`]

(
2−tj′ exp

(
−

2−tj′ |Vtj′ (p)|
`(∆d)4

))
≤ O(1)k · (∆d)3k

k∑
`=1

∆`
∑
t⊆[d]`

∏
j∈[`]

(
2−tj |Vtj (p)| exp

(
−

2−tj |Vtj (p)|
`(∆d)4

))

≤ O(1)k · (∆d)3k
k∑
`=1

∆` · d` · (`(∆d)4)`

≤ O(k)k · (∆d)3k · (∆d)5k

= O(k)k · (∆d)8k,

where the third inequality is because the function x 7→ xe−x/c is maximized when x = c.
This completes the proof.

5.1 Proof of Lemma 27

First we need a simple lemma that lower bounds the acceptance probability of a sparse
polynomial.

Lemma 28. Let r(x1, . . . , xn) be a polynomial with at most ∆ monomials, each of
which has degree at least t, and r(0) = 0. Then Pr[r(x) = 0] ≥ max{ 1

∆+1 , 1− 2−t∆}.

Proof. The lower bound of 1/(∆ + 1) follows from [KL93, Corollary 1]. For the other
bound, note that each monomial evaluates to 1 with probability at most 2−t; so by a
union bound Pr[r(x) = 1] ≤ 2−t∆.

We use Gp to partition [n] as follows. For each j ∈ [`], let Tj := N=1(ij), the set
of distance-1 neighbors of ij . Let R := [n] \

⋃
j({ij} ∪ Tj) be the remaining variables

(note that these are the variables whose distance from every ij is at least two). As the
ij ’s are at distance at least 4 apart, then for j 6= j′ each index in {ij} ∪ Tj has distance
at least 2 to each index in {ij′} ∪ Tj′ ; so the variables in {ij} ∪ Tj appear in disjoint
monomials from the variables in {ij′} ∪ Tj′ . We now partition the monomials in p. For
each j ∈ [`], let pj , qj be two polynomials such that pj is composed of all the monomials
in p that contain xij , and qj is composed of all monomials that contain some variable
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in xTj but not xij . Let r be the polynomial composed of the remaining monomials in p.
We can write p as ∑̀

j=1

(
pj(xij , xTj ) + qj(xTj , xR)

)
+ r(xR).

Now, consider the polynomial

pS(x1, . . . , xn) := p(x1, . . . , xn) +
∑
i∈S

xi

=
∑̀
j=1

sj(xij , xTj , xR) + r′(xR), (11)

where

sj(xij , xTj , xR) := pj(xij , xTj ) + qj(xTj , xR) + xij +
∑

k∈S∩Tj

xk (12)

r′(xR) := r(xR) +
∑

k∈S∩R
xk.

The following claim gives an upper bound on the bias of sj ; we defer its proof till
later. (To interpret the claim it may be helpful to recall that ij ∈ Vtj (p), and hence the
minimum degree of the monomials in p containing xij is tj .)

Claim 29. For each possible outcome of xR, we have |Exij ,xTj
[(−1)

sj(xij ,xTj ,xR)
]| ≤

∆2−(tj−1) for every j ∈ [`].

We have that

|f̂(S)| =
∣∣∣∣E[(−1)pS(x)

]∣∣∣∣
=

∣∣∣∣∣ExR
[
(−1)r

′(xR) ·
∏
j∈[`]

E
xTj ,xij

[
(−1)

sj(xij ,xTj ,xR)
]]∣∣∣∣∣ (13)

≤ (2∆)` ·
(∏
j∈[`]

2−tj
)
·
∣∣∣∣ExR[(−1)r

′(xR)
]∣∣∣∣, (14)

where Equation (13) is by independence of the different (xTj , xij )’s and Equation (14)
is by Claim 29. We now claim that

|Vt(r′)| ≥ |Vt(p)| − `(∆d)2 − |S| for every t ∈ [d]. (15)

This is because a variable xj belongs to Vt(p) \ Vt(r′) only if it belongs to or is adjacent
to the at most `∆d restricted variables {xij , xTj : j ∈ [`]} in Gp, or it is one of
the {xi : i ∈ S}. In Lemma 30 below we prove that for every fixed assignment to
xij , xTj : j ∈ [`], and any t ∈ [d], we have that∣∣∣∣ExR[(−1)r

′(xR)
]∣∣∣∣ ≤ exp

(
−2−t|Vt(r′)|

(∆d)4

)
. (16)
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Continuing from above, combining Equations (14), (15) and (16), we have

|f̂(S)| ≤ (2∆)`

(∏
j∈[`]

