Bounded Independence Fools Halfspaces*

Ilias Diakonikolas ${ }^{\dagger}$
Columbia University

Rocco A. Servedio ${ }^{\|}$

Columbia University
Parikshit Gopalan ${ }^{\ddagger}$
MSR-Silicon Valley

Ragesh Jaiswal ${ }^{\S}$
Columbia University

Emanuele Violall
Northeastern University

May 27, 2010

Abstract

We show that any distribution on $\{-1,+1\}^{n}$ that is k-wise independent fools any halfspace (a.k.a. linear threshold function) $h:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$, i.e., any function of the form $h(x)=\operatorname{sign}\left(\sum_{i=1}^{n} w_{i} x_{i}-\theta\right)$ where the $w_{1}, \ldots, w_{n}, \theta$ are arbitrary real numbers, with error ϵ for $k=O\left(\epsilon^{-2} \log ^{2}(1 / \epsilon)\right)$. Our result is tight up to $\log (1 / \epsilon)$ factors. Using standard constructions of k-wise independent distributions, we obtain the first explicit pseudorandom generators $G:\{-1,+1\}^{s} \rightarrow\{-1,+1\}^{n}$ that fool halfspaces. Specifically, we fool halfspaces with error ϵ and seed length $s=k \cdot \log n=O\left(\log n \cdot \epsilon^{-2} \log ^{2}(1 / \epsilon)\right)$.

Our approach combines classical tools from real approximation theory with structural results on halfspaces by Servedio (Comput. Complexity 2007).

[^0]
1 Introduction

Halfspaces, or threshold functions, are a central class of Boolean functions $h:\{-1,+1\}^{n} \rightarrow$ $\{-1,+1\}$ of the form:

$$
h(x)=\operatorname{sign}\left(w_{1} x_{1}+\cdots+w_{n} x_{n}-\theta\right),
$$

where the weights w_{1}, \ldots, w_{n} and the threshold θ are arbitrary real numbers. These functions have been studied extensively in a variety of contexts. In computer science, the work on halfspaces dates back to the study of switching functions, see for instance the books [16, 31, 38, 58, 44]. In computational complexity, much effort has been put into understanding constant-depth circuits of halfspaces. On the one hand this has resulted in surprising inclusions (such as the simulation of depth- d circuits of halfspaces by depth- $(d+1)$ circuits of majority gates $[24,25])$, but on the other hand many seemingly basic questions remain unsolved: for instance it is conceivable that every function in NP is computable by a polynomial-size depth-2 circuit of halfspaces [28, 36, 37, 23]. In learning theory, the problem of learning an unknown halfspace has arguably been the most influential problem in the development of the field, with algorithms such as Perceptron, Weighted Majority, Boosting, and Support Vector Machines emerging from this study. Halfspaces (with non-negative weights) have also been studied extensively in game theory and social choice theory, where they are referred to as "weighted majority games" and have been analyzed as models for voting, see e.g., [52, 32, 21, 59].

In this work we make progress on a natural complexity-theoretic question about halfspaces. We construct the first explicit pseudorandom generators $G:\{-1,+1\}^{s} \rightarrow\{-1,+1\}^{n}$ with short seed length s that fool any halfspace $h:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$, i.e. satisfy

$$
\left|\mathbf{E}_{x \in\{-1,+1\}^{s}}[h(G(x))]-\mathbf{E}_{x \in\{-1,+1\}^{n}}[h(x)]\right| \leq \epsilon,
$$

for a small ϵ. We actually prove that the class of distributions known as k-wise independent distribution has this "fooling" property for a suitable k; as pointed out below, a generator can then be obtained using any of the standard explicit constructions of such distributions.

Definition 1.1. A distribution \mathcal{D} on $\{-1,+1\}^{n}$ is k-wise independent if the projection of \mathcal{D} on any k indices is uniformly distributed over $\{-1,+1\}^{k}$.

Theorem 1.2 (Main). Let \mathcal{D} be a k-wise independent distribution on $\{-1,+1\}^{n}$, and let h : $\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ be a halfspace. Then \mathcal{D} fools h with error ϵ, i.e.,

$$
\left|\mathbf{E}_{x \leftarrow \mathcal{D}}[h(x)]-\mathbf{E}_{x \leftarrow \mathcal{U}}[h(x)]\right| \leq \epsilon, \text { provided } k \geq \frac{C}{\epsilon^{2}} \log ^{2}\left(\frac{1}{\epsilon}\right),
$$

where C is an absolute constant and \mathcal{U} is the uniform distribution over $\{-1,+1\}^{n}$.
Our Theorem 1.2 is tight up to $\log (1 / \epsilon)$ factors, as can be seen by considering the halfspace

$$
h(x):=\operatorname{sign}\left(\sum_{i \leq k+1} x_{i}\right)
$$

and the k-wise independent distribution

$$
x:=\left(x_{1}, x_{2}, \ldots, x_{k}, \prod_{i \leq k} x_{i}, x_{k+2}, \ldots, x_{n}\right)
$$

where the variables x_{i} are independent and uniform in $\{-1,+1\}$. For k a multiple of 4 , the probability that $h(U)=1$ equals $1 / 2$ by symmetry, whereas the probability that $h(x)=1$ is $1 / 2+\Omega(1 / \sqrt{k})$.

Standard explicit constructions of k-wise independent distributions over $\{-1,+1\}^{n}$ have seed length $O(k \cdot \log n)[15,3]$, which is optimal up to constant factors [14]. Plugging these in Theorem 1.2, we obtain explicit pseudorandom generators $G:\{-1,+1\}^{s} \rightarrow\{-1,+1\}^{n}$ that fool any halfspace $h:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ with error ϵ and have seed length $s=O\left(\log n \cdot \epsilon^{-2} \log ^{2}\left(\epsilon^{-1}\right)\right)$.

Finally, we mention that Theorem 1.2 can be seen as a derandomization of the Berry-Esseen theorem: for convergence to the normal distribution, bounded independence suffices.

