
The coin problem for product tests ∗

Chin Ho Lee Emanuele Viola

May 15, 2017

Abstract

Let Xm,ε be the distribution over m bits (X1, . . . , Xm) where the Xi are independent
and each Xi equals 1 with probability (1 + ε)/2 and 0 with probability (1 − ε)/2.
We consider the smallest value ε∗ of ε such that the distributions Xm,ε and Xm,0

can be distinguished with constant advantage by a function f : {0, 1}m → S which
is the product of k functions f1, f2, . . . , fk on disjoint inputs of n bits, where each
fi : {0, 1}n → S and m = nk.

We prove that ε∗ = Θ(1/
√

n log k) if S = {0, 1} and if S = {−1, 1}, while ε∗ =
Θ(1/

√
nk) if S is the set of unit-norm complex numbers.

1 Introduction

Let Xm,ε be the distribution over m bits (X1, . . . , Xm), where the Xi are independent and
each Xi equals 1 with probability (1 + ε)/2 and 0 with probability (1 − ε)/2. The ε-coin
problem is the problem of distinguishing the distributions Xm,ε and Xm,0 (note that the latter
is the uniform distribution). A threshold function gives the best possible distinguishing
advantage; the coin problem is therefore most interesting in computational models that
cannot compute thresholds. The study of the coin problem goes back at least to the seminal
papers by Ajtai [Ajt83] and Valiant [Val84] about computing majority and approximate
majority by low-depth circuits. Since then, the coin problem has been extensively studied
and has found applications in a striking variety of contests, including barriers to circuit
lower bounds [SV10], pseudorandom generators [BV10], quantum computing [Aar10], and
multiparty computation [CDI+13].

Shaltiel and Viola [SV10] give an AC0 reduction from Majority to the coin problem,
thereby obtaining negative results for the coin problem for bounded-depth circuits with
various types of gates. Aaronson [Aar10] and Cohen, Ganor, and Raz [CGR14] improve the
parameters of the negative result for AC0.

Brody and Verbin [BV10], and Steinberger [Ste13] study the ε-coin problem for small-
width branching programs. A generalization of the problem is studied in [CGR14]. For
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constant width [BV10, Ste13] obtain tight bounds on ε. However, the case of larger widths
remains open and looks very difficult.

In this work we consider a special case of large-width branching programs which we call
product tests. A product test is a function f on nk bits which equals the product of k
functions f1, f2, . . . , fk on k disjoint inputs of n bits. We will consider fi with three different
ranges: {0, 1}, {−1, 1}, and unit-norm complex numbers. We will settle the coin problem
for each of these ranges.

The model of product tests has been extensively studied in pseudorandomness [AKS87,
Nis92, NZ96, INW94, EGL+98, ASWZ96, Lu02, Vio14, Wat13, GMR+12, GY14, GKM15,
HLV17], at least in part with the hope that it will be useful to understand general branching
programs. Thus it seems natural to study the coin problem for product tests.

First, we prove that if the fi have range {−1, 1} then a product test cannot solve the
ε-coin problem for ε = o(1/

√
n log k).

Theorem 1. Let f : {0, 1}nk → {−1, 1} be a product of k functions f1, . . . , fk : {0, 1}n →
{−1, 1}, each on disjoint input of n bits. Let α ∈ (0, 1/4] and ε = α/(32

√
n log(k/α)).

We have |E[f(Xnk,0)]− E[f(Xnk,ε)]| ≤ O(α log(1/α)).

This result applies as stated even if the fi have range {0, 1} instead of {−1, 1} thanks to
the following folklore fact.

Fact 2. Let X = (X1, X2, . . . , Xk) and Y = (Y1, Y2, . . . , Yk) be two distributions on ({0, 1}n)k.
Then

max
f1,f2,...,fk:{0,1}n→{0,1}

|E
X

[
∏
i≤k

fi(Xi)]− E
Y

[
∏
i≤k

fi(Yi)]|

≤ max
f1,f2,...,fk:{0,1}n→{−1,1}

|E
X

[
∏
i≤k

fi(Xi)]− E
Y

[
∏
i≤k

fi(Yi)]|.

Note all that’s changing is the range of the fi.