2−tj

)
·min

{
exp

(
−2−t(|Vt(p)| − `(∆d)2 − |S|)

(∆d)4

)
: t ∈ [d]

}

≤ O(1)|S| · (2∆)`

(∏
j∈[`]

2−tj

)
·min

{
exp

(
−2−t(|Vt(p)|)

(∆d)4

)
: t ∈ [d]

}

= O(1)|S| · (2∆)`

(∏
j∈[`]

2−tj min

{
exp

(
−2−t(|Vt(p)|)

` · (∆d)4

)
: t ∈ [d]

})

= O(1)|S| · (2∆)`
∏
j∈[`]

(
2−tj exp

(
−

2−tj |Vtj (p)|
` · (∆d)4

))
,

where second inequality is because exp
(
`(∆d)2+|S|

(∆d)4

)
≤ e`+|S| ≤ O(1)|S| because ` ≤ |S|.

This proves the lemma.
We now prove Claim 29 and Lemma 30.

Proof of Claim 29. We may assume tj ≥ 2 as otherwise the conclusion is trivial. Since
ij ∈ Vtj (p), recalling Equations (11) and (12), every monomial in pj containing xij has
degree at least tj , and by collecting these monomials, we can write

sj(xij , xTj , xR) = xij + pj(xij , xTj ) +
∑

k∈S∩Tj

xk + qj(xTj , xR)

= xij (1 + uj(xTj )) + vj(xTj , xR)

for some polynomials uj and vj , where every monomial in uj(xTj ) has degree at least
tj − 1 ≥ 1, and thus uj(0) = 0. Now, if an outcome of xTj is such that uj(xTj ) = 0, then
the expectation of (−1)sj is zero because vj does not depend on xij and E[(−1)xij ] = 0.
Hence we have that for every outcome of xR,∣∣∣∣ E
xij ,xTj

[
(−1)

sj(xij ,xTj ,xR)
]∣∣∣∣ ≤ E

xTj

∣∣∣∣Exij
[
(−1)

sj(xij ,xTj ,xR)
]∣∣∣∣ ≤ Pr[uj(xTj ) = 1] ≤ ∆2−(tj−1),

where the final inequality is by Lemma 28.

Lemma 30. Let q(x1, . . . , xn) be a read-∆ degree-d polynomial. For every t ∈ [d] we
have ∣∣∣E[(−1)q

]∣∣∣ ≤ exp

(
−2−t|Vt(q)|

(∆d)4

)
.

Proof. We partition Vt(q) according to Gq using the following greedy procedure:

1. Set W1 = [n] and i = 1.

2. Pick a monomial xSi of degree exactly t containing some variable xj : j ∈Wi∩Vt(q).
3. Let Ti := N=1(Si), and set Wi+1 = Wi \N≤3(Si).

4. Repeat steps 2 and 3 until we cannot pick such an S`+1. Let R = [n]\
⋃
i∈[`](Si∪Ti)

be the remaining variables.
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By construction, the pairwise distances between the (Si ∪ Ti)’s are at least 2, so the
variables xSi∪Ti ’s must only appear in disjoint monomials. Since each time we remove
at most t · (∆d)3 elements from Vt(q), we have ` ≥ |Vt(q)|/(t(∆d)3).

We now partition the monomials in q. For each i ∈ [`], let pi, qi be two polynomials
such that pi is composed of all monomials in q that contain a variable in xSi , and qi is
composed of all monomials in q that contain a variable in xTi but none in xSi . Let r be
the polynomial composed of the remaining monomials in q. We can write q(x) as

∑̀
i=1

(
pi(xSi , xTi) + qi(xTi , xR)

)
+ r(xR).

By collecting the monomials containing xSi , we can write

pi(xSi , xTi) + qi(xTi , xR) = xSi(1 + ui(xTi)) + vi(xSi , xTi , xR).

for some polynomials ui and vi, where (1) ui consists of the at most ∆− 1 monomials
in pi that contain xSi , and ui(0) = 0, and (2) xSi does not appear in any monomial
in vi. Let δ := Pr[ui(xTi) = 0]. By Lemma 28 we have δ ≥ 1/∆. Therefore, for every
assignment to xR and every i ∈ [`],

E
xTi

∣∣∣∣ExSi
[
(−1)pi(xSi ,xTi )+qi(xTi ,xR)

]∣∣∣∣
= (1− δ)