Discussion and comparison with previous explicit generators. The literature is rich with explicit generators for various classes, such as small constant-depth circuits with various gates [2, 49, $41,61,5,10]$, low-degree polynomials [46, 4, 9, 40, 60], and one-way small-space algorithms [47]. Many of these classes (such as low-degree polynomials and AC^{0} circuits) provably cannot implement halfspaces, and it is not known how to implement an arbitrary halfspace in any of these classes, so none of these results gives Theorem 1.2. However, some of these results [47, 41, 61] give generators for the restricted class of halfspaces given by $h(x)=\operatorname{sign}\left(\sum_{i=1}^{n} w_{i} x_{i}-\theta\right)$ where the weights are integers of magnitude at most poly (n). While it is well known that every halfspace has a representation with integer weights, it is not possible to represent an arbitrary halfspace with poly (n) integer weights. Indeed, an easy counting argument (see e.g. [42, 29]) shows that if the weights are required to be integers then almost all halfspaces require weights of magnitude $2^{\Omega(n)}$; in fact some halfspaces require weights of magnitude $2^{\Theta(n \log n)}$ [29]. Our result is for the entire class of halfspaces with no restriction on the weights, and much of the richness of halfspaces only comes in this setting; for example, the "odd-max-bit" function [6], the "universal halfspace" [24], and other important halfspaces [29] all require exponentially large integer weights. Moreover, even for the restricted class of halfspaces where the weights are integers of magnitude at most poly (n), previous techniques [47] give seed length $s=O\left(\log ^{2} n\right)$ at best, while we achieve $s=O(\log n)$ for constant error. Also note that, while halfspaces can be approximated by ones with small integer weights [57], this approximation is not immediately useful for generators as it only holds for the uniform distribution, not the pseudorandom one.
Other related results. Several recent papers have studied the power of k-wise independent distributions. An exciting recent result of Braverman [10], which builds on an earlier breakthrough of Bazzi [5] (simplified by Razborov [55]), shows that polylog (n)-wise independent distributions fool small constant-depth circuits, settling a conjecture of Linial and Nisan [39]. Benjamini et al. [7] showed that any $O\left(1 / \epsilon^{2}\right)$-wise independent distribution \mathcal{D} on $\{-1,+1\}^{n}$ satisfies $\left|\operatorname{Pr}_{x \leftarrow \mathcal{D}}\left[\sum_{i} x_{i} \geq 0\right]-1 / 2\right| \leq \epsilon$, i.e., such distributions fool the majority function. (We discuss [7] in more detail shortly; here we note that their result does not seem to lead directly to pseudorandom generators for general halfspaces.)

The problem of constructing generators for halfspaces has been considered by several authors in the recent literature. Rabani and Shpilka give an explicit construction of an ϵ-net, or ϵ-hitting set, for halfspaces [54]: a set of size poly $(n, 1 / \epsilon)$ which is guaranteed to contain at least one point where $h(x)=+1$ and at least one point where $h(x)=-1$ for any halfspace h which takes on both values with probability at least ϵ under the uniform distribution. However, their construction does not offer any guarantees about the distribution of these values. [54] pose as a research goal "to build methodically a theory of generators for geometric functions" such as halfspaces.

The problem of generators for halfspaces also arose in recent work by Gopalan and Radhakrishnan [27] on finding duplicates in a data stream. They required a generator that allows one to estimate the influence of a variable in a halfspace, a problem which is in fact equivalent to constructing a generator for a related halfspace. They observe that Nisan's space generator [47] suffices for the halfspaces arising in their context, and raise the problem of constructing generators for general halfspaces. Our result does not improve theirs, but it makes the analysis simpler by showing that one can use $\tilde{O}\left(\epsilon^{-2}\right)$-wise independence to estimate the influence to within an additive ϵ.

Recent Developments. Two natural questions are (1) to construct generators for halfspaces with a better dependence on ϵ in their seed length, ultimately achieving the information-theoretic optimum $s=O(\log (n / \epsilon))$, and (2) to understand the degree of independence required to fool degree- d polynomial threshold functions (PTFs). After our work, there has been progress on the above (and other related) questions by several researchers [45, 26, 12, 19, 18, 30] who improved and generalized our results in various directions. Meka and Zuckerman [45] constructed a generator for halfspaces with seed-length $O(\log (1 / \epsilon) \cdot \log n)$, and subsequently $[26,30]$ gave generators for intersections of halfspaces. In [45] the authors also constructed generators for degree- d PTFs with seed-length $2^{O(d)} \cdot \log n \cdot(1 / \epsilon)^{8 d+3}$. Diakonikolas, Kane, and Nelson [18] showed that poly $(1 / \epsilon)-$ wise independence ϵ-fools degree-2 PTFs and intersections of such functions. At the time of writing, the analogous statement for $d>2$ remains open. As implied by reductions in [19, 18, 45], to show that $k(d, \epsilon)$-wise independence ϵ-fools degree- d PTFs, it suffices to consider the subclass of degree- d PTFs $f=\operatorname{sign}(p)$ that are "regular" in the sense that no variable in p has a large fraction of the total influence in p.

1.1 Techniques

Our proof combines tools from real approximation theory with structural results regarding halfspaces. An important notion is that of an ϵ-regular halfspace, which is a halfspace $h(x)=$ $\operatorname{sign}\left(\sum_{i} w_{i} x_{i}-\theta\right)$ where no more than an ϵ-fraction of the 2 -norm of its coefficient vector $\left(w_{1}, \ldots, w_{n}\right)$ comes from any single coefficient w_{i}. We first show that k-wise independence fools all ϵ-regular halfspaces, and then use this to prove that k-wise independence fools all halfspaces. Our proof can be broken into three steps.

Step 1: Fooling regular halfspaces. Our starting point is Bazzi's observation [5, Theorem 4.2] (also in [7]), that to establish that every k-wise independent distribution on $\{-1,+1\}^{n}$ fools a Boolean function $f:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ with error ϵ, it is sufficient to exhibit two "sandwiching" polynomials $q_{\ell}, q_{u}:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ of degree at most k such that:

- $q_{u}(x) \geq f(x) \geq q_{\ell}(x)$ for all $x \in\{-1,+1\}^{n}$; and
- $\mathbf{E}_{\mathcal{U}}\left[q_{u}(x)-f(x)\right], \mathbf{E}_{\mathcal{U}}\left[f(x)-q_{\ell}(x)\right] \leq \epsilon$.

Using only classical tools from real approximation theory, we give a proof of the existence of univariate polynomials of degree $K(\epsilon):=\tilde{O}\left(1 / \epsilon^{2}\right)$ which, roughly speaking, provide a good sandwich approximator to the univariate function $\operatorname{sign}(t)$ under the normal distribution on \mathbf{R}. This is useful because of the following simple but crucial insight: for any regular halfspace $h(x)=$ $\operatorname{sign}(w \cdot x-\theta)$, the argument $w \cdot x-\theta$ is well-approximated by a normal random variable (a precise error-estimate is given by the Berry-Esséen theorem). For any ϵ-regular halfspace, we can plug $w \cdot x-\theta$ into our univariate polynomials, and obtain low-degree sandwich polynomials for h, establishing that $K(\epsilon)$-wise independence fools all ϵ-regular halfspaces. The construction of these polynomials is the most technical part of this paper.

