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Abstract

Hardness amplification is the fundamental task of converting a δ-hard function
f : {0, 1}n → {0, 1} into a (1/2− ε)-hard function Amp(f), where f is γ-hard if small
circuits fail to compute f on at least a γ fraction of the inputs. In this paper we study
the complexity of black-box proofs of hardness amplification. A class of circuits D
proves a hardness amplification result if for any function h that agrees with Amp(f)
on a 1/2 + ε fraction of the inputs there exists an oracle circuit D ∈ D such that Dh

agrees with f on a 1−δ fraction of the inputs. We focus on the case where every D ∈ D
makes non-adaptive queries to h. This setting captures most hardness amplification
techniques. We prove two main results:

1. The circuits in D “can be used” to compute the majority function on 1/ε bits.
In particular, when ε ≤ 1/ logω(1) n, D cannot consist of oracle circuits that have
unbounded fan-in, size poly(n), and depth O(1).

2. The circuits in D must make Ω
(
log(1/δ)/ε2

)
oracle queries.

Both our bounds on the depth and on the number of queries are tight up to constant
factors.

Our results explain why hardness amplification techniques have failed to transform
known lower bounds against constant-depth circuit classes into strong average-case
lower bounds.

One of our contributions is a new technique to handle “non-uniform” reductions,
i.e. the case when D contains many circuits.
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1 Introduction

Proving circuit lower bounds is a major goal of Complexity Theory. However, the “Natural
Proofs” result by Razborov and Rudich [RR97], coupled with the pseudorandom functions by
Naor and Reingold [NR04], marks the class of polynomial-size constant-depth circuits with
majority gates (TC 0) as a fundamental barrier for most currently available lower bounding
techniques. This limitation already applies to worst-case lower bounds, where one seeks a
function that small circuits fail to compute on at least one input. Even harder to obtain are
average-case lower bounds, where one seeks a function that small circuits fail to compute on
many inputs. Average-case hard functions are especially important as they can be used to
construct pseudorandom generators [NW94] which in turn have a striking variety of appli-
cations . We stress that this application requires strongly average-case hard functions. That
is functions that small circuits cannot compute with even a small advantage over random
guessing, for a randomly chosen input. (For concreteness, the reader may think of a function
f : {0, 1}n → {0, 1} that any small circuit fails to compute with probability 1/2 − 1/nω(1)

over the choice of the input).
As we do not know how to prove unconditional lower bounds for general circuit classes, a

long line of research has focused on hardness amplification. This is the task of transforming
worst-case hard functions (or sometimes mildly average-case hard functions) into average-
case hard functions [Yao82, Lip91, BF90, BFL91, BFNW93, Imp95, GNW95, FL96, IW97,
IW01, CPS99, STV01, TV07, SU05, Tre03, O’D04, Vio04, Tre05, HVV06, SU06, GK06,
IJK06, IJKW08, GG08]. This research was largely successful in its goal. In particular,
it provided worst-case to average-case connections within many complexity classes. Many
of these connections give strongly average-case hard functions. This research also spurred
fruitful interaction with coding theory (see, e.g., the survey by Trevisan [Tre04]).

Complexity theory has produced many exciting and useful lower bounds for restricted
computational models, notably against classes of constant-depth circuits with unbounded
fan-in and various gates [FSS84, Yao85, H̊as87, Raz87, Smo87, HG91, HMP+93, ABFR94,
HM04]. In some of these classes we have worst-case lower bounds, but we do not know
strongly average-case lower bounds (e.g. [Raz87, Smo87, ABFR94]). Several such examples
are surveyed in Section 7 and in [Vio06a, Chapter 6]; for concreteness, an example is the
lower bound against constant-depth circuits with And, Or and Parity gates [Raz87, Smo87].
One would expect that hardness amplification techniques could be used to produce strongly
average-case lower bounds from the known lower bounds (which would in turn give pseudo-
random generators for these classes [NW94]). But in fact “standard hardness amplification
techniques” fail.

In this paper we show that:

“standard hardness amplification techniques” only apply when starting with hardness
against circuits that can compute the majority function.

This explains the following “lose-lose” phenomenon: For classes that are weaker than
TC 0 (e.g. constant-depth circuits, or constant-depth circuits with parity gates) we can prove
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CircuitTC 0

Cannot amplify hardness
[This work]

Cannot prove hardness results
[Razborov and Rudich’s natural proofs]

complexity

Figure 1: Reach of “standard techniques.” Recall TC 0 is the class of polynomial-size
constant-depth circuits with majority gates.

lower bounds, however we do not have hardness amplification theorems, while for classes at
least as powerful as TC 0 we have hardness amplification theorems but cannot prove circuit
lower bounds; see Figure 1.

A couple of remarks is in order. First, our results likely do not apply to “every con-
ceivable” class of circuits, but rather they apply to the most well-studied ones. Second, we
note that, just like Razborov and Rudich’s result [RR97] is not claiming that it is impossible
to prove lower bounds for classes like TC 0, but rather that certain techniques will not do,
this work is not claiming that it is impossible to prove strong average-case hardness results
for circuit classes weaker than TC 0, but that we cannot obtain such results by “standard
hardness amplification techniques.” We elaborate on these techniques next.

1.1 Hardness amplification

In this section we review the notion of hardness amplification. Let us start by formalizing
our notion of hardness.

Definition 1.1 (Average-case hardness). A function f : {0, 1}k → {0, 1} is δ-hard for a class
of circuits C (e.g., all circuits of size s) if for every circuit C ∈ C we have Prx∈{0,1}k [C(x) 6=
f(x)] ≥ δ, where the probability is over uniform x ∈ {0, 1}k.

Hardness amplification is the generic task of transforming a given function f : {0, 1}k →
{0, 1} that is δ-hard for a class of circuits C into another function Amp(f) : {0, 1}n →
{0, 1} that is (1/2− ε)-hard for a related class of circuits C ′, where one wants ε as small as
possible and n not much larger than k. The first and most important example of hardness
amplification is Yao’s XOR lemma (cf. [GNW95]), which works as follows. We let n := t · k
for a parameter t and on input (x1, . . . , xt) ∈

(
{0, 1}k

)t
= {0, 1}n we define

Amp(f)(x1, . . . , xt) := f(x1)⊕ · · · ⊕ f(xt),

where ⊕ denotes exclusive OR. The lemma states that if f is δ-hard for (the class of)
circuits of size s, then choosing t := O(log(1/ε)/δ) it follows that Amp(f) is (1/2− ε)-hard
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for circuits of size s·(ε·δ/k)O(1). In particular, if f is 1/3-hard for circuits of superpolynomial
size s = nω(1), then by choosing a suitable t := ω(log n) we obtain a (1/2 − 1/nω(1))-hard
function, (recall that such a function can be used to construct pseudorandom generators
[NW94]).

Yao’s XOR lemma is not useful when starting from worst-case hard functions, i.e., when
δ = 2−k. Hardness amplification from worst-case hardness is still possible (e.g., [Lip91, BF90,
BFL91, BFNW93, FL96, CPS99, STV01, TV07]) but is more difficult. This distinction is
not relevant to our work which, jumping ahead, proves limitations on hardness amplification
that already apply when amplifying from constant hardness δ = Ω(1) (and thus also apply
when amplifying from worst-case hardness δ = 2−k).

1.2 Black-box hardness amplification

We now explain what we mean by “standard techniques” for proving hardness amplification
theorems. To explain this, we use the classical notion of an oracle circuit Dh(x), where h :
{0, 1}n → {0, 1}. This is simply a circuit with special oracle gates that on input y ∈ {0, 1}n
return the value h(y) ∈ {0, 1}. We note that this notion also makes sense when restricting the
depth of the circuit D. It has been observed several times (implicitly in the combination of
[Tre01] and [STV01], explicitly in [TV07, Tre03]) that most proofs of hardness amplification
in the literature are black-box in the following sense.

Definition 1.2 (Black-box hardness amplification). A δ → (1/2 − ε) black-box hardness
amplification with input lengths k and n is a pair (Amp,D) such that Amp is a map from
functions f : {0, 1}k → {0, 1} to functions Amp(f) : {0, 1}n → {0, 1}, D is a class of oracle
circuits on k input bits (e.g., all oracle circuits of size s), and the following holds:

For every function f : {0, 1}k → {0, 1} and every function h : {0, 1}n → {0, 1} such that

Pr
y∈{0,1}n

[h(y) 6= Amp(f)(y)] < 1/2− ε

there is an oracle circuit D ∈ D such that

Pr
x∈{0,1}k

[
Dh(x) 6= f(x)

]
< δ.

The black-box hardness amplification is non-adaptive q-query if every circuit D ∈ D
makes q non-adaptive queries to h. Finally, we say that a class of circuits D proves a
black-box hardness amplification (with certain parameters) if there is a map Amp such that
(Amp,D) is a black-box hardness amplification (with the same parameters).

Why black-box hardness amplification lets us amplify hardness. It is instructive
to verify that black-box hardness amplification indeed lets us amplify hardness. To see this,
suppose that (Amp,D) is a q-query δ → (1/2 − ε) black-box hardness amplification where
D is the class of circuits of size s. Now let f : {0, 1}k → {0, 1} be δ-hard for (the class
of) circuits of size t ≥ 2 · s. Observe that indeed the function Amp(f) : {0, 1}n → {0, 1}

3



is (1/2 − ε)-hard for circuits of size t/(2 · q) (where recall q is the number of oracle queries
made by circuits in D). This is proven by a standard contrapositive argument. Suppose for
the sake of contradiction that there exists a circuit h of size t/(2 · q) that computes Amp(f)
on more than a 1/2 + ε fraction of the inputs. Then by definition of black-box hardness
amplification there is a circuit D ∈ D such that Dh computes f on more than a 1 − δ
fraction of the inputs. Since D has size s and makes q oracle queries, by replacing each
query with a copy of the circuit for h we see that Dh can be computed by a circuit C of size
q · t/(2 · q) + s ≤ t/2 + s ≤ t, contradicting our assumption that f was δ-hard for circuits of
size t.

It is also instructive to remark that, in the language of Definition 1.2, Yao’s XOR lemma
is a δ → (1/2 − ε) black-box hardness amplification (Amp,D) with input lengths k and n,
where n = O(k · log(1/ε)/δ) and D is the class of circuits of size poly(k/(ε · δ)).

The complexity of D. We want to stress that the complexity of the circuits in the
class D plays a crucial role when deriving average-case hardness results using a black-box
hardness amplification. Specifically, to obtain hardness amplification the initial function
f : {0, 1}k → {0, 1} must be hard for a class of circuits that contains D. This is a key point
for our results which will essentially show that D has to be at least as powerful as TC 0,
the class of constant-depth circuits with majority gates. Thus for hardness amplification we
need to start from a lower bound against TC 0.

Non-uniformity. Another aspect we wish to stress is the non-uniformity of the notion of
black-box hardness amplification. In Definition 1.2 the circuit D ∈ D is allowed to depend
arbitrarily on both the δ-hard function f and the function h that approximates Amp(f).
More precisely, we are only guaranteed that for every circuit h that computes Amp(f) “too
well” there exists an oracle circuit D ∈ D such that C = Dh computes f “too well.” In
complexity-theoretic jargon the proof gives a non-uniform reduction that transforms a circuit
h into a circuit C. The amount of this non-uniformity is captured by the size of the class D
as this governs the number of possible circuits.

It can be shown that some non-uniformity is necessary for black-box hardness ampli-
fication: |D| ≥ (1/ε)Ω(1) [TV07]. Establishing hardness amplification results with small
non-uniformity (e.g. |D| = poly(1/ε)) is important for achieving “uniform hardness ampli-
fication within NP” and is the focus of a lot of recent attention (see Section 1.4 on related
work). In this work we give impossibility results for black-box hardness amplification and
therefore are interested in handling any black-box hardness amplification, including ones
which use large non-uniformity (e.g. |D| = exp(1/ε) and larger values).