∣∣∣∣ExSi
[
(−1)vi(xSi ,xTi ,xR)

]∣∣∣∣+ δ E
xTi :ui(xTi )=0

[∣∣∣∣ExSi
[
(−1)x

Si+vi(xSi ,xTi ,xR)
]∣∣∣∣]

≤ (1− δ) + δ(1− 2−t)

≤ 1− 2−t/∆,

where the first inequality is because for any choice of xR and xTi , the polynomial
xSi + vi(xSi , xTi , xR) has degree exactly t, and therefore its bias is at most 1 − 2−t.
Also, for every fixed outcome of xR, the restricted polynomials pi(xSi , xTi) + qi(xTi , xR)
depend on disjoint variables. Therefore,∣∣∣∣ E

xTi ,xSi :i∈[`]

[
(−1)q(x)

]∣∣∣∣ ≤ (1− 2−t

∆

)`
≤ exp

(
−` · 2

−t

∆

)
≤ exp

(
−2−t|Vt(q)|

(∆d)4

)
,

because ` ≥ |Vt(q)|/(t∆3d3) ≥ |Vt(q)|/(∆3d4).

6 L1,k bounds for disjoint compositions

In this section we give L1,k bounds on disjoint compositions of functions, which we
define below.

Let F and G be two families consisting of functions mapping {−1, 1}m and {−1, 1}` to
{−1, 1} respectively. Let f ∈ F and g1, . . . , gm ∈ G. We define h : {−1, 1}m` → {−1, 1},
the disjoint composition of f and g1, . . . , gm, to be

h(x1,1, . . . , x1,`, . . . , xm,1, . . . , xm,`) := f(g1(x1,1, . . . , x1,`), . . . , gm(xm,1, . . . , xm,`)).

Theorem 31 (Sharper version of Theorem 13). Let g1, . . . , gm ∈ G, and f ∈ F , where
G,F are as above and F is closed under restrictions. Suppose for every 1 ≤ k ≤ K,
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1. L1,k(f) ≤ 1−|E[f ]|
2 · aout · bkout for every f ∈ F , and

2. L1,k(g) ≤ 1−|E[g]|
2 · ain · bkin for every g ∈ G.

Then

L1,K(h) ≤ 1− |E[h]|
2

· aout · bKin ·
ainbout

2

(
1 +

ainbout
2

)K−1

.

In particular, when ainbout ≥ 2 or K = 1 we have L1,K [h] ≤ 1−|E[h]|
2 · aout · (ainbinbout)

K

2 .

Proof idea. Before proving Theorem 31, we briefly describe the main ideas of the
proof. For a subset J ⊆ [m], let ∂Jf denote the J-th derivative of f , which can be
expressed as

∂Jf(x1, . . . , xm) :=
∑
T⊇J

f̂(T )xT\J .

Note that f̂(J) = ∂Jf(~0).
Let us begin by considering the task of bounding L1,1(h) =

∑
(i,j)∈[m]×[`]|ĥ{(i, j)}|.

Let β = (β1, . . . , βm), where βi := E[gi]. Using the Fourier expansion of f , we have

ĥ{(i, j)} =
∑
S⊆[m]

f̂(S) E

[∏
k∈S

gk(xk) · xi,j

]
.

If S 63 i, then the expectation is zero, because
∏
k∈S gk(xk) and xi,j are independent

and E[xi,j ] = 0. So, we have

ĥ{(i, j)} =
∑
S3i

f̂(S)βS\{i} · ĝi({j}) = ∂if(β) · ĝi({j}).

If the functions gi are balanced, i.e. E[gi] = 0 for all i, then we would have β = ~0, and

ĥ{(i, j)} = ∂if(~0) · ĝi({j}) = f̂({i})ĝi({j}).

So in this case we have

L1,1(h) =
∑

i∈[m],j∈[`]

∣∣ĥ({(i, j)})
∣∣ =

∑
i∈[m]

∑
j∈[`]

|f̂({i})ĝi({j})| =
∑
i∈[m]

|f̂({i})|
∑
j∈[`]

|ĝi({j})|

and we can apply our bounds on L1,1(F) and L1,1(G) to
∑

i∈[m] f̂{i} and
∑

j∈[`] ĝi{j}
respectively. Specializing to the case g1 = · · · = gm, we have

Claim 32. Suppose g1 = g2 = · · · = gm =: g and E[g] = 0. Then L1,1(h) =
L1,1(f)L1,1(g).