Of course, there are halfspaces $\operatorname{sign}(w \cdot x-\theta)$ that are far from being ϵ-regular and have $w \cdot x-\theta$ distributed very unlike a Gaussian. To tackle general halfspaces, we use the notion of the ϵ-critical index of a halfspace, which was (implicitly) introduced in [57] and has since played a useful role in several recent results on halfspaces [50, 43, 20]. Briefly, assuming that the weights w_{1}, \ldots, w_{n} are sorted by absolute value, the ϵ-critical index is the first index ℓ so that the weight vector $\left(w_{\ell}, w_{\ell+1}, \ldots, w_{n}\right)$ is ϵ-regular. The previous Step 1 handled halfspaces that are regular, corresponding to $\ell=1$. We now proceed by analyzing two cases, based on whether or not $1<\ell<L(\epsilon)$, or $\ell \geq L(\epsilon)$, for $L(\epsilon):=\tilde{O}\left(1 / \epsilon^{2}\right)$. In both cases, it is convenient to think of the variables as partitioned into a "head" part consisting the first $L(\epsilon)$ variables and corresponding to the largest weights, and of a "tail" part consisting of the rest.

Step 2: Fooling halfspaces with small critical index $(\ell<L(\epsilon)$). We argue that for every setting of the head variables, the ϵ-regularity of the tail is sufficient to ensure that the overall halfspace gives the right bias. More precisely, assume that \mathcal{D} is $(K(\epsilon)+L(\epsilon))$-wise independent, and note that each setting of the ℓ head variables gives an ϵ-regular halfspace $\operatorname{sign}\left(w \cdot x-\theta^{\prime}\right)$ over the tail variables (with the constant θ^{\prime} depending on the values of the head variables). Since the marginal distribution on the tail variables is $K(\epsilon)$-wise independent for every setting of the head variables, the distribution \mathcal{D} fools all such halfspaces.

Step 3: Fooling halfspaces with large critical index $(\ell \geq L(\epsilon))$. In this case, we show that the setting of the head variables alone is very likely to determine the value of the halfspace by a large margin. More precisely, we show that a uniform random assignment to the head variables is very likely to yield a halfspace $\operatorname{sign}\left(w_{T} \cdot x_{T}-\theta^{\prime}\right)$ over the tail variables T where $\left|\theta^{\prime}\right|>\left\|w_{T}\right\|_{2} /(4 \epsilon)$. As long as the tail variables are pairwise independent, Chebyshev's inequality implies that the value $w_{T} \cdot x_{T}$ will be sharply concentrated within $\left[-\left\|w_{T}\right\|_{2} /(4 \epsilon),+\left\|w_{T}\right\|_{2} /(4 \epsilon)\right]$. So, for most settings of the head variables, we get something very close to a constant function over the tail variables. Since a $(L(\epsilon)+2)$-wise independent distribution gives uniform randomness for the head variables and pairwise independence for the tail variables, bounded independence fools these halfspaces as well.

The idea behind the proof of the large margin property is that up to the critical index ℓ - which in this case is large $(\ell \geq L(\epsilon))$ - the weights $\left(w_{1}, \ldots, w_{\ell-1}\right)$ must be decreasing fairly rapidly; this
implies strong anti-concentration for the distribution of θ^{\prime}, which yields large margin with good probability.

The amount of independence required for all three steps to work is $\max \{K(\epsilon), K(\epsilon)+L(\epsilon), L(\epsilon)+$ $2\}=\tilde{O}\left(1 / \epsilon^{2}\right)$.

Remark 1.3. We remark that the program of the proofs in most subsequent works mentioned above is very similar to ours - both for halfspaces and for degree- d PTFs. That is, it is first shown how to fool "regular" functions (i.e. functions such that all variables have "low" influence) and then the general case is reduced to the regular case.

Univariate approximations to the sign function. As mentioned above, our approach relies on the existence of low-degree univariate sandwich approximators to the sign function under the normal distribution on \mathbf{R}. Low-degree approximations to the sign function have been studied in both computer science and mathematics (see for instance [51, 22, 35] and the references therein). However it appears that these results do not fit all our requirements. Below we discuss how our approach relates to the work of Benjamini et al. [7] and Eremenko and Yuditskii [22].

Benjamini et al. prove that $O\left(1 / \epsilon^{2}\right)$-wise independence suffices to fool the majority function, using machinery from the theory of the classical moment problem. However, their proof seems to be tailored quite specifically to the majority function, where the moments can be understood in terms of Krawtchouk polynomials and known bounds on such polynomials can be applied, so it seems difficult to extend their approach to general halfspaces (or indeed even to slight variants of the majority function).

Bazzi's condition on the existence of sandwiching polynomials mentioned above is in fact both necessary and sufficient for all k-wise independent distributions to fool a function f. Thus the result of [7] implies the existence of $O\left(1 / \epsilon^{2}\right)$-degree multivariate sandwich polynomials for the majority function; symmetrization then implies that there exist univariate polynomials which, roughly speaking, provide good sandwich approximation to the function $\operatorname{sign}(t)$ under the binomial distribution. This is similar in spirit to the result we establish (mentioned in Step 1 above) about univariate polynomial approximators, but there is a crucial difference: since the binomial distribution is supported only on the integers $\{-n, \ldots, n\}$, it seems difficult to infer much about the behavior of the univariate polynomial on values outside of $\{-n, \ldots, n\}$. Hence, it is unclear whether these polynomials can be used for general (or even regular) halfspaces.

In contrast, we work with the best possible pointwise approximation to the function $\operatorname{sign}(t)$ on the (piecewise) continuous domain $[-1,-a] \cup[a, 1]$. This uniform error bound is convenient for dealing with regular halfspaces; moreover, working with the optimal pointwise approximator allows us to exploit various properties of optimal approximators that follow from the theory of Chebyshev approximation, in a way that is crucial for us to obtain the required "univariate sandwich approximators."