We remark that black-box hardness amplification is closely related to coding theory (we
discuss this relationship in detail in Section 8) and that the size of D corresponds to the size
of the list for which the error-correcting code that is induced by Amp is list-decodable.

The number of queries. Finally, note that when using a black-box hardness amplification
we start from a function f that is hard against circuits C of size t and obtain a function
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Amp(f) that is hard against circuits h of smaller size (size t/2q in the argument above). The
parameter q that counts the number of oracle queries made by oracle circuits in D governs
the ratio between sizes and it is therefore desirable to make it as small as possible.

1.3 Our results

The main result of this paper applies to non-adaptive black-box hardness amplification and
can be stated informally as follows:

If a set of circuits D proves non-adaptive δ → (1/2− ε) black-box
hardness amplification then D “can be used” to compute majority on 1/ε bits.

(?)

The formal statement of the above result requires a bit of notation, and is deferred to
Theorem 1.6 at the end of this section where, intuitively, we show how oracle access to
the circuits D is sufficient to compute majority. For now we state a qualitatively weaker
result which requires less notation. Specifically, the next theorem shows that if D proves
non-adaptive δ → (1/2− ε) black-box hardness amplification, then the depth of the circuits
in D must be large whenever ε is small (cf. Definition 1.2 for the definition of “proves”).
This weak form of the theorem intuitively follows from (?) by using the well-known fact
that computing the majority function on m := 1/ε bits by circuits of depth d requires size
s ≥ exp

(
mΩ(1/d)

)
= exp

(
(1/ε)Ω(1/d)

)
, i.e. exponential in 1/ε [H̊as87, Raz87, Smo87].

Theorem 1.3 (Decoding requires majority, stated in terms of circuit depth). Suppose that
a class of non-adaptive oracle circuits D proves a (δ = 1/3)→ (1/2− ε) black-box hardness
amplification (Amp,D) with input lengths k and n.

Suppose that every circuit D ∈ D has size s and depth d. Then

s ≥ min
{

exp
(
(1/ε)Ω(1/d)

)
, 2Ω(k)

}
.

In particular, Theorem 1.3 implies that poly(n)-size constant-depth circuits (i.e., d is
fixed and s = poly(n) grows) can only prove hardness amplification up to 1/2 − ε ≤
1/2 − 1/poly log n. This should be contrasted with standard hardness amplifications (e.g.,
[GNW95]) that show that if we do not put any restriction on the depth of the circuits in D
then circuits of size poly(n) can prove hardness amplification up to 1/2− 1/n.

We remark that, for constant-depth circuits, the size bound in Theorem 1.3 is tight.
This follows easily from Impagliazzo’s hard-core set theorem [Imp95] when amplifying from
constant hardness δ = Ω(1). Moreover, Impagliazzo’s result [Imp95] conceptually matches
our result (?) by showing that computing majority on poly(1/ε) bits is “all that is needed” for
proving hardness amplification. Precisely this feature was exploited a few times in complexity
theory, for example in Klivans’ work [Kli01], cf. [Vio09d]. When amplifying from worst-case
hardness δ = 2−k, the construction by Goldwasser et al. [GGH+07]1 again matches the size
bound in our Theorem 1.3.

1See Theorem 5.20 in the full version of [GGH+07].
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Our second main result is a lower bound on the number of queries made by circuits D in
any black-box hardness amplification (Amp,D). As explained earlier the number of queries
necessary for proving hardness amplification corresponds to the loss in circuit size, i.e. the
difference between the circuit sizes that come up in the assumption and conclusion of the
hardness amplification theorem. The question of how much loss is necessary has been raised
a number of times (see, e.g., [GNW95, KS03]) but was never answered in generality until
this paper. Additional motivation is discussed in Sections 7, 8.

Theorem 1.4 (Decoding requires many queries). There is a universal constant C > 1 such
that the following holds. Let (Amp,D) be a non-adaptive q-query δ → (1/2− ε) black-box
hardness amplification. Suppose that log |D| ≤ 2k/C , and n, k ≥ C2, and that both δ and ε
are between 2−k/C and 1/3.

Then

q ≥ 1

C
· log(1/δ)

ε2
.

We also note that the lower bound of Theorem 1.4 is tight (up to constants) even when
only considering XOR-lemmas. This is because Impagliazzo’s proof of the XOR-lemma
[Imp95] can be made to work with q = O (log(1/δ)/ε2) queries matching our lower bound.2

It has been observed (see e.g. [Tre01, STV01, TV07, Tre03]) that black-box hardness
amplification is closely related to list-decodable codes. Using this connection our results can
be seen as lower bounds on the complexity of decoding locally-decodable codes. We explain
this view in Section 8.

XOR lemma vs. direct product: A qualitative difference. So far we have discussed
hardness amplification where the amplified function Amp(f) is Boolean, i.e. its range is
{0, 1}, and our leading example was Yao’s XOR lemma which recall is defined as Amp(f) :=
f⊕t(x1, . . . , xt) = f(x1)⊕ . . .⊕ f(xt) ∈ {0, 1}, where ⊕ denotes exclusive-or.

Hardness amplification where the amplified function Amp(f) : {0, 1}n → {0, 1}t is not
Boolean, i.e. t ≥ 1, is also widely studied. The first and most important example of this is the
direct product which is defined as follows Amp(f) := f ◦t(x1, . . . , xt) = f(x1) ◦ . . . ◦ f(xt) ∈
{0, 1}t, where ◦ denotes concatenation. Recall that in XOR-lemmas we are interested in
amplifying hardness from δ to 1/2− ε, whereas in direct-product lemmas we are interested
in amplifying from δ to 1− ε.

The direct product and the XOR lemma, and more generally Boolean and non-Boolean
hardness amplification, have often been regarded as essentially interchangeable. In fact,
many proofs of Boolean hardness amplification proceed by proving the direct product first
and then transforming the amplified function f ◦t into a Boolean function (see, e.g., [GNW95,
IW97, STV01, O’D04, Tre03, HVV06]), often using the Goldreich-Levin Theorem [GL89].
The converse, proving a direct product lemma from an XOR lemma, is much easier [VW08].

2The proof in Impagliazzo’s paper gives q = O
(
log(1/εδ)/ε2

)
(when using the min-max proof for the

hard-core theorem). However, a more efficient version (in terms of queries) of the hard-core theorem is given
in [KS03], and using it one can push the number of queries down to q = O(log(1/δ)/ε2).
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By contrast, our results show that Yao’s XOR lemma and the direct product lemma are
qualitatively different.

The main difference is that the proof of Yao’s XOR lemma requires majority, whereas
the proof of the direct product lemma does not. Specifically, our results show that if a class
D proves a (δ = 1/3) → (1/2 − ε) black-box hardness amplification, such as Yao’s XOR
lemma, then “D can compute majority,” and in particular D requires either large depth or
exponential size in 1/ε (Theorem 1.3). On the other hand, there are black-box proofs of the
δ → (1− ε) direct-product lemma that can be implemented by small constant-depth circuits
for arbitrary ε > 0. For example, as several researchers have independently observed, this is
achieved by the proof in [GNW95]. It is also achieved by the proof in [IJKW08].

Another difference can be seen in the number of queries. The proof of the direct-product
lemma in [GNW95] uses q = O (log(1/δ)/ε) queries, and note that for small ε this beats our
Ω (log(1/δ)/ε2) lower bound that applies to XOR lemmas (Theorem 1.4).

Finally, we point out that the techniques in this paper show that q = Ω(log(1/δ)/ε)
queries are necessary for black-box proofs of the direct-product lemma (details omitted),
which again matches the upper bound in [GNW95].

Our main result: The general form. We now state our main result that hardness
amplification requires majority in its full generality. Previously, we had stated a corollary of
it that was tailored to circuit depth (Theorem 1.3). The general form of our results shows
that the circuits D in a black-box hardness amplification (Amp,D) can be used to compute
the majority function by a small constant-depth circuit. The way in which we are going to
use a circuit D ∈ D is simple and explained next. First, let us remark that since the circuit
makes non-adaptive oracle queries, for a fixed x ∈ {0, 1}k the output of Dh(x) is a function
Dx : {0, 1}q → {0, 1} of q evaluations of h at fixed points y1, y2, . . . , yq ∈ {0, 1}n (again,
the yi’s depend on x only): Dh(x) = Dx(h(y1), . . . , h(yq)). Let us formally state this key
definition.

Definition 1.5. Let Dh(x) be an oracle circuit that makes q non-adaptive queries to its
oracle. For a fixed input x we denote by Dx : {0, 1}q → {0, 1} the function that maps the q
oracle answers to the output Dh(x) ∈ {0, 1}.

We are going to show that having access to the above functions Dx : {0, 1}q → {0, 1} for
a few distinct D ∈ D and x ∈ {0, 1}k is sufficient to compute majority.

Theorem 1.6 (Decoding requires majority). There is a universal constant C > 1 such that
the following holds. Let (Amp,D) be a q-query non-adaptive (1/2− γ) → (1/2− ε) black-
box hardness amplification. Suppose that q, log |D|, 1/γ ≤ 2k/C , and n, k ≥ C2, and that
γ ≥ 1/ log(1/ε).

Then there is a circuit of depth C and size (q/ε)C with oracle access to (at most (q/ε)C

of) the functions {Dx : {0, 1}q → {0, 1}}D∈D,x∈{0,1}k that computes majority on inputs of
length 1/ε.

To understand the above theorem, let us briefly see how to obtain Theorem 1.3 from
it. Suppose that D consists of circuits of size s and depth d, that 1/2 − γ = 1/3, and that
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s ≤ 2α·k for a suitable universal constant α. First, we verify that the hypothesis of Theorem
1.6 is satisfied. This is because the circuits in D make at most q ≤ s ≤ 2α·k ≤ 2k/C queries
– where the last inequality holds for a small enough α – and |D| ≤ 2s

O(1)
which implies

log |D| ≤ sO(1) ≤ 2k/C – where again the last inequality holds for a small enough α. At this
point, observe that the functions Dx : {0, 1}q → {0, 1} are also computable by circuits of size
s and depth d. Substituting these circuits for the oracle gates in the circuit of depth C and
size (q/ε)C given by the above theorem, we obtain a circuit of depth C · d = O(d) and size
(q/ε)C · s = poly(s/ε) that computes the majority function on inputs of length 1/ε. As we
mentioned earlier, by known lower bounds for the majority function [H̊as87, Raz87, Smo87]
we obtain Theorem 1.3: s ≥ exp

(
(1/ε)Ω(1/d)

)
.

We point out the condition γ ≥ 1/ log(1/ε) in Theorem 1.6. In particular, the theorem
does not apply to (1/2− 1/n)→ (1/2− 1/n2) hardness amplifications. Understanding this
setting is an open problem.

1.4 Related work

The inapplicability of hardness amplification techniques against low-complexity classes seems
to have been observed independently by several researchers, and is also pointed out in [Agr01]
and in [Vio04, Section 10]. The latter paper informally conjectures the main result of this
work that proving hardness amplification requires computing majority (Theorem 1.6). A
preliminary version of this work [Vio06a, Chapter 6] proves the conjecture in the special case
where the class D in Definition 1.2 is small (e.g., when |D| = poly(1/ε)) and the black-box
hardness amplification is non-adaptive. Adaptivity is also handled in [Vio06a, Chapter 6] for
a few popular hardness amplifications. This latter result is later extended by Gutfreund and
Rothblum [GR08] who handle any adaptive black-box hardness amplification in the special
case when the class D is small. The work [GR08] is independent of this paper. We remark
that many proofs of black-box hardness amplification results have large non-uniformity (e.g.,
|D| � 2k which implies |D| = exp(1/ε) for ε ≥ 1/k ≥ 1/n). The main result in this paper
addresses the case when there is no bound on the size of D (however it can only handle
non-adaptive black-box hardness amplification and is therefore incomparable to the results
in [GR08]).