We then show that Theorem 1 is tight, even for range {0, 1}.

Theorem 3. For every k ∈ [n2, 2n], there exists an ε = O(1/
√
n log k), and a function

f : {0, 1}nk → {0, 1} that is a product of k functions f1, . . . , fk : {0, 1}n → {0, 1}, each on
disjoint input of n bits, such that Pr[f(Xnk,0) = 1]− Pr[f(Xnk,ε) = 1] ≥ 1/100.

To summarize, we have established that, for both S = {0, 1} and S = {−1, 1}, ε∗ =
Θ(1/

√
n log k) is the smallest value of ε such that the distributions Xm,ε and Xm,0 can be

distinguished with constant advantage by a function f : {0, 1}m → S which is the product of
k functions f1, f2, . . . , fk on disjoint inputs of n bits, where each fi : {0, 1}n → S and m = nk.
For comparison, recall that for arbitrary boolean functions on nk bits the corresponding value
is ε∗ = Θ(1/

√
nk) (that ε∗ = Ω(1/

√
nk) also follows from Claim 8 in this paper; and Claim 10

extends this to complex-valued functions).
Finally, we note that if the range is enlarged to the set C=1 := {z ∈ C : |z| = 1} of

complex numbers with unit norm, the picture changes completely and product tests are as
powerful as arbitrary functions.
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Claim 4. For every integer k and ε > 0, there exists f : {−1, 1}nk → C=1 which is a
product of k functions f1, . . . , fk : {0, 1}n → C=1, each on disjoint input of n bits, such that
|E[f(Xnk,0)]− E[f(Xnk,ε)]| ≥ 1.5− e−Ω(ε2nk).

After some preliminaries, we prove our statements in the same order in which they appear
in the introduction.

2 Preliminaries

We use the notation ±α in the RHS of an equality to indicate that the equality holds if we
replace ±α with z for some z such that |z| ≤ α. We use this notation multiple times, with
the meaning that each occurrence is replaced by a possibly different z.

Throughout the paper all logarithms are in base 2, and we will use the following bounds.

Claim 5 (Hoeffding’s inequality). Let X1, . . . , Xn ∈ [−1, 1] be n independent and identically
distributed variables with E[Xi] = µ for each i. We have

Pr[|
n∑
i=1

Xi − µn| ≥ t] ≤ 2e−t
2/2n.

Claim 6 (Maclaurin’s inequality (cf. [Ste04])). Let z1, . . . , zk be k non-negative numbers.
For any i ∈ {0, . . . , k}, we have

Si(z1, . . . , zk) :=
∑
S:|S|=i

∏
j∈S

zj ≤ (e/i)i(
k∑
j=1

zj)
i.

To get a sense of the inequality, note that if the zi’s equal to 1 then it becomes the
standard upper bound on the binomial coefficient

(
k
i

)
≤ (ek/i)i.

Next we formally define our main distributions.

Definition 7. Let Xn,ε = (X1, . . . , Xn) be the distribution over n bits, where the Xi’s are
independent and each Xi equals 1 with probability (1 + ε)/2 and 0 with probability (1− ε)/2.
Let Nn,ε denote the sum of the Xi’s.

Note that we have E[Nn,ε] = (1 + ε)n/2.

3 Proof of Theorem 1

We start with the following claim about a single function on n bits. Note that in particular
this claim implies the well-known fact that one function cannot solve the ε-coin problem for
ε = o(1/

√
n).

Claim 8. For every α ∈ [0, 1] and β ∈ (0, 1/2], let ε = α/(32
√
n log(1/β)). For any function

f : {0, 1}n → {0, 1}, we have Pr[f(Xn,ε) = 1] = Pr[f(Xn,0) = 1](1± α)± β.
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Proof. For a string x ∈ {0, 1}n, we use wt(x) to denote its Hamming weight. The high-level
idea is that if wt(x) is far from n/2, then by Hoeffding’s inequality we can bound above
the probability of both Xn,ε and Xn,0 hitting x by β. Otherwise, since the two probabilities
differ by a multiplicative factor of (1 + ε)wt(x)(1 − ε)n−wt(x), we can use the fact that wt(x)
is close to n/2 to show that this factor is within 1± α.