We note that a recent work in approximation theory [22] analyzes the error achieved by this optimal polynomial and in particular establishes the limiting behavior of the error, using tools from complex analysis. For our purposes, though, we require the error to converge to the limit fairly rapidly and it is unclear whether the results of [22] guarantee this. We present an error analysis
which is elementary (it only uses basic approximation theory) and moreover matches the limiting bounds of [22] up to a constant factor.

Finally, we briefly discuss some other work on polynomial approximations to halfspaces, a topic that has been studied extensively, motivated by applications to complexity theory and computational learning [48,51, 34, 33, 35]. Nisan and Szegedy showed that the n-variable OR function has a pointwise $\left(\ell_{\infty}\right)$ approximation of degree $O(\sqrt{n})$ [48], and Paturi showed that such approximations to Majority require degree $\Omega(n)$. A beautiful theorem by Peres shows that halfspaces have noise sensitivity $O(\sqrt{\epsilon})$ [53], improving on an $O\left(\epsilon^{1 / 4}\right)$ bound due to Benjamini et al. [8]. Klivans et al. used this to show that every halfspace has an ϵ-approximation in ℓ_{2} of degree $O\left(\epsilon^{-2}\right)$ [34]. We note that while low-degree ℓ_{2} approximations do imply the existence of low-degree ℓ_{1} approximations, Benjamini et al. [7] showed that they do not imply the existence of sandwich approximations: indeed, recursive Majorities of depth 2 have ℓ_{2} approximations of degree $O\left(\epsilon^{-4}\right)$ but require degree $\Omega(\sqrt{n})$ for sandwich approximations. Thus this paper's results do not follow from the $O\left(\epsilon^{-2}\right)$-degree ℓ_{2} approximators of [34].

Organization. In Section 2 we record some useful probabilistic facts. In Sections 3 and 4 we show how to fool regular halfspaces. First, we discuss how a certain univariate polynomial approximator to $\operatorname{sign}(t)$ yields low-degree sandwich polynomials for regular halfspaces, then in Section 3.1 we construct the required univariate polynomial, and finally in Section 4 we put everything together to fool regular halfspaces. We show how to fool non-regular halfspaces in Section 5.

2 Probability Background

We require a few basic facts from probability theory: the Berry-Esseen theorem (a version of the Central Limit Theorem with explicit error bounds) and the standard tail bounds of Hoeffding and Chebyshev. We discuss them next.

Theorem 2.1. (Berry-Esséen) Let X_{1}, \ldots, X_{n} be a sequence of independent random variables satisfying $\mathbf{E}\left[X_{i}\right]=0$ for all $i, \sqrt{\sum_{i}} \mathbf{E}\left[X_{i}^{2}\right]=\sigma$, and $\sum_{i} \mathbf{E}\left[\left|X_{i}\right|^{3}\right]=\rho_{3}$. Let $S=\left(X_{1}+\cdots+X_{n}\right) / \sigma$ and let F denote the cumulative distribution function (cdf) of S. Then

$$
\sup _{x}|F(x)-\Phi(x)| \leq \rho_{3} / \sigma^{3},
$$

where Φ is the cdf of a standard Gaussian random variable (with mean zero and variance one).
Corollary 2.2. Let x_{1}, \ldots, x_{n} denote independent uniformly ± 1 random signs and let $w_{1}, \ldots, w_{n} \in$ \mathbf{R}. Write $\sigma=\sqrt{\sum_{i} w_{i}^{2}}$, and assume $\left|w_{i}\right| / \sigma \leq \tau$ for all i. Then for any interval $[a, b] \subseteq \mathbf{R}$,

$$
\left|\operatorname{Pr}\left[a \leq w_{1} x_{1}+\cdots+w_{n} x_{n} \leq b\right]-\Phi\left(\left[\frac{a}{\sigma}, \frac{b}{\sigma}\right]\right)\right| \leq 2 \tau,
$$

where $\Phi([c, d]):=\Phi(d)-\Phi(c)$. In particular,

$$
\operatorname{Pr}\left[a \leq w_{1} x_{1}+\cdots+w_{n} x_{n} \leq b\right] \leq \frac{|b-a|}{\sigma}+2 \tau
$$

Theorem 2.3 (Hoeffding). Let \mathcal{U} denote the uniform distribution on $\{+1,-1\}^{n}$. For any $w \in \mathbf{R}^{n}$, $\gamma>0$, we have $\operatorname{Pr}_{x \leftarrow \mathcal{U}}[w \cdot x \geq \gamma\|w\|] \leq e^{-\gamma^{2} / 2}$.

Theorem 2.4 (Chebyshev). For any random variable X with $\mathbf{E}[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}$ and any $k>0$,

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

3 Fooling regular halfspaces

Throughout this paper we assume without loss of generality that halfspaces are normalized to satisfy $\sum_{i} w_{i}^{2}=1$. Such a representation can always be obtained by appropriate scaling.

Definition 3.1 (Regular Halfspace). A halfspace f is said to be ϵ-regular if it can be expressed as $f(x)=\operatorname{sign}(w \cdot x-\theta)$ where for all $i=1, \ldots, n$, we have $\left|w_{i}\right| \leq \epsilon$.

An ϵ-regular halfspace $f(x)=\operatorname{sign}(w \cdot x-\theta)$ has the convenient property that the cumulative distribution function (cdf) of $w \cdot x-\theta$ is everywhere within $\pm O(\epsilon)$ of the cdf of the shifted Gaussian $N(-\theta, 1)$. This is a direct consequence of the Berry-Esséen theorem (Theorem 2.1). In this section we show how to fool regular halfspaces. Given $\epsilon>0$, we define the following parameters:

$$
\begin{aligned}
a(\epsilon) & :=\frac{\epsilon^{2}}{C \log (1 / \epsilon)}, \\
K(\epsilon) & :=\frac{4 c \log \left(\frac{1}{\epsilon}\right)}{a}+2<\frac{5 c}{a} \log (1 / \epsilon)=O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right) .
\end{aligned}
$$

Intuitively, the role of these parameters is that we will construct a univariate degree- K polynomial that is a good approximator to the sign function over $[-1 / 2,1 / 2]$ except for an interval of width $2 a$ near 0 (see Theorem 3.5 for a precise statement). We assume without loss of generality that ϵ is a sufficiently small power of 2 (i.e., $\epsilon=2^{-i}$ for some integer i). The positive constants C and c will be chosen later; but (with foresight), we will require that $C \gg c$.

Theorem 3.2 (Fooling ϵ-regular halfspaces). Any $K(\epsilon)$-wise independent distribution fools ϵ regular halfspaces with error 12ϵ.