The aforementioned preliminary version [Vio06a, Chapter 6] also proved a qualitatively
weaker lower bound on the number of queries. We note that a recent work by Lu et
al. [LTW07c] addresses the necessity of both majority and many queries in proofs of Im-
pagliazzo’s hard-core set theorem [Imp95]. Specifically, [LTW07c] introduces two notions of
black-box proof of the hard-core set theorem, and shows that one proof cannot be imple-
mented by small constant-depth circuits, and that the other requires many oracle queries.
Their arguments only apply to proofs of the hard-core set theorem, whereas our work ad-
dresses arbitrary black-box hardness amplification.

The focus of this paper is studying the complexity of reductions proving black-box hard-
ness amplification results. We remark that there is a variety of other aspects of hardness
amplification that were studied in the literature. Specifically, it is interesting to study and
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optimize q-query δ → (1/2− ε) hardness amplification (Amp,D) with input lengths k, n in
the following respects:

Optimizing the ratio between k and n: E.g. [BFNW93, Imp95, IW97, STV01]. This is
in particular relevant to obtain conclusions such as P = BPP under the assumption that E
requires exponential-size circuits [IW97].

Optimizing |D| = advice = list size: [IW01, STV01, TV07, Tre03, Tre05, IJK06, IJKW08].
This is in particular relevant when D is a class of uniform machines (as opposed to circuits).

Optimizing the number of queries q: [Imp95, KS03], as well as the literature on locally-
decodable codes (see, e.g., [Tre04]). As discussed in Section 1.1, this is particularly relevant
to the loss in circuit size incurred by hardness amplification.

The complexity of Amp: [O’D04, Tre03, Vio04, Vio05, Tre05, HVV06, LTW05a, LTW07b,
LTW05b, LTW07a] This line of research is orthogonal to this paper which studies the com-
plexity of D and does not place any restriction on Amp. For context, we mention that the
complexity of Amp is a key issue when we want to guarantee that the amplified function
Amp(f) lies in a specific class whenever the starting function f does. An example of this is the
line of work on hardness amplification within NP [O’D04, Tre03, HVV06, Tre05, LTW07b]
which started with the result by O’Donnell [O’D04].

Relaxed definitions of hardness amplification: There are other works that study different,
less demanding models of hardness amplification which are tailored to important questions
such as worst-case to average-case connections within NP [BT06b, BT06a, Vio05]. These
works are incomparable with ours, one key difference being that they impose computational
restrictions on the starting function f and the amplified function Amp(f), whereas our
results do not.

Finally, we would like to mention that there is a long line of research that is devoted to
proving average-case hardness results for circuit classes below TC 0, e.g. [H̊as87, HMP+93,
Kli01, AB01, Bou05, GRS05, VW08]. With a few exceptions (discussed below) this research
has been independent of hardness amplification, and our results may be interpreted as a
partial explanation for this independence. The work by Klivans [Kli01] (cf. [Vio09d]) stands
out. Exploiting precisely the fact that computing majority is all that is needed for hardness
amplification, Klivans uses a lower bound for constant-depth circuits with one majority
gate [ABFR94] to give an alternative proof of the strong average-case hardness of parity for
constant-depth circuits without majority gates. Needless to say, [Kli01] does not contradict
the results in this paper, but rather matches them by showing that a lower bound for a class
with majority gates is sufficient for hardness amplification; see Section 7 for more on the
status of lower bounds for constant-depth circuits with few (e.g. one) majority gates.

2 Overview of the proof

In this section we give a high level overview of the ideas that go into the proofs of our main
results (Theorems 1.6,1.4).
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The Zoom Theorem. Both the result about the necessity of majority (Theorem 1.6)
and our lower bound on the number of queries (Theorem 1.4) rely on a theorem that we
call “the Zoom Theorem.” Let us first recall the setup. We are given a non-adaptive q-
query δ → (1/2− ε) black-box hardness amplification (Amp,D) where Amp maps functions
f : {0, 1}k → {0, 1} into functions Amp(f) : {0, 1}n → {0, 1} (think n = kO(1)). Recall
that D is a class of oracle circuits and that for any circuit D ∈ D and input x ∈ {0, 1}k,
Definition 1.5 defines a function Dx : {0, 1}q → {0, 1} which D(x) applies on the answers to
the q non-adaptive oracle queries in order to get its final output. An informal statement of
the Zoom Theorem follows (see Theorem 4.2 for a precise statement).

Informal Theorem 2.1 (Zoom Theorem). Let (Amp,D) be as above. There exists a circuit
D ∈ D, an input x ∈ {0, 1}k and a function T : {0, 1}q → {0, 1} of roughly the same
complexity as Dx that satisfies:

1. Pr[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 0.49, where (N1

1/2, . . . , N
q
1/2) is a vector of q independent

bits with probability of being 1 equal to 1/2 (i.e., the vector is uniform in {0, 1}q).

2. Pr[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ δ + o(1), where (N1

1/2−ε, . . . , N
q
1/2−ε) is a vector of q

independent bits with probability of being 1 equal to 1/2− ε.

We refer to the distributions (N1
1/2, . . . , N

q
1/2) and (N1

1/2−ε, . . . , N
q
1/2−ε) above as “uniform

noise” and “bounded noise,” respectively. Loosely speaking, the theorem says that T (which
has the same complexity as circuits in D) distinguishes between uniform noise and bounded
noise. We now explain how are two main results follow from the Zoom Theorem.

Deducing the Necessity of Majority. We would like to argue that T can be used to
compute majority on inputs of length ` := 1/ε. For simplicity, we explain how to use T to
accomplish a slightly easier task, namely distinguish between inputs with Hamming weight
`/2 from inputs with Hamming weight `/2 − 1. (While this task is easier than majority,
in the formal proof we show that majority can be reduced to solving a collection of related
promise problems where in each problem one should distinguish inputs of Hamming weight
`/2 from inputs of Hamming weight `/2 − v for some fixed 1 ≤ v ≤ `/2). Given an input
z ∈ {0, 1}` we generate a string w ∈ {0, 1}q where wi is obtained by picking a random index
j ∈ [`] and setting wi = zj. In words, each bit in w is a bit taken from an independent
random position in z. Note that if z has Hamming weight `/2 then w is distributed like
uniform noise, whereas if z has Hamming weight `/2− 1 then w is distributed like bounded
noise. It follows that we can use T to distinguish between the two cases and recall that T has
roughly the same complexity as circuits in D. (We remark that this key idea was suggested
by Madhu Sudan).

Deducing Query Lower Bound. Note that by a Chernoff bound, q = O(log(1/δ)/ε2)
samples suffice for distinguishing uniform noise from bounded noise (ruling according to
whether at least a 1/2 − ε/2 fraction of samples are 1). Our query lower bound given in
Theorem 1.4 follows from the fact that Ω(log(1/δ)/ε2) samples are also necessary.
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2.1 Proving the Zoom Theorem when D contains a single circuit

The proof of the Zoom Theorem is the main technical contribution of this paper. What makes
this problem challenging is that the class D can be very large (e.g. |D| = exp(poly(k))). We
explain how we handle such large D later on. As a warm-up, we outline the argument in the
case that D contains only one circuit D. This argument also applies to the case where D is
relatively small. We consider a probability space with four independent random variables:

• A uniformly chosen function F : {0, 1}k → {0, 1}. We think of F as the original hard
function.

• An input X ∈ {0, 1}k that is uniformly distributed. We think of X as a random input
to F .

• A uniformly chosen function UN : {0, 1}n → {0, 1}. We refer to UN as “uniform noise
function.”

• A function BN : {0, 1}n → {0, 1} where for every y ∈ {0, 1}n, BN(y) is an independent
bit with probability of being 1 equal to 1/2 − ε. We refer to BN as “bounded noise
function.”

We first consider the setting in which D is run with oracle Amp(F ) ⊕ UN . (This is
an oracle that on input y ∈ {0, 1}n returns Amp(F )(y) ⊕ UN(y)). Note that the uniform
noise function UN “masks out” the values of Amp(F ) and therefore the circuit D receives
no information about F . Thus, D cannot possibly compute a function that is correlated
with F :

Pr
[
DAmp(F )⊕UN(X) 6= F (X)

]
= Pr

[
DUN(X) 6= F (X)

]
≥ 0.49. (1)

Naturally, we could have replaced the bound 0.49 above by the stronger bound 0.5. However,
we state the weaker bound as this is what we will be able to guarantee later on when we
modify the argument.

We also consider the setting in which D is run with oracle Amp(F ) ⊕ BN . Since BN
corresponds to bounded noise at rate 1/2− ε, we have that this oracle agrees with Amp(F )
on a (1/2 + ε) fraction of inputs (on average) and therefore, by the definition of black-box
hardness amplification:

Pr
[
DAmp(F )⊕BN(X) 6= F (X)

]
≤ δ. (2)

Intuitively, the inequalities (1), (2) are going to translate into the two items of the Zoom
Theorem. We now explain this part of the argument. Let us examine the computation of
D on an input x ∈ {0, 1}k with the two different oracles: In both cases D prepares the
same q queries y1, . . . , yq ∈ {0, 1}n to the oracle and receives answers a1, . . . , aq from the
oracle. It then outputs Dx(a1, . . . , aq). The high level idea is that when run on random
X ∈ {0, 1}k, DX distinguishes between the two oracles and therefore distinguishes between
uniform noise and bounded noise. More precisely, by an averaging argument we can fix the
random variables F and X and obtain a fixed function T that inherits the complexity of DX

and distinguishes between bounded noise and uniform noise.
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Preparing ahead we stress that we crucially used the fact that for fixed x, D applies
the same function Dx on any collection a1, . . . , aq of answers given by the oracle. This is
because the final function T gets q “noise bits” as input and simulates an oracle that answers
according to these noise bits when D is run on some fixed x. We cannot allow the function
Dx to depend on a1, . . . , aq.

2.2 Extending the argument to the case when D is large

We would like to imitate the proof above when the class D contains many circuits. For
concreteness let us assume that D contains 2k

2
circuits. In this general case the definition of

black-box hardness amplification only says that for any choice of f, h where h agrees with
Amp(f) on a (1/2 + ε) fraction of inputs there exists a circuit D ∈ D such that Dh agrees
with f on a 1− δ fraction of inputs. Note that the circuit D is a function of both f and h,
and let us denote this function by circuit(f, h).

We would like to imitate the previous argument. With some care we can reproduce
equation (1) exploiting the fact that circuit(F,Amp(F ) ⊕ UN) gives only k2 bits of infor-
mation on the 2k bit long truth table F . However, when we use oracle Amp(F ) ⊕ BN
and try to prove equation (2), we do not know which circuit D ∈ D is the “correct cir-
cuit”, i.e. circuit(F,Amp(F ) ⊕ BN). More formally, on a fixed input x and fixed queries
y1, . . . , yq the function Dx that we need to apply is a determined by the random variable
circuit(F,Amp(F )⊕BN) and the choice of this circuit depends on the noise that is used to
generate the oracle answers a1, . . . , aq.

Going back to the case of a single circuit. To avoid the aforementioned problem we
start by fixing the random variable circuit(F,Amp(F )⊕BN) to its most likely value. That
is, let D be the most likely value of circuit(F,Amp(F )⊕BN) and condition on the event

E = E(F,BN) := {circuit(F,Amp(F )⊕BN) = D} .