To proceed, let S := {x ∈ {0, 1}n : f(x) = 1}. Let T = 4
√
n log(1/β), S1 := {x ∈ S :

|wt(x)− n/2| ≤ T} and S2 := {x ∈ S : |wt(x)− n/2| > T}.
Since β ≤ 1/2, we have log(1/β) ≥ 1 and so

εn/2 = α
√
n/(64

√
log(1/β)) ≤

√
n/64 ≤ T/2.

By Hoeffding’s inequality,

Pr[Xn,ε ∈ S2] ≤ Pr[|Nn,ε − n/2| > T ]

≤ Pr[|Nn,ε − (1 + ε)n/2| > T − εn/2]

= Pr[|Nn,ε − E[Nn,ε]| > T − εn/2]

≤ Pr[|Nn,ε − E[Nn,ε]| > T/2]

≤ 2e−2 log(1/β) ≤ 2β2 ≤ β,

and the same bound holds for Pr[Xn,0 ∈ S2]. So the two probabilities differ by at most β in
absolute value.

Now we show that Pr[Xn,ε ∈ S1] = Pr[Xn,0 ∈ S1](1± α). We have

Pr[Xn,ε ∈ S1] =
∑
x∈S1

Pr[Xn,ε = x]

= 2−n
∑
x∈S1

(1 + ε)wt(x)(1− ε)n−wt(x)

= 2−n
∑
x∈S1

(1 + ε)n/2−(n/2−wt(x))(1− ε)n/2+(n/2−wt(x))

= 2−n
∑
x∈S1

(1− ε2)n/2
(

1 + ε

1− ε

)wt(x)−n/2

.

Recall that T = 4
√
n log(1/β) and ε = α/(32

√
n log(1/β)). Thus Tε = α/8. We first give

a lower bound on the sum. As ε2n ≤ α, we have (1− ε2)n/2 ≥ 1− nε2/2 ≥ 1− α/2. Also,(
1 + ε

1− ε

)wt(x)−n/2

≥
(

1− ε
1 + ε

)|wt(x)−n/2|

≥
(

1− ε
1 + ε

)T
=

(
1− 2ε

1 + ε

)T
≥ 1− 2Tε = 1− α/4.
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Therefore,

2−n
∑
x∈S1

(1− ε2)n/2
(

1 + ε

1− ε

)wt(x)−n/2

≥ 2−n
∑
x∈S1

(1− α/2)(1− α/4)

≥ 2−n
∑
x∈S1

(1− α)

= Pr[Xn,0 ∈ S1](1− α).

Now we bound above the sum. We have

(1− ε2)n/2
(

1 + ε

1− ε

)wt(x)−n/2

≤
(

1 + ε

1− ε

)T
=

(
1 +

2ε

1− ε

)T
≤ e

2Tε
1−ε ≤ e4Tε = eα/2 ≤ 1 + α,

where the last inequality follows from the inequality ex ≤ 1 + 2x for all x ∈ [0, 1]. Hence,

2−n
∑
x∈S1

(1− ε2)n/2
(

1 + ε

1− ε

)wt(x)−n/2

≤ 2−n
∑
x∈S1

(1 + α) = Pr[Xn,0 ∈ S1](1 + α).

Putting the lower and upper bounds together, we have

Pr[f(Xn,ε) = 1] = Pr[Xn,ε ∈ S1] + Pr[Xn,ε ∈ S2]

= (1± α) Pr[Xn,0 ∈ S1] + Pr[Xn,0 ∈ S2]± β
= (1± α)(Pr[Xn,0 ∈ S1] + Pr[Xn,0 ∈ S2])± β
= (1± α) Pr[f(Xn,0) = 1]± β

as claimed.

We will apply the following lemma to Claim 8.

Lemma 9. Let k ≥ 2 be an integer and α ∈ (0, 1/2] be a real number. For i ∈ {1, . . . , k},
let ai, a

′
i ∈ [0, 1] be any two real numbers such that a′i = ai(1± α)± α/k. We have∣∣∣∣∣∏

i≤k

(1− ai)−
∏
i≤k

(1− a′i)

∣∣∣∣∣ ≤ O(α log(1/α)).