In general the gi’s may not all be the same and may not be balanced, and so it
seems unclear how we can apply our L1,1(F) bound on

∑
i∈[m] ∂if(β1, . . . , βm) when

β 6= ~0. To deal with this, in Claim 33 below we apply a clever idea introduced in
[CHHL19] that lets us relate f(β) at a nonzero point β to the average of fRβ (~0), where
fRβ is f with some of its inputs fixed by a random restriction Rβ . As F is closed under

restrictions, we have that fRβ ∈ F and we can apply the L1,1(F) bound on
∑

i ∂ifRβ (~0),
which in turn gives a bound on

∑
i∈[m] ∂if(β1, . . . , βm).

Bounding L1,K(h) for K ≥ 2 is more complicated, as now each ĥ(S) involves many

f̂(J) and ĝi(T )’s, where the sets J and T have different sizes. So one has to group the
coefficients carefully.
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6.1 Useful notation

For a set S ⊆ [m] × [`], let S|f := {i ∈ [m] : (i, j) ∈ S for some j ∈ [`]} be the “set
of first coordinates” that occur in S, and let S|i := {j ∈ [`] : (i, j) ∈ S}. Note that
if (i, j) ∈ S, then i ∈ S|f and j ∈ S|i. Let β denote the vector (β1, . . . , βm), where
βi := E[gi] for each i ∈ [m]. For a set J = {i1, . . . , i|J |} ⊆ [m] and f = f(y1, . . . , ym),

we write ∂Jf to denote ∂|J|f
∂yi1 ···∂yi|J|

. Since ∂Jy
T = 1(T ⊇ J)yT\J , by the multilinearity

of f we have that

∂Jf(β) =
∑
T⊇J

f̂(T )β T\J . (17)

6.2 The random restriction Rβ

Given β ∈ [−1, 1]m, let Rβ be the random restriction which is the randomized function
from {−1, 1}m to {−1, 1}m whose i-th coordinate is (independently) defined by

Rβ(y)i :=

{
sgn(βi) with probability |βi|
yi with probability 1− |βi|.

Note that we have
E
Rβ ,y

[Rβ(y)i] = E
Rβ

[Rβ(~0)i] = βi.

Define fRβ (y) to be the (randomized) function f(Rβ(y)). By the multilinearity of f
and independence of the Rβ(y)i we have

E
Rβ ,y

[fRβ (y)] = E
Rβ

[fRβ (~0)] = f(β).

The following claim relates the two derivatives ∂Sf(β) and ∂SfRβ (~0) = f̂Rβ (S).

Claim 33.

∂Sf(β) =
∏
i∈S

1

1− |βi|
· E
Rβ

[∂SfRβ (~0)] =
∏
i∈S

1

1− |βi|
· E
Rβ

[f̂Rβ (S)].

Proof. The second equality follows from (17). To prove the first one, it suffices to show

∂{i}f(β) =
1

1− |βi|
E
Rβ

[∂{i}fRβ (~0)].

The rest follows by a straightforward induction. By definition of derivatives, and noting
ERβ [Rβ( 1

1−|βi|z · ei)j ] equal βi + z · ei if i = j and βj otherwise,

∂f

∂yi
(β) = lim

z→0

f(β + z · ei)− f(β)

z

= E
Rβ

[
lim
z→0

fRβ
(

1
1−|βi| · z · ei

)
− fRβ (~0)

z

]

=
1

1− |βi|
E
Rβ

[
∂fRβ
∂yi

(~0)

]
.
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We now use Claim 33 to express each coefficient of h in terms of the coefficients of
f and gi.

Lemma 34. For S ⊆ [m]×[`], we have ĥ(S) =
∏
i∈S|f ĝi(S|i)·

∏
i∈S|f

1
1−|βi| ·ERβ [f̂Rβ (S|f )].

Proof. For S ⊆ [m] × [`] and T ⊆ [m], decompose T into (T ∩ S|f ) ∪ (T \ S|f ) and
S|f into (T ∩ S|f ) ∪ (S|f \ T ). Expanding h using the Fourier expansion of f , by the
definitions of S|f and S|i, we have

ĥ(S) =
∑
T⊆[m]

f̂(T ) E
x

[∏
i∈T

gi(x) · xS
]

=
∑
T⊆[m]

f̂(T )

( ∏
i∈S|f\T

E
[ ∏
j∈S|i

xi,j

])
·

( ∏
i∈T∩S|f

E
[
gi(x)

∏
j∈S|i

xi,j

])
·

( ∏
i∈T\S|f

E[gi(x)]

) .