Note that the probability of E is at least 1/|D| = 2−k
2

(which is small but not too small).
What we have gained is that circuit(F,Amp(F )⊕BN) is fixed to D conditioned on E. Let
F ′, BN ′ denote the distribution of F,BN when conditioned on the event E. Note that this
conditioning can skew the distribution of F ′, BN ′ and that these variables are no longer
distributed like the original variables F,BN . In addition F ′, BN ′ may become correlated.
Nevertheless, for simplicity let us now assume the unjustified assumption that F ′ and BN ′

are independent. (In the actual argument, we bypass this problem by fixing F to some fixed
function f before conditioning on the event E).

We would like to imitate the argument of the previous section in this new probability
space where F,BN are replaced with F ′, BN ′. Indeed, we are back to dealing with one
fixed circuit D. However, the previous argument critically relies on the fact that for any
y1, . . . , yq ∈ {0, 1}n, the random variable (BN(y1), . . . , BN(yq)) is distributed like bounded
noise. This may not hold for BN ′.
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An information-theoretic lemma. In order to handle this problem, we use the following
Lemma (stated informally; See Section 3 for a precise statement).

Informal Lemma 2.2. Let V1, . . . , Vt be uniform, independent, and identically distributed
random variables. Let E be an event whose probability is “not too small.” Then for any
integer q there exists a set G ⊆ [t] that is ”very large” (say of size t − o(t)) such that
for every i1, . . . , iq ∈ G, the distribution (Vi1 , . . . , Viq) “does not change significantly” when
conditioned on E.

This lemma can be viewed as a generalization of a Lemma by Raz (in which q = 1) that
is used in his parallel repetition theorem [Raz98]. It also follows from the results in [EIRS01,
Section 4]. We remark that in Section 3 we only state the lemma for the case where the
each random variable Vi is uniformly distributed, however the more general case follows as
one can always imagine that each Vi is chosen by sampling a variable Ui that is uniformly
distributed over some domain and generating Vi by applying a fixed function f on Ui).

We apply the lemma on the random variables {BN(y)}y∈{0,1}n . We conclude that there
exists a large set G ⊆ {0, 1}n such that for any y1, . . . , yq ∈ G the variable

(BN ′(y1), . . . , BN ′(yq))

is statistically close to
(BN(y1), . . . , BN(yq)).

This lemma intuitively helps us recover the previous argument in the new probability space:
We consider the operation of DAmp(F ′)⊕BN ′ on an input x ∈ {0, 1}k. If the queries y1, . . . , yq ∈
{0, 1}n that D makes are all in the “good set” G, then the rest of the proof essentially goes
through. This is because on these q queries the distribution of the bounded noise function
is statistically close to its initial distribution (that is bounded noise) and we can continue
with the previous argument.

While the set of bad queries is very small (of size polynomial in k out of the exponential
number of queries) it may be the case that on every input x ∈ {0, 1}k , D makes some bad
query y′ 6∈ G. We have no control on the distribution BN ′(y′) when y′ 6∈ G. Furthermore,
BN ′(y′) may be correlated with BN ′(y) for good queries y.

Handling bad queries. In order to address this issue, we fix the value of BN ′ on the heavy
queries, defined as those queries which D asks for at least t := 2k/2 inputs x. (This fixing
is actually done before conditioning on the event E = {circuit(F,Amp(F )⊕BN) = D}.)
Note we have only fixed q · t = q ·2k/2 � 2k bits of information, so the function F , which has
2k random bits, is still hard to reconstruct from uniform noise. Now use Informal Lemma
2.2 with parameters so that G omits much less than t queries. Then the probability, over
random input x, that D makes a bad query is small. This lets us carry through the previous
argument for most inputs x, which is sufficient for the proof.

We point out that in our non-adaptive setting the set of heavy queries is fixed once the
circuit D is fixed. This is not true in the adaptive setting where the set of heavy queries may
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further depend on F,UN , and BN . This appears to be the main complication that prevents
the analysis from extending to the adaptive setting.

Finally, we remark that our proof technique, which combines fixing queries with the
information-theoretic lemma, has later found applications in data structure lower bounds
[Vio09a] (see also [Vio09b, PV10]).

2.3 Organization of the paper

In Section 3 we state and prove the information-theoretic lemma (Informal Lemma 2.2). In
Section 4 we state and prove the Zoom Theorem which is the main technical theorem of
this paper. In Section 5 we show how our result on necessity of majority follows from the
Zoom Theorem. In Section 6 we show how our lower bound on the number of queries follows
from the Zoom Theorem. In Section 7 we explain the significance of our results to various
circuit classes. In Section 8 we explain that our results can be viewed as lower bounds on
the complexity of decoding locally (list-)decodable codes. Finally, Section 9 discusses some
open problems.

3 The information-theoretic lemma

In this section we prove the following lemma which, loosely speaking, says that if one con-
ditions uniformly distributed random variables V1, . . . , Vt on an event that happens with
noticeable probability, then even following the conditioning most groups of q variables are
close to being jointly uniformly distributed. We need the following definition.

Definition 3.1. We say that two random variables V,W over the same set S are ε-close if
for every event E ⊆ S, |Pr[V ∈ E]− Pr[W ∈ E]| ≤ ε.

Given a random variable V over a set S and an event E we use (V |E) to denote the
probability distribution of V conditioned to E, that is for any event A ⊆ E, Pr(V |E)[A] =
Pr[V ∈ A|V ∈ E].

We are now ready to state the Lemma.

Lemma 3.2. Let V = (V1, . . . , Vt) be a collection of independent random variables where
each one of them is uniformly distributed over a set S. Let A ⊆ St be an event such that
Pr[V ∈ A] ≥ 2−a. Then for any η > 0 and integer q there exists a set G ⊆ [t] such that
|G| ≥ t− 16 · q · a/η2 and for any distinct i1, . . . , iq ∈ G the distribution (Vi1 , . . . , Viq |V ∈ A)
is η-close to uniform.

Lemma 3.2 can be viewed as a generalization of a Lemma by Raz [Raz98, Section 3] that
implies Lemma 3.2 for the special case of q = 1. We mention again that we have recently
found out that Lemma 3.2 follows easily from results in [EIRS01, Section 4].

We now discuss the proof of Lemma 3.2. The proof relies on the notion of entropy H(X)
of a random variable X, defined as H(X) :=

∑
x Pr[X = x] · log(1/Pr[X = x]), and the
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related notion of conditional entropy H(X|Y ) of a random variable X conditioned to another
random variable Y , defined as H(X|Y ) := Ey∈YH(X|Y = y) (cf. [CT06, Chapter 2]). We
list next a few standard properties of entropy that we will use in the proof.

Fact 3.3. Entropy satisfies the following.

1. Chain rule: For any random variables X1, . . . , Xn we have

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1, . . . , X1)

[CT06, Theorem 2.5.1].

2. Conditioning reduces entropy: For any random variables X, Y, Z we have H(X|Y ) ≥
H(X|Y, Z).

3. High entropy implies near-uniformity: Let V be a random variable taking values in a
set S and suppose that H(V ) ≥ log |S| − α; then V is 4

√
α-close to uniform [CK82,

Chapter 3; Exercise 17].

We now prove Lemma 3.2

Proof of Lemma 3.2. Let n := log |S| and let V ′ := (V ′1 , . . . , V
′
t ) := (V1, . . . , Vt|V1, . . . , Vt ∈

A). Note that V ′ is uniformly distributed over A and therefore H(V ′) = log |A| = log(2n·t ·
Pr[V ∈ A]) ≥ n · t− a. By the chain rule (Item (1) in Fact 3.3) for entropy we have that:

n · t− a ≤ H(V ′) = H(V ′1 , . . . , V
′
t ) =

∑
1≤i≤t

H(V ′i |V ′1 , . . . , V ′i−1). (3)

Let
`i = H(V ′i |V ′1 , . . . , V ′i−1).

By (3) we have that 1
t
·
∑

1≤i≤t `i ≥ n− a/t. Let b := η2 · t/(16q · a). By a Markov argument
at most t/b of the indices i are such that `i < n− b · a/t. Let

G := {i : `i ≥ n− b · a/t} .

We have that |G| ≥ t− t/b = t− 16q · a/η2. Let i1 < i2 < . . . < iq be arbitrary indices in G.
By the chain rule for entropy:

H(V ′i1 , . . . , V
′
iq) =

∑
1≤j≤q

H(V ′ij |V
′
i1
, . . . , V ′ij−1

).

We now use the fact that “conditioning reduces entropy,” i.e. Item (2) in Fact 3.3, and
deduce that:

H(V ′i1 , . . . , V
′
iq) ≥

∑
1≤j≤q

H(V ′ij |V
′

1 , . . . , V
′
ij−1) =

∑
1≤j≤q

`ij ≥ q · n− q · b · a
t

.
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We have that (V ′i1 , . . . , V
′
iq) is a random variable taking values in a set of size 2q·n and that

its entropy is at least q · n− q·b·a
t

. By Item (3) in Fact 3.3 it then follows that (V ′i1 , . . . , V
′
iq)

is 4
√

q·b·a
t

-close to uniform. To conclude, note that 4
√

q·b·a
t

= η.

4 Statement and proof of the Zoom Theorem 4.2

Both our result about the necessity of majority (Theorem 1.6) and our lower bound on the
number of queries (Theorem 1.4) rely on the following Zoom Theorem which is our main
technical contribution. This theorem shows that given a non-adaptive q-query black-box
δ → (1/2 − ε) hardness amplification (Amp,D) we can “zoom in” on a particular function
Dx : {0, 1}q → {0, 1}, where D ∈ D, x ∈ {0, 1}k (cf. Definition 1.5 for the definition of
Dx) that is distinguishing noise rate 1/2 from noise rate 1/2− ε. The distinguisher will not
quite be a function Dx but rather (a distribution on) projections of such functions, which are
simply functions that can be obtained from Dx by fixing some input variables to constants
and complementing others. We give the formal definition of a projection and then we state
the zoom theorem.

Definition 4.1. Let d = d(y1, . . . , yq) : {0, 1}q → {0, 1} be a function. A projection of
d is a function d′ : {0, 1}q → {0, 1} that can be obtained from d by fixing some input
variables to constants and complementing others, and possibly complementing the output.
Formally, there are a1, . . . , aq, b1, . . . , bq, c ∈ {0, 1} such that for any y1, . . . , yq ∈ {0, 1},
d′(y1, . . . , yq) = d((y1 · a1)⊕ b1, . . . , (yq · aq)⊕ bq)⊕ c.

Theorem 4.2 (Zoom theorem). There is a universal constant C > 1 such that the following
holds. Let (Amp,D) be a non-adaptive q-query δ → (1/2− ε) hardness amplification scheme.
Suppose that q, log |D| ≤ 2k/C , and n, k ≥ C2.

Then there is a distribution T on functions t : {0, 1}q → {0, 1} such that

1. PrT,N1
1/2

,...,Nq
1/2

[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 1/2− 2−k/C, where (N1

1/2, . . . , N
q
1/2) is a vector

of q independent bits with probability of being 1 equal to 1/2 (i.e., the vector is uniform
in {0, 1}q),

2. PrT,N1
1/2−ε,...,N

q
1/2−ε

[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ δ+2−k/C , where (N1

1/2−ε, . . . , N
q
1/2−ε) is

a vector of q independent bits with probability of being 1 equal to 1/2− ε, and

3. each t ∈ T is a projection of a function Dx for some D ∈ D and x ∈ {0, 1}k. I.e.,
every t ∈ T can be obtained from Dx for some D ∈ D, x ∈ {0, 1}k by fixing some
input variables to constants and complementing others, and possibly complementing
the output.

4.1 Proof

Let a := log |D| and C > 1 be a constant to be determined later. Recall that we are only
interested in the case that q, a ≤ 2k/C , and n, k ≥ C2. We will assume that this holds
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throughout the proof. In various places in the proof we will want certain inequalities to hold
and will observe that each one of them holds for a sufficiently large constant C > 1. In the
end, we will choose C to be sufficiently large so that all the conditions throughout the proof
hold simultaneously.