Proof. We consider two cases depending on whether
∑

i≤k ai > 2 log(1/α).
If
∑

i≤k ai > 2 log(1/α), then as α ≤ 1/2, we have∏
i≤k

(1−a′i) ≤ e−
∑
i≤k a

′
i ≤ e−

∑
i≤k(ai(1−α)−α/k) ≤ e−2 log(1/α)(1−α)+α ≤ e− log(1/α)+α ≤ α ·eα ≤ 2α,

and the same bound holds for
∏

i≤k(1−ai). So |
∏

i≤k(1−ai)−
∏

i≤k(1−a′i)| ≤ O(α log(1/α)).
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If
∑

i≤k ai ≤ 2 log(1/α), then as ai = ai(1± α)± α/k, we have∏
i≤k

(1− a′i) =
∏
i≤k

(1− ai(1± α)± α/k)

=
∏
i≤k

(1− ai ± αai ± α/k)

=
∏
i≤k

(1− ai)±

 k∑
i=1

∑
S⊆{1,2,...,k}:|S|=i

∏
j∈S

(αaj + α/k)
∏
j 6∈S

(1− aj)


=
∏
i≤k

(1− ai)±

 k∑
i=1

αi
∑
S:|S|=i

∏
j∈S

(aj + 1/k)

 .

So |
∏

i≤k(1− a′i)−
∏

i≤k(1− ai)| ≤
∑k

i=1 α
iSi(z1, . . . , zk), where

Si(z1, . . . , zk) =
∑
S:|S|=i

∏
j∈S

zj, and zj := aj + 1/k.

Since each zj ≥ 0, by Claim 6 we have

Si(z1, . . . , zk) ≤ (e/i)i(
∑
j≤k

zj)
i ≤ (e/i)i(2 log(1/α) + 1)i = (2e log(

√
2/α)/i)i,

because
∑

j≤k aj ≤ 2 log(1/α). Applying the bound to each Si(a1, . . . , ak) we have∣∣∣∣∣∏
i≤k

(1− a′i)−
∏
i≤k

(1− ai)

∣∣∣∣∣ ≤
k∑
i=1

(
2eα log(

√
2/α)

i

)i

= O(α log(1/α)),

because 2eα log(
√

2/α) ≤ 1 for sufficiently small α.

As a warm-up for the proof of Theorem 1, let us first consider the case where the functions
fi have range {0, 1}.

Proof of the variant of Theorem 1 where the fi have range {0, 1}. Let qi and q′i denote Pr[fi(Xn,0) =
0] and Pr[fi(Xn,ε) = 0] respectively. Applying Claim 8 to 1 − fi with β = α/k ≤ 1/2, we
have q′i = qi(1± α)± α/k. Since

Pr[f(Xnk,0) = 1] = 1−
∏
i≤k

(1− qi) and Pr[f(Xnk,ε) = 1] = 1−
∏
i≤k

(1− q′i),

it suffices to bound above |
∏

i≤k(1− qi)−
∏

i≤k(1− q′i)| by O(α log(1/α)). This follows from
applying Lemma 9 to qi and q′i.

The proof for range {−1, 1} instead of {0, 1} needs to deal with more cases.
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Proof of Theorem 1. We look at the bias |E[fi(Xn,0)]| of each fi. There are two cases: if one
of them is small, then we argue that both |E[f(Xnk,0)]| and |E[f(Xnk,ε)]| are small and so is
|E[f(Xnk,0)]−E[f(Xnk,ε)]|. Otherwise, every fi has large bias, and so using Claim 8 we show
that both E[fi(Xn,0)] and E[fi(Xn,ε)] have the same sign. In this case we apply Claim 9 to
their absolute values.

To proceed, for each i ∈ {1, . . . , k}, define gi(x) := (1− fi(x))/2 ∈ {0, 1}. Let pi and p′i
denote Pr[gi(Xn,0) = 1] and Pr[gi(Xn,ε) = 1] respectively. Note that E[fi(Xn,ε)] = 1 − 2pi
and E[fi(Xn,0)] = 1 − 2p′i. Applying Claim 8 to gi with β = α/k ≤ 1/2, we have p′i =
pi(1± α)± α/k.