To prove the theorem we construct certain "sandwiching" polynomials. We now define such polynomials and then explain why they are sufficient for our purposes.

Definition 3.3. Let $f:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ be a Boolean function. A pair of real-valued polynomials $q_{\ell}\left(x_{1}, \ldots, x_{n}\right), q_{u}\left(x_{1}, \ldots, x_{n}\right)$ are said to be ϵ-sandwich polynomials of degree k for f if they have the following properties:

- $\operatorname{deg}\left(q_{u}\right), \operatorname{deg}\left(q_{\ell}\right) \leq k ;$
- $q_{u}(x) \geq f(x) \geq q_{\ell}(x)$ for all $x \in\{-1,+1\}^{n}$;
- $\mathbf{E}_{x \leftarrow \mathcal{U}}\left[q_{u}(x)-f(x)\right] \leq \epsilon$ and $\mathbf{E}_{x \leftarrow \mathcal{U}}\left[f(x)-q_{\ell}(x)\right] \leq \epsilon$.

The following fact proved via LP-duality relates sandwiching polynomials to fooling [5]. We only use the "if" direction of this lemma, which follows easily by linearity of expectation.

Lemma 3.4 (Bazzi). Let $f:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ be a Boolean function. Every k-wise independent distribution ϵ-fools f if and only if there exist ϵ-sandwich polynomials of degree k for f.

The crux of our construction of sandwiching polynomials for regular halfspaces is good univariate approximations to the sign function:

Theorem 3.5. Let $0<\epsilon<0.1$ and let a and K be as defined above. There is a univariate polynomial $P(t)$ such that $\operatorname{deg}(P) \leq K$ with the following properties:
(1) $P(t) \geq \operatorname{sign}(t) \geq-P(-t)$ for all $t \in \mathbf{R}$;
(2) $P(t) \in[\operatorname{sign}(t), \operatorname{sign}(t)+\epsilon]$ for $t \in[-1 / 2,-2 a] \bigcup[0,1 / 2]$;
(3) $P(t) \in[-1,1+\epsilon]$ for $t \in(-2 a, 0)$;
(4) $|P(t)| \leq 2 \cdot(4 t)^{K}$ for all $|t| \geq 1 / 2$.

Property (1) says that $P(t)$ is an upper sandwich to the sign function. By property (2), P gives a point-wise approximation with error ϵ in the interval $[-1 / 2,1 / 2]$, except for the interval $[-2 a, 0]$ where it has error at most $2+\epsilon$ by property (3). For $t \geq \frac{1}{2}$, property (4) bounds how rapidly $P(t)$ grows. For a qualitative depiction of P we refer the reader to Figure 1 (this figure is not an actual plot, it is intended to illustrate the behavior of P on various intervals; also the parameter $1 / 2$ is replaced by $1-a \geq 1 / 2$ for later needs). Before constructing P, we outline the proof of Theorem 3.2 using the polynomial P; the full proof is in Section 4.

Figure 1: Qualitative plot of polynomial P.

Overview of the proof of Theorem 3.2. Let $h(x)=\operatorname{sign}(w \cdot x-\theta)$ be an ϵ-regular halfspace, and assume that $|\theta|$ is small (the case where $|\theta|$ is large is simpler). Let us define

$$
t:=\frac{w \cdot x-\theta}{Z}
$$

where we choose the scaling factor Z to be $\tilde{\Theta}\left(\epsilon^{-1}\right)$. We use $q_{u}(x)=P(t)$ and $q_{\ell}(x)=-P(-t)$ as the upper and lower sandwich polynomials respectively. The sandwiching property is easy to verify, the crux is to bound $\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right]$. We do this by case analysis.
(1) If t lies in the interval $[-2 a, 0]$ then, although the error $q_{u}(x)-h(x)$ may be large, by our choice of Z it must be the case that $w \cdot x$ lands in an interval of length $O(\epsilon)$. By the anticoncentration of $w \cdot x$ (which is a consequence of the ϵ-regularity of w), this only happens with probability $O(\epsilon)$. Thus the contribution to $\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right]$ from this event is $O(\epsilon)$.
(2) In the event that t lies in $[-1 / 2,1 / 2] \backslash[-2 a, 0]$, the pointwise error $q_{u}(x)-h(x)$ is at most ϵ because, by Property (2), P gives a good pointwise approximation to the sign function in this range. So this event contributes at most $O(\epsilon)$ to $\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right]$.
(3) Finally, the event that the input t has absolute value bigger than $1 / 2$ corresponds to the event that $|w \cdot x-\theta| \geq Z / 2$. Since $\sum_{i} w_{i}^{2}=1,|\theta|$ is small, and Z is $\tilde{\Theta}\left(\epsilon^{-1}\right)$, we can bound this probability using the Hoeffding bound. In this event, the pointwise error is large but we can bound it from above using Property (4). Our choice of parameters ensures that the Hoeffding bound dominates the growth of the polynomial P, so that the contribution to $\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right]$ is again at most $O(\epsilon)$.

Thus, overall $\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right]=O(\epsilon)$. One can similarly bound the error of q_{ℓ}.

3.1 Constructing P

This section contains our proof of Theorem 3.5. The key step is to exhibit a low-degree univariate polynomial that approximates $\operatorname{sign}(t)$ well when $|t| \in[a, 1]$ and is well-behaved even for larger values of $|t|$ to be compatible with the sandwich condition. We phrase this as a problem in univariate approximation. The solution we use is a low-degree polynomial $p(t)$ which is an optimal pointwise approximator to $\operatorname{sign}(t)$ on $[-1,-a] \cup[a, 1]$. Such an optimal polynomial exists and we prove that it is well-behaved for large $|t|$, using ideas from classical approximation theory. However, it seems difficult to construct this polynomial explicitly and bound its error.

Recent work by [22] analyzes the error achieved by such a polynomial and in particular establishes the limiting behavior of the error function. For our purposes, though, we require the error to converge to the limit fairly rapidly and it is unclear whether the results of [22] guarantee this.

Instead, we bound the error by constructing a small error approximator $q(t)$ using Jackson's theorem together with standard amplification ideas. While $q(t)$ might not be well-behaved for large values of t, we only use it to bound from above the error of $p(t)$ on $[-1,-a] \cup[a, 1]$. Our approach has the advantage of being fairly elementary (using only standard ingredients from basic approximation theory) and matches the limiting bounds of [22] up to a constant factor.