Let F be the uniform distribution on functions f : {0, 1}k → {0, 1}. We now would like
a distribution on “noise functions” that perturbs each bit with probability 1/2− ε. For the
later application of Lemma 3.2, which deals with random variables uniformly distributed, it
is convenient to adopt the following approach to define our noise function. Let M be the
uniform distribution on functions mapping {0, 1}n to [ε−1]; let Θ : [ε−1] → {0, 1} be the
function such that Θ(y) = 1 if and only if y ≤ ε−1/2− 1.3 We think of our noise function as
Θ ◦M : {0, 1}n → {0, 1}, which indeed satisfies PrM [(Θ ◦M)(y) = 1] = (ε−1/2 − 1)/ε−1 =
1/2−ε for every y ∈ {0, 1}n. For readability, we simply write ΘM for Θ◦M and also ΘM(y)
for Θ(M(y)).

We think of the circuits as trying to compute F from the oracle Amp(F )⊕ ΘM , whose
value at y is Amp(F )(y) ⊕ ΘM(y). We also think of ΘM as corrupting at most a 1/2 − ε
fraction of the values of Amp(F ), namely those for which ΘM(y) = 1, but for this we have
to deal with the technicality that our Definition 1.2 of black-box hardness amplification puts
1/2− ε as a sharp threshold for the noise, whereas with some probability ΘM will map more
than a 1/2 − ε fraction of the inputs to 1. However, a loose bound, which is sufficient for
our purposes, shows that ΘM will indeed map at most a 1/2− ε fraction of the inputs to 1
with probability at least 1/2n.4

By assumption and the above, we have that

Pr
F,M

[
∃D ∈ D : Pr

x∈{0,1}k
[DAmp(F )⊕ΘM(x) 6= F (x)] ≤ δ

]
≥ 2−n. (4)

It is convenient for the rest of the proof to introduce the following notation for the error
made by a circuit D ∈ D on computing a function f : {0, 1}k → {0, 1} from an oracle
g : {0, 1}n → {0, 1}:

∆D (f, g) := Pr
x∈{0,1}k

[Dg(x) 6= f(x)].

This lets us rewrite Equation (4) as

Pr
F,M

[∃D ∈ D : ∆D (F,Amp(F )⊕ΘM) ≤ δ] ≥ 2−n. (5)

From Equation (5) we see that there must exist a fixed circuit D ∈ D such that

Pr
F,M

[∆D (F,Amp(F )⊕ΘM) ≤ δ] ≥ 2−a · 2−n ≥ 2−2·a, (6)

3If ε−1/2 is not an integer we can replace [ε−1] with [A] for a sufficiently large integer A and carry through
a similar argument: Our argument is not affected by the magnitude of A.

4Specifically, the probability that ΘM maps exactly a 1/2 − ε fraction of its inputs to 1 is at least
1/
√

8 · 2n · (1/2− ε) · (1/2 + ε) (see, e.g., [CT06, Lemma 17.5.1]), which is at least 1/2n for sufficiently large
n ≥ C. (Again, we assume without loss of generality that (1/2 − ε) · 2n is an integer.) This argument will
let us derive a conclusion which involves noise rate 1/2− ε, as opposed to 1/2−O(ε) which can be obtained
by modifying the definition of Θ and using a Chernoff Bound instead of the above bound.
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where the last inequality holds for a := log |D| ≥ n, which we can assume without loss of
generality.

For the rest of the proof we fix D ∈ D to the particular circuit given by the above
Equation (6). Since D is non-adaptive, the queries y ∈ {0, 1}n made by D depend only on
the input x. Again, note here we crucially use the non-adaptivity of D. Let us now call a
query y ∈ {0, 1}n heavy if a τ :=

√
2−k fraction of the x’s query y. That is, we make the

following definition.

Definition 4.3. We say that y ∈ {0, 1}n is heavy if

Pr
x∈{0,1}k

[Dg(x) queries g(y)] ≥ τ :=
√

2−k.

Claim 4.4. There are at most h := q/τ heavy queries y ∈ {0, 1}n.

Proof.

q ≥ Ex∈{0,1}k [number of queries made by D(x)] ≥ (number of heavy y ∈ {0, 1}n) · τ.

Let r1, . . . , rh ∈ {0, 1}n be the heavy queries, and let us call light the other queries.
Conditioning on the values m1, . . . ,mh ∈ [ε−1] of M on the heavy queries r1, . . . , rh ∈ {0, 1}n,
we can write Equation (6) as follows

Em1,...,mh∈[ε−1]

[
Pr
F,M

[
∆D (F,Amp(F )⊕ΘM) ≤ δ

∣∣∣M(r1) = m1, . . . ,M(rh) = mh

]]
≥ 2−2·a.

(7)
Therefore, by an averaging argument, we see that there exists a fixing

M(r1) = m1, . . . ,M(rh) = mh

of the values of M on the heavy queries such that, if we denote by M̄ the distribution

M̄ := M
∣∣∣M(r1) = m1, . . . ,M(rh) = mh,

it still holds that
Pr
F,M̄

[
∆D

(
F,Amp(F )⊕ΘM̄

)
≤ δ
]
≥ 2−2·a. (8)

Now we would like to fix a particular choice for the function F = f that simultaneously
accomplishes two things. First, D should still sufficiently often compute f well over random
M̄ (as in Equation (8)), and second D should not compute f well when given access to only
the values of Amp(f) on the h heavy y’s in {0, 1}n. The next claim gives such an f . To
formalize our second point, namely the inability of D to compute f well when given access
only to the values of Amp(f) on the heavy y’s, let us make the following definition.
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Definition 4.5. We denote by N̄1/2 : {0, 1}n → {0, 1} a uniformly distributed random
function consistent with our fixing of the noise on the heavy queries r1, . . . , rh, i.e. N̄1/2(ri) :=
ΘM̄(ri) = Θ(mi) ∈ {0, 1} for every i ≤ h.

Note that N̄1/2(y) is defined to be a random bit if y is light, thereby hiding the value of
Amp(f)⊕ N̄1/2 on y.

Claim 4.6. There exists f : {0, 1}k → {0, 1} such that both the following claims are true:

1. PrM̄
[
∆D

(
f,Amp(f)⊕ΘM̄

)
≤ δ
]
≥ 2−2·a/2, and

2. EN̄1/2

[
∆D

(
f,Amp(f)⊕ N̄1/2

)]
≥ 1/2− 2−k/C.

The proof of Claim 4.6 is a relatively standard counting argument that is deferred to the
end of this section.

We now refine our probability space as follows. First, we fix F = f as given by Claim
4.6. Second, we condition M̄ on the event that D is successful, namely

M ′ := M̄
∣∣∆D

(
f,Amp(f)⊕ΘM̄

)
≤ δ.

From now on we look more locally to the action of D, and specifically we consider the
output of D on input x as the function Dx : {0, 1}q → {0, 1} that maps the output of the
q queries to the output bit (cf. Definition 1.5). It is convenient to introduce the following
shorthands. For x ∈ {0, 1}k we denote by Q(x) ∈ ({0, 1}n)q the vector (y1, . . . , yq) of the q
queries y1, . . . , yq ∈ {0, 1}n made by D on input x. For a function g : {0, 1}n → {0, 1} and
Q(x) = (y1, . . . , yq) ∈ ({0, 1}n)q we write g(Q(x)) ∈ {0, 1}q for the vector of the q evaluations
of g on the q vectors in Q(x). For example, Amp(f)(Q(x)) is the vector of the q evaluations
of Amp(f) on the queries made by D on input x.

Let us now proceed with our proof. We can express the success in computing f from
noise M ′ using the functions Dx and the above notation as follows (where we are just using
the above definition of M ′ and the fixing of f given by Claim 4.6):

Pr
M ′,x∈{0,1}k

[
Dx

(
Amp(f)(Q(x))⊕ΘM ′(Q(x))

)
6= f(x)

]
≤ δ. (9)

We now would like to assert that D also computes f well when Amp(f) is perturbed with
ΘM̄ , as opposed to ΘM ′ in Equation (9), where recall ΘM̄ is independent noise at rate
1/2 − ε on the light queries, and is fixed on the heavy queries. In other words, we want to
replace M ′ with M̄ in Equation (9). We argue this by showing that M ′ and M̄ look locally
the same. This is the step of the proof where we make use of the information-theoretic
Lemma 3.2. Specifically, let ` := 2n − h be the number of light y’s in {0, 1}n, and let
(z1, . . . , z`) be an enumeration of such y’s. Now consider the vector of ` random variables

(M̄(z1), . . . , M̄(z`)),
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(which is just a vector of uniform and independent random variables in [ε−1]). Now recall
that M ′ is defined as M̄ conditioned on the event A := “∆D

(
f,Amp(f)⊕ΘM̄

)
≤ δ,” and

that Pr[A] ≥ 2−2·a/2 by Item (1) in Claim 4.6. Therefore we can apply Lemma 3.2 with

η :=
2−k/C

2
(10)

to conclude that there is a set G ⊆ {0, 1}n of size

|G| ≥ `− 16q · (2a+ 1)/η2 (11)

such that for any i1, . . . , iq ∈ G, the vector

(M ′(i1), . . . ,M ′(iq)) is η-close to (M̄(i1), . . . , M̄(iq)), (12)

where the distance is in statistical difference.
Let us now call x good if D, on input x, only makes queries that are either heavy or in

G.

Definition 4.7. An input x ∈ {0, 1}k is good if all the q queries y1, . . . , yq ∈ {0, 1}n made
by D(x) are either heavy or in the set G.

Since M ′ and M̄ agree on the heavy queries by definition, we have by Equation (12) that
for every good x ∈ {0, 1}k D performs as well with noise ΘM ′ as with noise ΘM̄ . Specifically,
we have the following inequality:∣∣∣Pr

M ′
[Dx(Amp(f)(Q(x))⊕ΘM ′(Q(x))) 6= f(x)]−

Pr
M̄

[
Dx(Amp(f)(Q(x))⊕ΘM̄(Q(x))) 6= f(x)

]∣∣∣∣ ≤ η

(
recall η =

2−k/C

2

)
. (13)

We now observe that most x’s in {0, 1}k are good. We have

Pr
x

[x is not good] = Pr
x

[∃y ∈ {0, 1}n : D(x) queries y and y is both light and not in G]

≤ (`− |G|) max
y light

Pr
x

[D(x) queries y]

≤ 16 · q · (2 · a+ 1)

η2
· τ (By Equation (11) and the Definition 4.3 of heavy.)

≤ 16 · 2k/C · 3 · 2k/C

2−2·k/C/4
· 2−k/2

(By our assumption that a, q ≤ 2k/C , and Definitions (10) and (4.3).)

≤ 2−k/C

2
. (For sufficiently large C.) (14)

Note in the above calculation we make crucial use of the fact that the size of G is independent
from our choice of the threshold τ in the definition of heavy queries.
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Using the above bound on the probability that x is good we now have

Pr
M̄,x

[
Dx(Amp(f)(Q(x))⊕ΘM̄(Q(x))) 6= f(x)

]
≤ Pr

M̄,x

[
Dx(Amp(f)(Q(x))⊕ΘM̄(Q(x))) 6= f(x)

∧
x is good

]
+ Pr

x
[x is not good]

≤ Pr
M ′,x

[
Dx(Amp(f)(Q(x))⊕ΘM ′(Q(x))) 6= f(x)

∧
x is good

]
+

2−k/C

2
+

2−k/C

2

(By Equations (13) and (14).)