When S|f 6⊆ T , we have S|f \ T 6= ∅ and thus
∏
i∈S|f\T

∏
j∈S|i E[xi,j ] = 0. Hence,∏

i∈S|f\T

E
[ ∏
j∈S|i

xi,j

]
= 1(S|f ⊆ T ).

Note that E[gi(x)
∏
j∈S xi,j ] = ĝi(S) for every S ⊆ [`]. Using E[gi(x)] = βi, Equa-

tion (17) and Claim 33, we have

ĥ(S) =
∑

T⊆[m]:T⊇S|f

f̂(T )
∏
i∈S|f

ĝi(S|i)
∏

i∈T\S|f

E[gi(x)]

=
∏
i∈S|f

ĝi(S|i) ·

( ∑
T⊆[m]:T⊇S|f

f̂(T )
∏

i∈T\S|f

βi

)
(E[gi(x)] = βi)

=
∏
i∈S|f

ĝi(S|i) · ∂S|f f(β1, . . . , βm) (Equation (17))

=
∏
i∈S|f

ĝi(S|i) ·
∏
i∈S|f

1

1− |βi|
· E
Rβ

[
f̂Rβ (S|f )

]
. (Claim 33)

6.3 Proof of Theorem 31

By Lemma 34, L1,K(h) is equal to∑
S⊆[m]×[`]:|S|=K

|ĥ(S)| =
∑

S⊆[m]×[`]:|S|=K

∣∣∣∣ ∏
i∈S|f

ĝi(S|i) ·
∏
i∈S|f

1

1− |βi|
· E
Rβ

[f̂Rβ (S|f )]

∣∣∣∣.
We enumerate all the subsets S ⊆ [m] × [`] of size K in the following order: For
every |J | = k ∈ [K] out of the m blocks of ` coordinates, we enumerate all possible
combinations of the (disjoint) nonempty subsets {Si : i ∈ J} in those k blocks whose
sizes sum to K. Rewriting the summation above in this order, we obtain

∑
S⊆[m]×[`]:|S|=K

|ĥ(S)| =
K∑
k=1

∑
J⊆[m]
|J |=k

∑
w⊆[`]J∑
i∈J wi=K

∑
{Si}i∈J⊆[`]J :
∀i∈J :|Si|=wi

∣∣∣∣∣∏
i∈J

ĝi(Si)
∏
i∈J

1

1− |βi|
E
Rβ

[
f̂Rβ (J)

]∣∣∣∣∣
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≤
K∑
k=1

∑
J⊆[m]
|J |=k

∑
w⊆[`]J∑
i∈J wi=K

∑
{Si}i∈J⊆[`]J :
∀i∈J :|Si|=wi

∏
i∈J

∣∣ĝi(Si)∣∣∏
i∈J

1

1− |βi|

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣.
(18)

Since L1,wi(gi) ≤
1−|βi|

2 · ain · bwiin , for every {wi}i∈J such that
∑

i∈J wi = K, we have∑
{Si}i∈J⊆[`]J :
∀i∈J :|Si|=wi

∏
i∈J
|ĝi(Si)| =

∏
i∈J

L1,wi(gi) ≤
∏
i∈J

(1− |βi|
2

ainb
wi
in

)
= bKin a

|J |
in

∏
i∈J

1− |βi|
2

.

Plugging the above into (18), we get that

∑
S⊆[m]×[`]:|S|=K

|ĥ(S)| ≤ bKin
K∑
k=1

akin
∑
J⊆[m]
|J |=k

∑
w⊆[`]J∑
i∈J wi=K

∏
i∈J

(
1− |βi|

2
· 1

1− |βi|
·
∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣)

= bKin

K∑
k=1

(ain
2

)k ∑
J⊆[m]
|J |=k

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣ ∑
w⊆[`]J∑
i∈J wi=K

1

≤ bKin
K∑
k=1

(ain
2

)k (K − 1

k − 1

) ∑
J⊆[m]
|J |=k

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣, (19)

where the last inequality is because for every subset J ⊆ [m], the set {w ⊆ [`]J :∑
i∈J wi = K} has size at most

(
K−1
|J |−1

)
. We now bound |ERβ [f̂Rβ (J)]|. Since for every

restriction Rβ , we have fRβ ∈ F (by the assumption that F is closed under restrictions),
it follows that

L1,k(fRβ ) ≤
1− |Ey[fRβ (y)]|

2
aoutb

k
out ≤

1−Ey[fRβ (y)]

2
aoutb

k
out.