Suppose for some i ∈ {1, . . . , k}, |E[fi(Xn,0)]| ≤ 4α ≤ 1. Then by our definition of gi we
have pi = 1/2± 2α. Since p′i = pi(1± α)± α/k, we have

p′i ≤ (1/2 + 2α)(1 + α) + α/k

= 1/2 + 2α(1 + α) + α/2 + α/k

≤ 1/2 + 3α + α/2 + α/2,

= 1/2 + 4α,

and

p′i ≥ (1/2− 2α)(1− α)− α/k
= 1/2− 2α(1− α)− α/2− α/k
≥ 1/2− 2α− α/2− α/2
= 1/2− 3α.

Hence we have −3α ≤ E[fi(Xn,ε)] ≤ 4α. Therefore

|E[f(Xnk,0)]− E[f(Xnk,ε)]| ≤ |E[f(Xnk,0)]|+ |E[f(Xnk,ε)]|
≤ |E[fi(Xn,0)]|+ |E[fi(Xn,ε)]|
≤ 8α

= O(α log(1/α)).

Now we can assume that for all i ∈ {1, . . . , k}, |E[fi(Xn,0)]| > 4α. If E[fi(Xn,0)] > 4α then
pi < 1/2− 2α, and

p′i < (1/2− 2α)(1 + α) + α/k

= 1/2− 2α(1 + α) + α/2 + α/k

≤ 1/2− 2α + α/2 + α/2

≤ 1/2,

and hence E[fi(Xn,ε)] ≥ 0. Otherwise, E[fi(Xn,0)] < −4α and so pi > 1/2 + 2α, then we
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have

p′i > (1/2 + 2α)(1− α)− α/k
= 1/2 + 2α(1− α)− α/2− α/k
≥ 1/2 + α− α/2− α/2
= 1/2,

and so E[fi(Xn,ε)] ≤ 0. Hence, we can assume that for every i ∈ {1, . . . , k}, E[fi(Xn,0)] and
E[fi(Xn,ε)] have the same sign, which implies that E[f(Xnk,0)] and E[f(Xnk,ε)] also have the
same sign.

Therefore, it suffices to bound above ||E[f(Xnk,0)]| − |E[f(Xnk,ε)]||. Let qi := 1− pi and
q′i := 1−p′i. Applying Claim 8 to 1−gi with β = α/k ≤ 1/2, we also have q′i = qi(1±α)±α/k.

Observe that

|E[fi(Xn,0)]| = 1− 2 min{pi, qi} and |E[fi(Xn,ε)]| = 1− 2 min{p′i, q′i}.

Thus, if we define mi := 2 min{pi, qi} and m′i := 2 min{p′i, q′i}, then |E[fi(Xn,0)]| = 1 −mi

and so |E[f(Xnk,0)]| =
∏

i≤k|E[fi(Xn,0)]| =
∏

i≤k(1−mi). Similarly, we have |E[f(Xnk,ε)]| =∏
i≤k(1 − m′i). Note that mi,m

′
i ∈ [0, 1], and recall that p′i = pi(1 ± α) ± α/k and q′i =

qi(1 ± α) ± α/k, which together imply m′i = mi(1 ± α) ± 2α/k. Applying Lemma 9 to mi

and m′i, we have

|E[f(Xnk,0)]− E[f(Xnk,ε)]| = ||E[f(Xnk,0)]| − |E[f(Xnk,ε)]||

=

∣∣∣∣∣∏
i≤k

(1−mi)−
∏
i≤k

(1−m′i)

∣∣∣∣∣
= O(α log(1/α)),

proving the claim.

3.1 Other proofs

Proof of Fact 2. Replace fi(x) with the equal quantity Ezi∈{0,1}[(−1)(1+fi(x))zi ]. Then use
linearity of expectation and the triangle inequality to write

|E
X

[
∏
i≤k

fi(Xi)]− E
Y

[
∏
i≤k

fi(Yi)]|

=

∣∣∣∣∣ E
z1,z2,...,zk∈{0,1}

[
E
X

[
∏
i≤k

(−1)(1+fi(Xi))zi ]− E
Y

[
∏
i≤k

(−1)(1+fi(Yi))zi ]

]∣∣∣∣∣
≤ E

z1,z2,...,zk∈{0,1}
|E
X

[
∏
i≤k

(−1)(1+fi(Xi))zi ]− E
Y

[
∏
i≤k

(−1)(1+fi(Yi))zi ]|.