≤ Pr
M ′,x

[Dx(Amp(f)(Q(x))⊕ΘM ′(Q(x))) 6= f(x)] + 2−k/C

≤ δ + 2−k/C (By Equation (9).) (15)

The desired distribution T : {0, 1}q → {0, 1} on functions in the conclusion of the
theorem is defined as follows. On input z ∈ {0, 1}q, pick a random x ∈ {0, 1}k, and let
Q(x) = (y1, . . . , yq) ∈ ({0, 1}n)q be the vector of the q queries made by D(x). Output
T (z) := 1 if and only if Dx(Amp(f)(Q(x)) ⊕ z̄) 6= f(x) where z̄ is defined as follows: the
i-th bit z̄i equals zi if yi is light, and otherwise is set to ΘM̄(yi). To conclude the proof, we
verify the properties of T claimed in the statement of the theorem:

1. By Item (2) in Claim 4.6, PrT,N1
1/2

,...,Nq
1/2

[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 1/2− 2−k/C ;

2. by Equation (15), PrT,N1
1/2−ε,...,N

q
1/2−ε

[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ δ + 2−k/C ;

3. by definition of T , each t ∈ T is a projection of a function Dx for some x, or its
complement.

This concludes the proof of the theorem except for the proof of Claim 4.6, which is given
next.

Proof of Claim 4.6. From Equation (8) and a Markov argument we obtain

Pr
F

[
Pr
M̄

[
∆D

(
F,Amp(F )⊕ΘM̄

)
≤ δ
]
≥ 2−2·a/2

]
≥ 2−2·a/2. (16)

Thus, a random F satisfies Item (1) of the claim with probability at least 2−2·a/2. To
conclude the proof, we show by a counting argument that a random F satisfies Item (2)
of the claim with probability bigger than 1 − 2−2·a/2. This guarantees the existence of a
function f that satisfies both items.

We now proceed with the counting argument. For this, let

β :=
2−k/C

2

and define B to be the set of functions g : {0, 1}k → {0, 1} such that the probability over
N̄1/2 that D differs from g on less than a 1/2 − β fraction of the inputs is at least β. We
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intuitively think of B as the set of functions for which, given random noise, unreasonably
often D computes g well on average. Formally:

B :=

{
g : Pr

N̄1/2

[
∆D

(
g,Amp(g)⊕ N̄1/2

)
≤ 1/2− β

]
≥ β

}
.

Note that if f 6∈ B then f satisfies Item (2) by Markov inequality:

EN̄1/2

[
∆D

(
f,Amp(f)⊕ N̄1/2

)]
≥ (1/2− β) · Pr

[
∆D

(
f,Amp(f)⊕ N̄1/2

)
≥ 1/2− β

]
≥ (1/2− β)(1− β) = (1/2− 2−k/C/2)(1− 2−k/C/2) ≥ 1/2− 2−k/C .

Thus, for our goal is enough to show that a random f ∈ F falls in B with low probability
at most 2−2·a/2. This bound is slightly complicated by the fact that D is getting some
information about g, namely its values on the heavy queries. However, since there are only
few heavy queries, we can tolerate this information as the following standard argument
shows. Consider a uniform random function V : {0, 1}n → {0, 1}. Note that for every g we
have that (Amp(g)⊕ V )(y) is distributed like N̄1/2(y) if y is light, whereas if y is heavy we
have that, with probability 1/2 over V (y), V (y) = (Amp(g)⊕ N̄1/2)(y). Therefore:

B ⊆ B′ :=
{
g : Pr

V
[∆D (g, V ) ≤ 1/2− β] ≥ β/2h

}
.

We now bound the size of B′. Averaging over all g’s in B′ we see that we can fix a value
v = V so that a β/2h fraction of the g’s in B′ will fall in the set

B′′ := {g : ∆D (g, v) ≤ 1/2− β}

(here we are using that V is independent of g). By a standard Chernoff Bound (see, e.g.
[DP09, Theorem 1.1]), the probability that a random function F : {0, 1}k → {0, 1} falls in B′′

is at most 2−β
2·2k . This is just the probability that, tossing 2k coins, one gets “heads” more

than 2k(1/2 + β) times, where in our case “heads” means “F (x) = Dv(x).” Consequently,
we can bound

Pr
F

[F ∈ B] ≤ Pr
F

[F ∈ B′] ≤ 2h/β · Pr
F

[F ∈ B′′] ≤ 2h/β · 2−β22k .

To conclude, we need to verify that

2h/β · 2−β22k ≤ 2−2·a/2 ⇔ 2 · a+ 1 + h+ log(1/β) ≤ β22k.

Indeed, recalling our assumptions on the parameters q, a ≤ 2k/C , the definition of τ := 2k/2,
the bound on h ≤ q/τ ≤ 2k(1/2+1/C) from Claim 4.1, and the definition of β := 2−k/C

2
, we can

bound

2 · a+ 1 + h+ log(1/β) ≤ 2 · 2k/C + 1 + 2k(1/2+1/C) + 1 + k/C ≤ 4 · 2k(1−2/C) = β2 · 2k,

for sufficiently large C (recall k ≥ C2). This proves the claim.
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5 Proof of Theorem 1.6 from the Zoom Theorem 4.2

In this section we prove Theorem 1.6. We restate the theorem for the reader’s convenience.

Theorem 1.6 (Decoding requires majority). There is a universal constant C > 1 such that
the following holds. Let (Amp,D) be a q-query non-adaptive (1/2− γ) → (1/2− ε) black-
box hardness amplification. Suppose that q, log |D|, 1/γ ≤ 2k/C , and n, k ≥ C2, and that
γ ≥ 1/ log(1/ε).

Then there is a circuit of depth C and size (q/ε)C with oracle access to (at most (q/ε)C

of) the functions {Dx : {0, 1}q → {0, 1}}D∈D,x∈{0,1}k that computes majority on inputs of
length 1/ε.

We present the proof as a series of claims that are based on the zoom theorem and lead
to the conclusion of Theorem 1.6. The outline of the sequence of claims is as follows.

1. First, in Claim 5.2 we exhibit, for every Hamming weight w, a distribution on (small
constant-depth) circuits that distinguishes balanced strings from strings of Hamming
weight w.

2. Then, in Claim 5.3 using standard amplification techniques coupled with Ajtai’s small
constant-depth circuits for approximate majority [Ajt83], we obtain, for every Ham-
ming weight w, a deterministic circuit that distinguishes balanced inputs from inputs
of weight w.

3. Applying the previous item for every w, we construct in Claim 5.5 a deterministic
circuit that distinguishes balanced inputs from inputs of any Hamming weight less
than 1/2.

4. Finally, in Claim 5.6 we use the circuits from the previous item to compute majority.

We now proceed with the formal proof. Throughout, we speak of circuits with “oracle
access to {Dx}x,D.” What we mean by this is that such a circuit can have oracle gates for
the functions Dx : {0, 1}q → {0, 1} for any x ∈ {0, 1}k, D ∈ D, where of course the number
of such oracle gates is limited by the size of the circuit.

Claim 5.2. There is a universal constant c such that for every integer Hamming weight
w < ε−1/2, there is a distribution Sw on functions s : {0, 1}1/ε → {0, 1} such that

1. Each s ∈ Sw, s : {0, 1}1/ε → {0, 1} is computable by a circuit of depth c and size (q/ε)c

with oracle access to {Dx}x,D, and

2. Sw tells balanced strings from strings of Hamming weight w: There are α, β ∈ [0, 1] such
that |α−β| ≥ γ/2 and for every y ∈ {0, 1}1/ε of Hamming weight ε−1/2, Prs∈Sw [s(y) =
1] = α, whereas for every z ∈ {0, 1}1/ε of Hamming weight w, Prs∈Sw [s(z) = 1] = β.
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Proof. Note that a δ → (1/2−ε) black-box hardness amplification is trivially also a δ → (w·ε)
black-box hardness amplification whenever w · ε ≤ 1/2− ε. Therefore, we are in the position
to apply the Zoom Theorem 4.2. By the zoom theorem, we can find a distribution Tw on
projections of the functions {Dx}x,D such that∣∣∣Pr[Tw(N1

1/2, . . . , N
q
1/2) = 1]− Pr[Tw(N1

w·ε, . . . , N
q
w·ε) = 1]

∣∣∣ ≥ γ − 2 · 2−k/CZ ≥ γ/2, (?)

where (N1
1/2, . . . , N

q
1/2) is a vector of q independent bits with probability of being 1 equal to

1/2 and (N1
w·ε, . . . , N

q
w·ε) is a vector of q independent bits with probability of being 1 equal to

w · ε. Above, CZ denotes the constant in the statement of the Zoom Theorem, and the last
inequality holds by our assumption that γ ≥ 2−k/C and for a choice of C that is sufficiently
larger than CZ .

Now consider the following distribution Sw on functions mapping y ∈ {0, 1}1/ε to {0, 1}.
Let Y 1, . . . , Y q be independent random variables each of which is uniformly distributed over
the set of names of input variables {y1, . . . , y1/ε}. Then, Sw is defined as

Sw := Tw(Y 1, . . . , Y q).

In other words, Sw(y) selects q random bits from the input y and applies Tw to them. Item
(2) in the claim follows by (?). This is because for every input y of Hamming weight ε−1/2
the distribution of the evaluations of (Y 1, . . . , Y q) equals the distribution (N1

1/2, . . . , N
q
1/2),

and a similar argument applies to the case of an input z of weight w · ε.
Item (1) follows from the definition of Sw and the fact that Tw is a distribution on pro-

jections of Dx (possibly negated) where we use the straightforward fact that any projection
of Dx is easily implementable by a small constant-depth circuit with oracle access to Dx.

Claim 5.3. There is a universal constant c such that for every Hamming weight w < ε−1/2,
there is a deterministic circuit Cw of depth c and size (q/ε)c, with oracle access to {Dx}x,D
such that Cw tells balanced strings from strings of Hamming weight w: For every y ∈ {0, 1}1/ε

of Hamming weight ε−1/2, Cw(y) = 1, whereas for every y ∈ {0, 1}1/ε of Hamming weight
w, Cw(y) = 0.

The proof of the above claim follows by amplifying the success probability of the circuits
Sw given by the previous claim. This amplification is accomplished by the standard method
of taking several independent samples of Sw and then computing a majority of their outputs.
At first glance, taking a majority may seem problematic, since the whole point of this proof is
to turn the decoder into a circuit for majority. The key observation is that the success prob-
abilities of Sw (on balanced and unbalanced inputs) are sufficiently bounded away that we
can use the construction by Ajtai of small constant-depth circuits for approximate majority
[Ajt83] (see [ABO84, Ajt93, Vio09c] for alternative proofs of Ajtai’s original construction.)
It is the approximation in Ajtai’s circuits that forces upon us the assumption that γ is large
compared to ε, i.e. that γ ≥ 1/ log(1/ε).
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Lemma 5.4 (Constant-depth circuits for approximate majority; [Ajt83]). There is a con-
stant c such that for every m, a ≤ m there is a circuit A of depth c and size mc satisfying
the following:

For every input x ∈ {0, 1}m of Hamming weight at least a + a/(100 · logm), A(x) = 1,
while

For every input x ∈ {0, 1}m of Hamming weight at most a− a/(100 · logm), A(x) = 0.

Proof of Claim 5.3. Let Sw, α, and β be as in the previous claim. Namely, α := Prs∈Sw [s(y) =
1] and β := Prs∈Sw [s(z) = 1], where y and z are any two strings with Hamming weights
ε−1/2/2 and w respectively. Also from the previous claim, we know that |α− β| ≥ γ/2, and
let us suppose that α < β without loss of generality.

Consider taking m independent copies of Sw, denoted by S1
w, . . . , S

m
w . By a Chernoff

bound (see, e.g. [DP09, Theorem 1.1]) for m = poly (γ−1 · ε−1) we have that for every y of
weight ε−1/2 the probability that

∑
i S

i
w(y) ≥ m(α + γ/8) is less than 2−1/ε, and similarly

for every z of weight w the probability that
∑

i S
i
w(y) ≤ m(β − γ/8) is less than 2−1/ε.