So ∑
J⊆[m],|J |=k

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣ ≤ E
Rβ

[L1,k(fRβ )]

≤
1−ERβ ,y[fRβ (y)]

2
aoutb

k
out

=
1−E[h]

2
aoutb

k
out.

Continuing from (19), we get

∑
S⊆[m]×[`]:|S|=K

|ĥ(S)| ≤ 1−E[h]

2
· bKin ·

K∑
k=1

(ain
2

)k
·
(
K − 1

k − 1

)
· aoutbkout

=
1−E[h]

2
· aout · bKin ·

ainbout
2

(
1 +

ainbout
2

)K−1

where the last step used the binomial theorem. Applying the same argument to −h
lets us replace 1−E[h]

2 with 1−|E[h]|
2 , concluding the proof of Theorem 31.
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6.4 Bounding L1,1(p) for balanced polynomials

We give a quick application of Claim 32 to show that L1,1(p) ≤ d for balanced degree-d
polynomials. (Note that [CHLT19] showed that L1,1(p) ≤ 4d for general degree-d
polynomials.)

Claim 35. For every degree-d polynomial p : {0, 1}n → {0, 1} with E[p] = 1/2, we have
L1,1(p) ≤ d.

Proof. Suppose not, and suppose that there exists an ε > 0 such that L1,1(p) = (1 + ε)d
for some degree-d balanced polynomial p on n variables. Consider the composition p′ on
disjoint sets of variables with the inner functions g1 = g2 = . . . gn and the outer function
all equal to p. Note that p′ is a balanced degree d2 polynomial with L1,1(p′) = (1+ε)2d2.

We can repeat this iteratively by replacing p in p′ in the composition. After k
repetitions, we get a polynomial q of degree d2k that has L1,1(q) = (1 + ε)2kd2k . For

large enough k this is greater than 4d2k , but this contradicts the 4d upper bound of
[CHLT19], a contradiction.
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A Reduction to bound without acceptance prob-

ability

In this section, we show that given any L1,k Fourier norm bound on a class of functions
that is closed under XOR on disjoint variables, such a bound can be automatically
“upgraded” to a refined bound that depends on the acceptance probability:

Lemma 36. Let F be a class of {−1, 1}-valued functions such that for every f ∈ F ,
the XOR of disjoint copies of f (over disjoint sets of variables) also belongs to F . If

L1,k(F) ≤ bk, then for every f ∈ F it holds that L1,k(f) ≤ 2e · 1−|E[f ]|
2 · bk.

Proof. Suppose not, and let f ∈ F be such that L1,k(f) > 2e · 1−|E[f ]|
2 · bk. We

first observe that since L1,k(F) ≤ bk, it must be the case that 1 − |E[f ]| ≤ 1/e. Let

α := 1−|E[f ]|
2 ∈ [0, 1

2e ] so that |E[f ]| = 1 − 2α ≥ 1 − 1/e. Let f⊕t be the XOR of t
disjoint copies of f on tn variables, where the integer t is to be determined below. By
our assumption, we have f⊕t ∈ F and thus

L1,k(f
⊕t) ≥

(
t

1

)
· L1,0(f)t−1 · L1,k(f) (by disjointness)

= t · (1− 2α)t−1 · L1,k(f) (L1,0(f) = E[f ])

> t · (1− 2α)t−1 · 2e · α · bk =: Λ(t).

We note that if α = 0 then |E[f ]| = 1, so all the Fourier weight of f is on the constant
coefficient, and hence the claimed inequality holds trivially. So we subsequently assume
that 0 < α ≤ 1

2e . Let t∗ := 1
− ln(1−2α) > 0. It is easy to verify that Λ(t) is increasing

when t ≤ t∗, and is decreasing when t ≥ t∗.
We choose t = dt∗e. Since α ≤ 1

2e <
e−1
2e ≈ 0.3161, we have t∗ > 1 and thus

L1,k(f
⊕t) > Λ(dt∗e) ≥ Λ(t∗ + 1) =

(
1

− ln(1− 2α)
+ 1

)
· (1− 2α)

1
− ln(1−2α) · 2e · α · bk

=

(
2α

− ln(1− 2α)
+ 2α

)
· bk ≥ bk,

where the last inequality holds for every α ∈ (0, e−1
2e ] and can be checked via elementary

calculations. This contradicts L1,k(F) ≤ bk, and the lemma is proved.
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