Hence, there is a fixed value of the zi for which the inequality still holds. For fixed zi, the
functions x 7→ (−1)(1+fi(x))zi have range {−1, 1}.
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Proof of Theorem 3. First, note that we can assume k ∈ [n2, 2αn] for any desired constant
α > 0, because if k is larger one can make the other functions identically 1 and the expression
for ε does not change.

Let u′ be the largest integer such that 2−n
(

n
n/2−u′

)
≥ 1/k. For each i ∈ {1, . . . , k}, define

fi : {0, 1}n → {0, 1} to be 1 if and only if
∑

j≤n xj 6= n/2− u′. We have

Pr[f(Xnk,0) = 1] =

(
1− 2−n

(
n

n/2− u′

))k
≤ (1− 1/k)k ≤ 1/e.

We will show that u′ = Θ(1/
√
n log k), and for ε := 1/u′, we have

Pr[f(Xn,ε) = 1] ≥ 1− c/k (1)

for a constant c ∈ [0, 0.45]. Assuming both, we have

Pr[f(Xnk,0) = 1]− Pr[f(Xnk,ε) = 1] ≥ (1− c/k)k − 1/e

≥ e−2c − 1/e

≥ e−0.9 − 1/e

≥ 1/100,

where the second inequality follows from the inequality 1−x ≥ e−2x for x ∈ [0, 1/2], proving
the claim.

It remains to show that u = Θ(1/
√
n log k) and that Inequality (1) holds. Let H(x) :=

−x log x− (1− x) log(1− x) be the binary entropy function. Using the approximations

2nH(t/n)

n+ 1
≤
(
n

t

)
≤ 2nH(t/n) and H(

1

2
− γ) = 1−Θ(γ2),

we have that for every integer u ≥ 0

2−Θ(u2/n)−log(n+1) ≤ 2−n
(

n

n/2− u

)
≤ 2−Θ(u2/n).

Since k ≥ n2, from the bounds above we have u′ =
√

(n log k)/c′ for some c′ > 0.
Now we show Inequality (1). First we establish that Pr[Nn,0 = n/2 − u′] ∈ [1/k, 2/k].

The lower bound holds by definition of u′, and the upper bound is proved next. We have

Pr[Nn,0 = n/2− u′] = 2−n
(

n

n/2− u′

)
= 2−n

(
n

n/2− u′ − 1

)(
n− (n/2− u′) + 1

n/2− u′

)
= Pr[Nn,0 = n/2− u′ − 1]

(
1 +

2u′ + 1

n/2− u′

)
.
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Since k ≤ 2αn, we have u′ =
√

(n log k)/c′ ≤
√
α/c′ ·n ≤ n/8 for a sufficiently small constant

α > 0. Hence,

1 +
2u′ + 1

n/2− u′
≤ 2.

Also, by the definition of u′, we have Pr[Nn,0 = n/2− u′ − 1] < 1/k. Therefore,

Pr[Nn,0 = n/2− u′] = Pr[Nn,0 = n/2− u′ − 1]

(
1 +

2u′ + 1

n/2− u′

)
≤ 2/k,

as desired.
Now, by the definition of fi,

Pr[fi(Xn,ε) = 0] = 2−n
(

n

n/2− u′

)
(1 + ε)n/2−u

′
(1− ε)n/2+u′

= Pr[Nn,0 = n/2− u′](1− ε2)n/2
(

1− ε
1 + ε

)u′
.

It follows from

(1− ε2)n/2
(

1− ε
1 + ε

)u′
≤
(

1− ε
1 + ε

)u′
=

(
1− 2ε

1 + ε

)u′
≤ e−

2εu′
1+ε = e−

2
1+ε ≤ e−1.5

that Pr[fi(Xn,ε) = 0] ≤ (2/k) · e−1.5 ≤ 0.446/k, showing Inequality (1).