Therefore, by a union bound, we can fix a choice of s1
w = S1

w, . . . , s
m
w = Smw such that for

every y of weight ε−1/2 we have
∑

i s
i
w(y) ≤ m(α+ γ/8), whereas for every z of weight w we

have
∑

i s
i
w(y) ≥ m(β − γ/8).

Definition of the circuit Cw: Let A be the circuit from Lemma 5.4 with input length m,
and a := m(α + β)/2. The circuit Cw runs A on the outputs of the sw’s. Specifically,

Cw := A(s1
w, . . . , s

m
w ).

The bounds on the size and depth of the circuit Cw follow easily from those for the sw’s
(in the previous claim) and for A (in Lemma 5.4).

Correctness of Cw: By Lemma 5.4, A distinguishes strings of weight at least a+ a/(100 ·
logm) from those of weight at most a − a/(100 · logm). In particular, since a ≤ m, A
distinguishes strings of weight at least a + m/(100 · logm) from those of weight at most
a−m/(100 · logm). Now recall that γ ≥ 1/ log(1/ε) (cf. the statement of Theorem 1.6) and
that m ≥ 1/ε. Thus, γ ≥ 1/ log(m). Consequently, A distinguishes strings of weight at least
a + m · γ/100 from those of weight at most a − m · γ/100. To conclude, we only have to
verify that the precision given by Ajtai’s circuit is fine enough for the parameters given by
the above Chernoff bound. Specifically, we need to verify that

a+m · γ/100 ≤ m · (β − γ/8) and a− a · γ/100 ≥ m · (α + γ/8).

We now verify the first inequality above; the verification of the second is similar. Recalling
that a := m(α + β)/2 and that |α− β| = γ/2, we can verify the first inequality as follows

a+m · γ/100 ≤ m · (β − γ/8)⇔ α + β

2
+ γ/100 ≤ β − γ/8⇔ γ/100 ≤ γ/4− γ/8,

which is true.
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Claim 5.5. There is a universal constant c and a circuit C∗ : {0, 1}1/ε → {0, 1} of depth
c and size (q/ε)c, with oracle access to {Dx}x,D, that distinguishes balanced strings from
strings of relative weight less than 1/2: For every y ∈ {0, 1}1/ε of Hamming weight ε−1/2,
C∗(y) = 1, whereas for every y ∈ {0, 1}1/ε of Hamming weight w < ε−1/2, C∗(y) = 0.

Proof. For every weight w less than ε−1/2, run in parallel the circuit Cw from the previous
claim. Take the AND of these circuits. In other words,

C∗ := AND(C1, C2, . . . , Cε−1/2−1).

The bounds on the depth and size of C∗ are straightforward, so let us proceed with the
analysis of correctness. If y is balanced then all the circuits C1, . . . , Cε−1/2−1 evaluate to 1
and hence their AND C∗ also evaluates to 1. If y has weight w < ε−1/2 then Cw(y) = 0, and
hence C∗(y) = 0.

Claim 5.6. There is a universal constant c and a circuit C : {0, 1}1/ε → {0, 1} of depth c
and size (q/ε)c, with oracle access to {Dx}x,D, that computes majority on 1/ε bits.

Proof. Given an input y ∈ {0, 1}1/ε we compute associated inputs y1, . . . , y1/ε, where yi is
obtained from y by setting the first i bits to 0. Thus, y0 = y and y1/ε = 01/ε. We then run
copies of the circuit C∗ from Claim 5.5 in parallel on each of the yi’s and we output their
OR. Namely,

C(y) := OR
(
C∗(y

0), C∗(y
1), . . . , C∗(y

1/ε)
)
.

Again, the bounds on the depth and size of C are straightforward, so let us proceed with
the analysis of correctness. If y has weight less than ε−1/2 then all the inputs y0, . . . , y1/ε

also have weight less than ε−1/2; thus the circuits C∗(y
0), C∗(y

1), . . . , C∗(y
1/ε) all output 0

and so does C(y).
Conversely, if y has weight at least ε−1/2, then for some i the input yi has weight exactly

ε−1/2, and thus C(y) = C∗(y
i) = 1.

Why this proof cannot be easily simplified. One may wonder whether the proof in
this section can be simplified. In particular, one may wonder whether it is really necessary to
argue separately for each Hamming weight w, by invoking Claim 5.2 several times. A natural
attempt to simplification would be to try to fix a particular Hamming weight w, then directly
use circuits that distinguish balanced inputs from inputs of weight w to compute majority.
In fact this cannot be done: The ability to distinguish two Hamming weights is not enough to
compute majority. As a simple example of this phenomenon, observe that the parity function
distinguishes inputs of Hamming weight w from inputs of Hamming weight w + 2 · a + 1,
for every w, a, but it is known that small constant-depth circuits with parity gates cannot
compute majority. In conclusion, it is only the availability for every w of circuits that
distinguish balanced inputs from inputs of weight w that lets us compute majority.

Finally, we remark that in Theorem 1.6 the assumption γ ≥ log(1/ε) can be replaced by
γ ≥ logi(1/ε), where the depth of the circuit in the conclusion of the theorem depends on i.
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6 Proof of queries lower bound (Theorem 1.4)

In this section we prove our queries lower bound (Theorem 1.4). We restate the theorem for
the reader’s convenience.

Theorem 1.4 (Decoding requires many queries). There is a universal constant C > 1 such
that the following holds. Let (Amp,D) be a non-adaptive q-query δ → (1/2− ε) black-box
hardness amplification. Suppose that log |D| ≤ 2k/C , and n, k ≥ C2, and that both δ and ε
are between 2−k/C and 1/3.

Then

q ≥ 1

C
· log(1/δ)

ε2
.

The proof of the queries lower bound (Theorem 1.4) follows from the Zoom Theorem 4.2
and the next lemma.5

In this section we write N q
1/2−ε for a vector of q independent 0−1 random variables whose

probability of being 1 is 1/2− ε.

Lemma 6.2. Let T be a distribution on functions t : {0, 1}q → {0, 1} such that

1. PrT,Nq
1/2−ε

[
T (N q

1/2−ε) = 1
]
≤ p ≤ 0.4, and

2. PrT,Nq
1/2

[
T (N q

1/2) = 1
]
≥ 0.49.

Then q ≥ Ω(log(1/p)/ε2).

In the next section we prove Lemma 6.2, thus completing the proof of Theorem 1.4. We
remark that statements similar to Lemma 6.2 have appeared often in the literature, however
we are unaware of a simple self-contained proof. Our proof is inspired by an argument of
[CEG95] that shows a lower bound on the query complexity of “sampling procedures” [Gol97].
While it does not seem that one can reduce our setup to that of “sampling procedures” the
approach of [CEG95] can be applied in our setup and gives the lower bound.

6.1 Proof of Lemma 6.2

The family T that we are given distinguishes N q
1/2 from N q

1/2−ε in the sense that it answers

“one” with probability at most p ≤ 0.4 on N q
1/2−ε, whereas it answers “one” with probability

at least 0.49 on N q
1/2. We would like to replace 0.49 with a constant that is larger than 1/2

(say 0.99). This can be achieved by “amplification.” More specifically, we can increase q to
c · q (for some universal constant c > 1), take c independent copies of T that are run on c

5We note that the Zoom Theorem can only be applied when q ≤ 2k/C , whereas the hypothesis of Theorem
1.4 does not place any restriction on q. This is not a problem because by choosing the constant C in Theorem
1.4 sufficiently larger than the constant C in the Zoom Theorem one has that if q does not satisfy the
conclusion of Theorem 1.4 then one is indeed in the position to apply the Zoom Theorem.
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independent copies of the input (these copies are identically distributed and could come from
either N q

1/2−ε or N q
1/2), and combine the outputs appropriately. Performing this amplification

gives the following claim.

Claim 6.3. There is a universal constant c and a distribution T ′ on functions t : {0, 1}q′ →
{0, 1}, where q′ := c · q, such that

1. Pr
T ′,Nq′

1/2−ε

[
T ′(N q′

1/2−ε) = 1
]
≤ p/4, and

2. Pr
T ′,Nq′

1/2

[
T ′(N q′

1/2) = 1
]
≥ 0.99.

Proof. Let d be a large constant to be determined later, and set b := log1/0.4 d + 3. The
constant c in the statement of the claim is defined as c := b · d. We think of the input as c
blocks of q bits. The distribution on functions T ′ is defined as follows. We take c independent
copies of T , and we evaluate each on the corresponding input block. This results in an output
vector of length c. We divide up this vector into d blocks of b bits each. We take the AND in
each block of b bits, then we complement the result and we take the AND over the d blocks.
Finally, for consistency in the notation we complement the result again.

Analysis. We have

Pr
T ′,Nq′

1/2−ε

[
T ′(N q′

1/2−ε) = 0
]
≥
(
1− pb

)d ≥ 1− d · pb = 1− d · pb−3 · p3

≥ 1− d · (0.4)b−3 · p · (0.4)2 = 1− p · (0.16) ≥ 1− p/4,

where we used that p ≤ 0.4 and b := log1/0.4 d+ 3.

Also, for an integer K and d := (1/0.4)K (and hence b = K + 3), which we can set
without spoiling the above derivation, we have:

Pr
T ′,Nq′

1/2

[
T ′(N q′

1/2) = 0
]
≤
(
1− (0.49)b

)d
=

(
1− (0.49)K+3

)(1/0.4)K

< exp

(
−
(

0.49

0.4

)K
· (0.49)3

)
< 0.01,

for sufficiently large K.

Claim 6.4. There is a fixed function t : {0, 1}q′ → {0, 1} such that

1. Pr
Nq′

1/2−ε

[
t
(
N q′

1/2−ε

)
= 1
]
≤ p, and

2. Pr
Nq′

1/2

[
t
(
N q′

1/2

)
= 1
]
≥ 1/2 + 1/4.
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Proof. We show by Markov arguments that a random t ∈ T ′ satisfies both items in the
conclusion of the lemma with positive probability.

First, by a Markov argument, the first item in the conclusion of the previous claim implies
that

Pr
T ′

[
Pr

Nq′
1/2−ε

[
T ′(N q′

1/2−ε) = 1
]
≥ p

]
≤ 1/4.

Second, another Markov argument shows that the second item in the conclusion of the
previous claim implies that

Pr
T ′

[
Pr
Nq′

1/2

[
T ′(N q′

1/2) = 0
]
≥ 1/4

]
≤ 4/100.

By a union bound, since 1/4 + 4/100 < 1, there is a t that satisfies the conclusion of the
claim.

Claim 6.5. There is a set S ⊆ {0, 1}q′ of relative size 1/4 such that every string s ∈ S
satisfies: (1) t(s) = 1 and (2) the Hamming weight of s is at most q′/2.

Proof. From the previous claim we know that t evaluates to 1 on a 1/2 + 1/4 fraction of the
inputs in {0, 1}q′ . On the other hand, the strings with weight bigger than q′/2 have measure
exactly 1/2. Therefore such a set S exists.

We will conclude the proof by observing that N q′

1/2−ε falls in S with probability at least

exp (−O (ε2 · q′)), then recalling that on the other hand this probability must be at most p
by the first item in the conclusion of the previous claim. Details follow. First, note that

Pr
Nq′

1/2−ε

[
N q′

1/2−ε ∈ S
]

=
∑
s∈S

Pr
Nq′

1/2−ε

[
N q′

1/2−ε = s
]
≥ |S| · (1/2− ε)q′/2(1/2 + ε)q

′/2

= |S| · 2−q′(1− 2ε)q
′/2(1 + 2ε)q

′/2 = (1/4)(1− 4ε2)q
′/2 ≥ (1/4) · exp

(
−8 · ε2 · q′/2

)
. (?)