For a bounded continuous function $f:[-1,1] \rightarrow \mathbf{R}$, we define its modulus of continuity $\omega_{f}(\delta)$ as

$$
\omega_{f}(\delta):=\sup \{|f(x)-f(y)|: x, y \in[-1,1] ;|x-y| \leq \delta\} .
$$

A classical result of Dunham Jackson from the early twentieth century bounds the error of the best degree- ℓ approximation to f.

Theorem 3.6. (Jackson's Theorem) [11, Page 104], [13]. For f as above and any integer $\ell \geq 1$, there exists a polynomial $J(t)$ with $\operatorname{deg}(J) \leq \ell$ so that

$$
\max _{t \in[-1,1]}|J(t)-f(t)| \leq 6 \omega_{f}\left(\frac{1}{\ell}\right) .
$$

Recall the parameter $a=\frac{\epsilon^{2}}{C \log (1 / \epsilon)}$. We now define $m:=\frac{c \log (1 / \epsilon)}{a}$. It will be crucial for us that m is even (see in particular the last paragraph in the proof of Theorem 3.10.); for this condition to be satisfied, it is of course enough that c is even. (We also note that the parameters K and m are such that $K=4 m+2$.)

Lemma 3.7. For a, m as above, there is a polynomial $q(t)$ of degree at most $2 m$ such that

$$
\max _{|t| \in[a, 1]}|q(t)-\operatorname{sign}(t)| \leq \epsilon^{2}
$$

Proof. Define the piecewise linear continuous function $f(t)$ as

$$
f(t)= \begin{cases}\operatorname{sign}(t) & a \leq|t| \leq 1 \\ t / a & |t| \leq a\end{cases}
$$

Thus $f(t)$ increases linearly from -1 to 1 in the range $[-a, a]$. A simple calculation yields that $\omega_{f}\left(\frac{1}{\ell}\right)=1 /(a \ell)$. Taking $\ell=25 / a$, Jackson's theorem gives a polynomial $J(t)$ of degree at most ℓ such that

$$
\max _{a \leq|t| \leq 1}|J(t)-\operatorname{sign}(t)| \leq \max _{t \in[-1,1]}|J(t)-f(t)| \leq \frac{6}{a \ell}<\frac{1}{4}
$$

Our goal is to bring the error down to ϵ^{2}. Rather than using Jackson's theorem for this (which would require degree $\tilde{O}\left(\epsilon^{-4}\right)$), we use the degree- k amplifying polynomial

$$
\begin{equation*}
A_{k}(u):=\sum_{j \geq \frac{k}{2}}\binom{k}{j}\left(\frac{1+u}{2}\right)^{j}\left(\frac{1-u}{2}\right)^{k-j} \tag{1}
\end{equation*}
$$

Direct inspection shows that for $u \in[-1,1]$, the value of $A_{k}(u)$ equals $\operatorname{Pr}[X \geq k / 2]$ where X is a random variable distributed as a sum of k i.i.d. Bernoulli ($0 / 1$) random variables each of which has expected value $\frac{1+u}{2}$. The polynomial $A_{k}(u)$ has the following properties (easily proved via elementary calculation and also following from the Chernoff bound):
Claim 3.8. The polynomial $A_{k}(u)$ satisfies:

1. If $u \in[3 / 5,1]$, then $2 A_{k}(u)-1 \in\left[1-2 e^{-k / 6}, 1\right]$.
2. If $u \in[-1,-3 / 5]$, then $2 A_{k}(u)-1 \in\left[-1,-1+2 e^{-k / 6}\right]$.

We define the polynomial

$$
q(t):=2 A_{k}\left(\frac{4}{5} J(t)\right)-1
$$

where $k=15 \log (1 / \epsilon)$. Scaling $J(t)$ by $\frac{4}{5}$ ensures that the argument to A_{k} lies in the range $[-1,-3 / 5] \cup[3 / 5,1]$ whenever $|t| \in[a, 1]$. Applying Claim 3.8 with $k=15 \log (1 / \epsilon)$ gives

$$
\max _{|t| \in[a, 1]}|q(t)-\operatorname{sign}(t)|<2 e^{-k / 6}<\epsilon^{2} .
$$

Finally, by selecting c large enough, we have

$$
\begin{aligned}
\operatorname{deg}(q) & \leq \operatorname{deg}(J) \operatorname{deg}\left(A_{k}\right) \\
& \leq \frac{25}{a} \cdot 15 \log (1 / \epsilon)<\frac{2 c}{a} \log (1 / \epsilon)=2 m .
\end{aligned}
$$

We use Chebyshev's classical theorem on (weighted) real polynomial approximation.
Theorem 3.9. (Chebyshev's Theorem) [1, Page 55]. Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function. Let $s:[a, b] \rightarrow \mathbf{R}$ be a continuous function that does not vanish on $[a, b]$. The polynomial $r(z)$ of degree m that minimizes

$$
M(m)=\max _{z \in[a, b]}|f(z)-s(z) r(z)|
$$

is unique, and it is characterized by the property that there exist $m+2$ points $a \leq z_{0}<z_{1} \cdots<$ $z_{m+1} \leq b$ such that for each z_{i}

$$
M(m)=\left|f\left(z_{i}\right)-s\left(z_{i}\right) r\left(z_{i}\right)\right|
$$

and the sign of the error at the z_{i} 's alternates.

Figure 2: Qualitative representation of polynomial p.
We now present the "well-behaved" polynomial $p(t)$ mentioned at the beginning of this section. To help the reader visualize $p(t)$, we provide a schematic representation in Figure 2. (As before, this figure is not an actual plot, but rather is intended to illustrate the behavior of p on various intervals.)

Theorem 3.10. Let a and m be as previously specified. There is a univariate polynomial $p(t)$ where $\operatorname{deg}(p) \leq 2 m+1$ such that:

1. $p(t) \in\left[\operatorname{sign}(t)-\epsilon^{2}, \operatorname{sign}(t)+\epsilon^{2}\right]$ for all $|t| \in[a, 1]$;
2. $p(t) \in\left[-\left(1+\epsilon^{2}\right), 1+\epsilon^{2}\right]$ for all $t \in[-a, a]$;
3. $p(t)$ is monotonically increasing on the intervals $(-\infty,-1]$ and $[1, \infty)$.

Proof. Intuitively, the polynomial p is the "best possible" approximator to the function sign. However, some care is required because the function sign is not continuous. We present an analysis that assumes no background in approximation theory.