We made no effort to optimize the constants in the above proof, but we point out that
by picking ε = c/u′ for a constant c > 1 we can improve the distinguishing advantage from
1/100 to a larger constant.

Proof of Claim 4. For ease of presentation, we will work with inputs over {−1, 1} instead of
{0, 1}, by translating each input bit x by 1− 2x. Hence, each Xi equals −1 with probability
(1 + ε)/2 and 1 with probability (1− ε)/2. We also use the random variable Nn,ε to denote
the sum of n independent Xi’s. Note that in this case we have E[Nn,ε] = −εn.

Let m := nk. The idea is to rotate along the complex unit circle with respect to the
number of −1’s in the input x, so that if the number of −1’s in x is close to m/2 we are
close to the point 1, whereas if it is close to (1 + ε)m/2, we are close to the point −1. Then
the claim follows from Hoeffding’s inequality.

Specifically, for each ` ∈ {1, . . . , k}, define f` : {0, 1}n → C=1 to be f`(x) := ei
π
εm

∑
j≤n xj .

Note that
f(x1, . . . , xk) =

∏
`≤k

f`(x`) = ei
π
εm

∑
j≤m xj .

Observe that when
∑

j≤m xj is close to 0 = E[Nm,0], f(x) is close to 1, whereas when
∑

j≤m xj
is close to −εm = E[Nm,ε], f(x) is close to −1. By Hoeffding’s inequality, we have for τ = 0
and τ = ε,

Pr[|Nm,τ − τm| > εm/2] ≤ 2e−Ω(ε2m).
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Conditioned on the events |Nm,τ−τm| ≤ εm/2 for both τ = 0 and τ = ε, we have f(Xm,τ ) =
eiπτ/ε · eiπθ for some θ ∈ [−0.5, 0.5]. Hence,

|f(Xm,0)− f(Xm,ε)| = |1 · eiπθ − (−1) · eiπθ′| = |eiπθ + eiπθ
′|

for some θ, θ′ ∈ [−0.5, 0.5], which is at least

min
θ,θ′∈[−0.5,0.5]

|eiπθ + eiπθ
′ | ≥ min

θ,θ′∈[−0.5,0.5]
<(eiπθ + eiπθ

′
) = 2 min

θ∈[−0.5,0.5]
cos θ ≥ 2 cos(0.5) ≥ 1.5,

where < denotes the real part and the last inequality follows from the inequality cos(α) ≥
1− α2. Therefore,

|E[f(Xm,0)]− E[f(Xm,ε)]| ≥ (1− 2e−Ω(ε2m)) · 1.5
= 1.5− e−Ω(ε2m)

as desired.

To provide a slightly more complete picture of the effect of changing range on the distin-
guishing advantage, we include the following claim which shows that, for a single function,
range C=1 and range {0, 1} are equivalent.

Claim 10. Let X and Y be two discrete random variables over the same support Z. We
have

max
f : Z→C=1

|E[f(X)]− E[f(Y )]| = 2 max
g : Z→{0,1}

|E[g(X)− E[g(Y )]|.

Proof. Let p and q be the probability mass functions of X and Y respectively. We will use
the well-known fact that

2 max
g : Z→{0,1}

|E[g(X)]− E[g(Y )]| =
∑
z∈Z

|p(z)− q(z)|

and work with the quantity on the R.H.S.
For any f : Z → C=1 we have

|E[f(X)]− E[f(Y )]| = |
∑
z∈Z

p(z)f(z)− q(z)f(z)|

= |
∑
z∈Z

(p(z)− q(z))f(z)|

≤
∑
z∈Z

|p(z)− q(z)||f(z)|

≤
∑
z∈Z

|p(z)− q(z)|.
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On the other hand, define f : Z → C=1 to be f(z) = 1 if p(z) ≥ q(z) and −1 otherwise.
We have ∑

z∈Z

|p(z)− q(z)| =
∑

z:p(z)≥q(z)

(p(z)− q(z)) +
∑

z:p(z)<q(z)

(q(z)− p(z))

=
∑
z∈Z

(p(z)− q(z))f(z)

= E[f(X)]− E[f(Y )].

The claim follows.
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