Above, we used that S has relative size 1/4, and that Pr
Nq′

1/2−ε

[
N q′

1/2−ε = s
]
≥ (1/2 −

ε)q
′/2(1/2 + ε)q

′/2 for every s ∈ S because strings in s have weight at most q′/2. Finally, the
last inequality holds whenever ε < 1/3.

The above (?) implies that Pr
Nq′

1/2−ε

[
t
(
N q′

1/2−ε

)
= 1
]
≥ (1/4) exp (−4 · ε2 · q′). On the

other hand, this probability must be at most p by the previous claim. Consequently,

(1/4) exp
(
−4 · ε2 · q′

)
≤ p.

Since q′ = c · q, this means that q = Ω (log(1/p)/ε2), concluding the proof of the lemma.

7 Case studies and significance of our results

In this section we give background on a few widely-studied circuit classes and we discuss
what our results have to say about them.
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Constant-depth circuits AC 0: The class of constant-depth circuits with And, Not, and
Or gates is one of the central classes studied in circuit complexity. Lower bounds are known
for this class, and even strong average-case lower bounds. In particular, the result in [H̊as87]
(cf. [FSS84, Yao85]) shows that the parity function on n bits is (1/2 − 1/s)-hard for AC 0

circuits of depth d and size s, where

s := exp
(
nΘ(1/d)

)
.

This result has a number of consequences, and in particular it was used to construct pseu-
dorandom generators that fool constant-depth circuits [Nis91].

One can ask for stronger lower bounds, for example for lower bounds for size

s′ := exp (Θ(n)) .

Such lower bounds are not known even for depth-3 circuits. It is natural to wonder whether
one can use hardness amplification techniques to relate average-case lower bounds for size
s′ to worst-case lower bounds for circuits of size s′. This kind of connection does hold for
circuits of unrestricted depth (e.g., [IW97, STV01]) but fails when we restrict the depth of
the circuit. For more on this issue we refer the reader to the excellent discussion by Agrawal
[Agr01].

Our results explain the above failure of hardness amplification techniques: Proving such
a connection using standard hardness amplification techniques would require the circuits to
compute majority, and in particular their depth to be large (see Theorems 1.6 and 1.3).

Constant-depth circuits with parity gates AC 0[2]: If we augment AC circuits with
parity gates we obtain the class of constant-depth circuits with And, Not, Or, and Parity
gates, denoted AC 0[2]. A long-standing open problem about this class is whether there is
an explicit function f : {0, 1}n → {0, 1} that is

(
1/2− 1/nω(1)

)
-hard for polynomial-size

constant-depth circuits with Parity gates,6 i.e. such that for any depth-d polynomial-size
AC 0[2] circuit C:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nω(1).

This problem is perhaps most puzzling because we do know of explicit functions that are
Ω(1)-hard for depth-d AC 0[2] circuits of size 2n

Ω(1/d)
. An example is the Mod 3 function,

i.e. counting the number of 1’s mod 3 in a given n-bit input (see [Raz87, Smo87] and the
survey by Beigel [Bei93, Corollary 22]). Even for this class, standard hardness amplification
techniques fail, and in particular we cannot amplify the hardness of the mod 3 function.

Our results again explain the above failure of hardness amplification techniques: Just like
before, proving such a connection using standard hardness amplification techniques would
require the circuits to compute majority, whereas AC 0[2] circuits cannot [Raz87, Smo87].

6For context, this problem is also open if C varies over GF(2) polynomials of degree 2 log(n). This is a
slightly different setting because these polynomials in general correspond to circuits of size nΩ(log n). On the
other hand, if the degree is ε log(n) then an explicit

(
1/2− 1/nω(1)

)
-hard function is known [BNS92, HG91,

Vio06b, VW08].
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Similar consideration hold for classes with mod p gates for any prime p (cf. [Smo87]); we
focus on p = 2 for simplicity.

Constant-depth circuits with one Majority gate MAJ ◦ AC 0: Another puzzling case
is that of constant-depth circuits with one majority gate (MAJ ◦ AC 0 circuits), a class which
in particular contains the widely studied perceptrons. It is known that the n-bits Parity
function is Ω(1)-hard for MAJ ◦ AC 0 circuits of depth d and size 2n

Ω(1/d)
[ABFR94] (see

also [Kli01, Theorem 6]). However, it is not known whether there is an explicit function

f : {0, 1}n → {0, 1} that is
(

1/2− 1/2n
Ω(1)
)

-hard for MAJ ◦ AC 0 circuits of size 2n
Ω(1)

, or

even
(
1/2− 1/nω(logn)

)
-hard for MAJ ◦ AC 0 circuits of size nω(logn) (think of a fixed large

depth). To the best of our knowledge, the strongest result in this direction is the one in
[Vio07] that in particular gives a function that is

(
1/2− 1/nε·logn

)
-hard for MAJ ◦ AC 0

circuits of size nε·logn.
Even though this class can compute majority, our query lower bound (Theorem 1.4)

explains why we cannot amplify hardness against MAJ ◦ AC 0 circuits. Specifically, it is
easy to see that if the circuits D in the black-box hardness amplification make q queries,
then to obtain a function that is (1/2 − ε)-hard for circuits with 1 majority gate we must
start from a function that is δ-hard for circuits with q majority gates. Since q ≥ 1/ε by our
Theorem 1.4, we obtain that when ε ≤ 1/n we must start from a function that is hard for
constant-depth circuits with n majority gates, i.e. TC 0. (Current lower bounding techniques
[Bei94] let us handle circuits with poly log majority gates, and this in turn lets us amplify
hardness up to 1/2− 1/poly log.)

A final remark about this class is in order. For the specific hardness amplification given
by Yao’s XOR lemma (cf. Section 1.1) one can prove the stronger result that this lemma
simply is false for MAJ ◦ AC 0 circuits (for context, we mention that whether this lemma
holds for other classes such as AC 0[2] and AC 0 is a major open problem). This failure
was pointed out to us by Adam Klivans (personal communication, 2002) and holds because
applying Yao’s XOR lemma to the parity function results again in the parity function, which
is provably not strongly average-case hard for MAJ ◦ AC 0 circuits. Our results apply more
generally to arbitrary hardness amplifications. Moreover, they also apply when the single
majority gate is replaced by a more powerful gate that can compute an arbitrary symmetric
function (including parity) cf. [HG91, RW93, HM04, Vio07].

Finally, we mention that an important motivation for obtaining strong average-case hard-
ness results for these classes is that such results can be used to construct pseudorandom
generators that fool the same classes, cf. [Nis91, LVW93, NW94, Vio07].

8 Relationship to error-correcting codes

As mentioned in Section 1.3, it has been observed (see e.g. [Tre01, STV01, TV07, Tre03])
that black-box hardness amplification is closely related to list-decodable error correcting
codes. In particular, our lower bounds on black-box hardness amplification can be seen as
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lower bounds on the “complexity of decoding” (list-decodable) locally-decodable codes. The
purpose of this section is to explain these connections at a high-level and we will not state
precise theorems.

We start with the following definition of list-decodable codes.

Definition 8.1 (List-decodable codes). A map Amp : {0, 1}K → {0, 1}N is a (ρ, `)-list
decodable code if for every h ∈ {0, 1}N , |

{
f ∈ {0, 1}K : ∆(Amp(f), h) ≤ ρ

}
| ≤ `. (Here ∆

is the relative Hamming distance.) A code is uniquely decodable with radius ρ if it is (ρ, 1)-list
decodable.

Let (Amp,D) be a (δ = 2−k) → (1/2 − ε) black box hardness amplification, then the
map Amp is a (1/2− ε, |D|)-list decodable code. (Here we think of Amp as a mapping that
receives and outputs truth tables. That is we set K = 2k and N = 2n.)

Our lower bounds immediately translate into lower bounds on the complexity of de-
coders of list-decodable locally decodable codes. Let us start with uniquely decodable locally
decodable codes.

Definition 8.2 (Locally decodable codes). A mapping Amp : {0, 1}K → {0, 1}N is a q-query
locally decodable code with radius ρ and error probability δ if Amp is a uniquely decodable
code with radius ρ and there exists a randomized oracle procedure D making at most q or-
acle queries such that for every f : {0, 1}k → {0, 1} and h : {0, 1}n → {0, 1} such that
∆(Amp(f), h) ≤ ρ and every x ∈ {0, 1}k,

Pr[Dh(x) 6= f(x)] < δ (17)

(where the probability is over the coin tosses of D).

Let us write D = D(x, r) where x is the input of D and r is the coin tosses of D. We define:

D = {D′(x) : ∃r s.t. D′(x) = D(x, r)} .

Note that |D| is bounded by the number of possible coin tosses of D. We now claim that
the pair (Amp,D) is a δ → ρ black box hardness amplification. This follows because by an
averaging argument for every h : {0, 1}n → {0, 1} such that ∆(Amp(f), h) ≤ ρ there exists
a fixed string r0 for which

Pr
x∈{0,1}k

[Dh(x, r0) 6= f(x)] < δ

Furthermore, the function D′(x) = D(x, r0) indeed appears in D.
Thus, our lower bounds on the complexity of black-box hardness amplification imme-

diately translate into lower bounds on the complexity of the decoding algorithm D. More
specifically, we show that D can be used to compute majority and that it needs to make
many queries.7

7It is important to note that black-box hardness amplifications become uninteresting when δ > 1/2 − ε
(and indeed our results only apply when δ < 1/2 − ε). In contrast, locally decodable codes are interesting
even when δ > ρ = 1/2− ε. However, in this case the transformation above is transforming the code into an
uninteresting black-box hardness amplification.
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We now explain that the same lower bounds apply to a very general notion of list-
decodable locally decodable codes. Note that the argument above would work if instead of
having one randomized oracle procedure we allowed the decoding procedure to be chosen
from a “list” of many randomized oracle procedures {Dα}, and only required that for any
f and h there exists procedure D in the list is guaranteed to fulfill equation (17). (We only
need to take the size of the list into account when measuring the size of D.) We remark that
the argument applies even when different procedures in the list are allowed to use different
query distributions. Finally, our lower bounds apply even if the notion of decoding is relaxed
and instead of equation (17) the “correct procedure” D is only guaranteed to decode in a
weak sense, namely:

Pr
x∈{0,1}k

[Pr[Dh(x) 6= f(x)] < δ/2] > 1− δ/2

This is because the argument above still gives that there exists a fixing r0 of the random
coins of D for which it decodes correctly on a (1− δ)-fraction of inputs x ∈ {0, 1}k.

9 Open problems

One weakness of our result is that we can only handle black-box hardness amplification which
use nonadaptive circuits. While to the best of our knowledge most known black-box hardness
amplification results use nonadaptive circuits, it is an interesting open problem to extend the
results in this work to the case of adaptive circuits. As we mentioned earlier, independently
of this work Gutfreund and Rothblum [GR08] show incomparable results that can handle
adaptive black-box hardness amplification in the special case when the amount of non-
uniformity is small (e.g., |D| = poly(1/ε)), generalizing earlier results in [Vio06a, Chapter
6]. We remark that many proofs of black-box hardness amplification results use a large
amount of non-uniformity (e.g., |D| � 2k which implies |D| = exp(1/ε) for ε ≥ 1/k ≥ 1/n).
An interesting open problem is to handle adaptive black-box hardness amplification in the
general case of large non-uniformity. This would be interesting even for the specific hardness
amplification given by Yao’s XOR lemma.

Another problem that deserves more investigation is whether something similar to our
results can be said about pseudorandom generator constructions. Using the techniques in
this paper (and some additional ideas) it can be shown that constructing (in a black-box
way) a generator with small error ε from, say, a (1/3)-hard function requires computing
majority on 1/ε bits. Is computing majority necessary for a black-box construction of a
generator with constant error from a (1/3)-hard function?
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[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Nondeterministic exponential
time has two-prover interactive protocols. Comput. Complexity, 1(1):3–40, 1991.
1, 3

34
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