Invoking Theorem 3.9, let $r(z)$ be the polynomial of degree m that minimizes

$$
\max _{z \in\left[a^{2}, 1\right]}|\sqrt{z} r(z)-1| .
$$

Define $p(t):=t \cdot r\left(t^{2}\right)$.
Bounding the error of $p(t)$ for $|t| \in[a, 1]$: A polynomial $p^{*}(t)$ is odd if the coefficients of the even powers of t are 0 ; it can be written as $p^{*}(t)=t \cdot r^{*}\left(t^{2}\right)$. Note that

$$
\begin{align*}
\max _{|t| \in[a, 1]}\left|p^{*}(t)-\operatorname{sign}(t)\right| & =\max _{|t| \in[a, 1]}\left|t \cdot r^{*}\left(t^{2}\right)-\operatorname{sign}(t)\right| \\
& =\max _{z \in\left[a^{2}, 1\right]}\left|\sqrt{z} \cdot r^{*}(z)-1\right| . \tag{2}
\end{align*}
$$

By Theorem 3.6 there exists a polynomial $p^{*}(t)$ of degree $2 m \leq 2 m+1$ such that

$$
\max _{|t| \in[a, 1]}\left|p^{*}(t)-\operatorname{sign}(t)\right| \leq \epsilon^{2} .
$$

We can assume that $p^{*}(t)$ is odd, for else we can replace it by the odd polynomial $\left(p^{*}(t)-p^{*}(-t)\right) / 2$ whose error is no worse. Therefore we can write $p^{*}(t)=t \cdot r^{*}\left(t^{2}\right)$. Using Equation 2, the definition of r, and the property of p^{*} above, we can now bound the error of p as follows:

$$
\begin{aligned}
\max _{|t| \in[a, 1]}|p(t)-\operatorname{sign}(t)|=\max _{z \in\left[a^{2}, 1\right]} \mid \sqrt{z} \cdot & r(z)-1 \mid \\
& \leq \max _{z \in\left[a^{2}, 1\right]}\left|\sqrt{z} \cdot r^{*}(z)-1\right|=\max _{|t| \in[a, 1]}\left|p^{*}(t)-\operatorname{sign}(t)\right| \leq \epsilon^{2}
\end{aligned}
$$

This concludes the proof of Property (1).
Other properties of p: By Theorem 3.9 we find that there is a sequence of points

$$
a^{2} \leq z_{0}<z_{1} \ldots<z_{m+1} \leq 1
$$

so that the error $\sqrt{z} r(z)-1$ achieves its maximum magnitude exactly at the points z_{i}, and the sign of the error alternates. Set $t_{i}=\sqrt{z_{i}}>0$ so that $a \leq t_{0}<t_{1} \ldots<t_{m+1} \leq 1$. Let $\phi(t)$ be the error function $\phi(t)=p(t)-\operatorname{sign}(t)$. Note that for $t \geq a$, we have

$$
\begin{aligned}
& \phi(t)=p(t)-1, \text { and } \\
& \phi(-t)=p(-t)-(-1)=-p(t)+1=-\phi(t)
\end{aligned}
$$

In particular, for each t_{i} we have $\left|\phi\left(t_{i}\right)\right|=\left|\phi\left(-t_{i}\right)\right|$.
Now consider the interval $[a, 1]$, on which $\phi(t)=p(t)-1$. Note that $\phi^{\prime}(t)$ is well defined and equals $p^{\prime}(t)$ at any point in $(a, 1)$. The points t_{1}, \ldots, t_{m} lie in $(a, 1)$ and they are local maxima/minima, since $\phi(t)$ cannot increase in magnitude in the neighborhood of t_{i}. Thus $\phi^{\prime}\left(t_{i}\right)=p^{\prime}\left(t_{i}\right)=0$ for each $i \in[m]$. Similarly, we can show that $\phi^{\prime}\left(-t_{i}\right)=p^{\prime}\left(-t_{i}\right)=0$ for $i \in[m]$. But $\operatorname{deg}\left(p^{\prime}\right)$ is at most $2 m$, and so we have located all its roots. As we now show, this allows us to determine the sign of p in the intervals $[-\infty,-1],[-a, a]$ and $[1, \infty]$.

Note that $p\left(t_{1}\right)$ is close to 1 whereas $p\left(-t_{1}\right)$ is close to -1 , and thus p increases monotonically in the interval $\left(-t_{1}, t_{1}\right)$ which includes $[-a, a]$. This gives Property (2). Also t_{1} is a local maximum for p, which shows that the t_{i} 's are maxima when i is odd, and minima when i is even. Thus, since m is even, $p\left(t_{m}\right)$ is a local minimum, so $p(t)$ increase monotonically in the range $\left(t_{m}, \infty\right)$, which includes $[1, \infty)$. Since $p(t)$ is odd, this also implies that $p(t)$ is monotonically increasing in the range $\left(-\infty,-t_{m}\right)$ which contains $(-\infty,-1]$. This gives Property (3).

Using the polynomial $p(t)$, we construct the polynomial $P(t)$ which is a good "upper" approximator to $\operatorname{sign}(t)$ (i.e. $P(t) \geq \operatorname{sign}(t)$ for all t), completing the proof of Theorem 3.5.

Proof of Theorem 3.5. Let p denote the polynomial of degree $2 m+1$ from Theorem 3.10. Consider the following polynomial:

$$
P(t)=\frac{1}{2}\left(1+\epsilon^{2}+p(t+a)\right)^{2}-1
$$

Note that $\operatorname{deg}(P)=2 \operatorname{deg}(p) \leq K$. We now consider the behavior of P on the relevant intervals. We repeatedly use the inequality $\frac{1}{2}\left(2+2 \epsilon^{2}\right)^{2}-1=1+4 \epsilon^{2}+2 \epsilon^{4} \leq 1+\epsilon$ which holds since $\epsilon<\frac{1}{10}$. Note that $P(t) \geq-1$ holds for all t. We now analyze the behavior of $P(t)$ interval by interval:
(a) $t \in[-1-a,-2 a]$. Here $p(t+a) \in\left[-1-\epsilon^{2},-1+\epsilon^{2}\right]$, hence $P(t) \in[-1,-1+\epsilon]$.
(b) $t \in(-2 a, 0)$. Here $p(t+a) \in\left[-1-\epsilon^{2}, 1+\epsilon^{2}\right]$, hence $P(t) \in[-1,1+\epsilon]$.
(c) $t \in[0,1-a]$. Here $p(t+a) \in\left[1-\epsilon^{2}, 1+\epsilon^{2}\right]$, hence $P(t) \in[1,1+\epsilon]$.
(d) $t \in(1-a, \infty]$. Here $p(t+a) \geq 1-\epsilon^{2}$, hence $P(t) \geq 1$.

This shows that $P(t) \geq \operatorname{sign}(t)$ for all $t \in \mathbf{R}$. Thus we also have

$$
P(-t) \geq \operatorname{sign}(-t) \Rightarrow \operatorname{sign}(t) \geq-P(-t)
$$

which establishes Property (1). Properties (2) and (3) follow immediately from (a), (b) and (c) above.

For Property (4), we use the following standard fact from approximation theory.
Fact 3.11. [11, Page 61], [56]. Let $a(t)$ be a polynomial of degree at most d for which $|a(t)| \leq b$ in the interval $[-1,1]$. Then $|a(t)| \leq b|2 t|^{d}$ for all $|t| \geq 1$.

Taking $a(t)$ to be $P(t / 2)$, properties (2) and (3) give us that $|P(t / 2)| \leq 2$ for $t \in[-1,1]$. So the fact gives $|P(t / 2)|<2|2 t|^{4 m+2}$ for $|t| \geq 1$, i.e. $|P(t)|<2|4 t|^{4 m+2}$ for $|t| \geq 1 / 2$. Theorem 3.5 is proved.

4 Proof of Theorem 3.2

In this section we prove Theorem 3.2: any $K(\epsilon)$-wise independent distribution fools ϵ-regular halfspaces with error 12ϵ. In light of Lemma 3.4, it is sufficient to exhibit sandwiching polynomials. For this, we use our univariate polynomial approximator P from the previous section.

Let $h(x)=\operatorname{sign}(w \cdot x-\theta)$ be an ϵ-regular halfspace (and recall $\sum_{i} w_{i}^{2}=1$.) Let

$$
Z:=\frac{\epsilon}{2 a}=\frac{C \log (1 / \epsilon)}{2 \epsilon} .
$$

We break the analysis into the following two cases, based on the magnitude of the threshold θ.

$4.1|\theta|$ is small $(|\theta| \leq Z / 4)$

The sandwich polynomials we use are:

$$
\begin{equation*}
q_{u}(x):=P\left(\frac{w \cdot x-\theta}{Z}\right), q_{l}(x):=-P\left(\frac{\theta-w \cdot x}{Z}\right) . \tag{3}
\end{equation*}
$$

First, observe that for every $x \in\{-1,+1\}^{n}$ we have

$$
q_{u}(x) \geq h(x) \geq q_{l}(x)
$$

This is because from Theorem 3.5 with $t=(w \cdot x-\theta) / Z$ we get

$$
q_{u}(x) \geq \operatorname{sign}\left(\frac{w \cdot x-\theta}{Z}\right)=\operatorname{sign}(w \cdot x-\theta)=h(x) \geq q_{l}(x) .
$$

In the rest of this section we bound the error of the approximation.
Lemma 4.1. $\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right]<10 \epsilon$.
Proof. Define the random variable $H(x)=(w \cdot x-\theta) / Z$. We prove the desired upper bound by partitioning the space into three events and bounding the contribution from each:

1. S_{1} is the event that $H(x) \in[-\epsilon / Z, 0]$.
2. S_{2} is the event that $|H(x)| \leq 1 / 2$, but S_{1} does not happen.
3. S_{3} is the event that $|H(x)|>1 / 2$.

We have

$$
\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right]=\sum_{i=1}^{3} \operatorname{Pr}_{x}\left[S_{i}\right] \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid S_{i}\right]
$$

Case 1: In this case, the pointwise error is moderate - at most $(2+\epsilon)$ - and we use gaussian anti-concentration to argue that the event has small probability mass. The event $H(x) \in[-\epsilon / Z, 0]$ implies that

$$
\begin{aligned}
\frac{w \cdot x-\theta}{Z} \in[-2 a, 0] & \Rightarrow q_{u}(x) \leq 1+\epsilon \\
& \Rightarrow q_{u}(x)-h(x) \leq 2+\epsilon
\end{aligned}
$$

using Item (3) in Theorem 3.5.
Since h is ϵ-regular, from Corollary 2.2 it follows that $\operatorname{Pr}_{x}[H(x) \in[-\epsilon / Z, 0]] \leq 3 \epsilon$. So,

$$
\operatorname{Pr}_{x}\left[S_{1}\right] \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid S_{1}\right] \leq(2+\epsilon) \cdot 3 \epsilon<8 \epsilon
$$

Case 2: This event has high probability, but in this range we get good pointwise approximation. The event S_{2} implies that

$$
\begin{aligned}
H(x) \in[-1 / 2,1 / 2] \backslash[-2 a, 0] & \Rightarrow q_{u}(x) \leq h(x)+\epsilon \\
& \Rightarrow q_{u}(x)-h(x) \leq \epsilon,
\end{aligned}
$$

where we used Item (2)in Theorem 3.5. So,

$$
\operatorname{Pr}_{x}\left[S_{2}\right] \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid S_{2}\right] \leq 1 \cdot \epsilon \leq \epsilon
$$

Case 3: Here we trade off the large magnitude of error (Item (4) in Theorem 3.5) with the small probability of the event (bounded by the Hoeffding bound). Define the intervals

$$
\begin{aligned}
I_{j}^{+} & =\left[\frac{j}{2}, \frac{(j+1)}{2}\right) \text { for } j=1,2, \ldots \\
I_{k}^{-} & =\left(\frac{-(k+1)}{2}, \frac{-k}{2}\right] \text { for } k=1,2, \ldots
\end{aligned}
$$

We can write

$$
\begin{align*}
\operatorname{Pr}_{x}\left[S_{3}\right] & \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid S_{3}\right]= \\
& \sum_{j \geq 1} \operatorname{Pr}_{x}\left[H(x) \in I_{j}^{+}\right] \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid H(x) \in I_{j}^{+}\right] \\
& +\sum_{k \geq 1} \operatorname{Pr}_{x}\left[H(x) \in I_{k}^{-}\right] \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid H(x) \in I_{k}^{-}\right] . \tag{4}
\end{align*}
$$

Fix any integer $j \geq 1$. If $H(x) \in I_{j}^{+}$, then

$$
\frac{j}{2} \leq H(x)<\frac{j+1}{2}
$$

Recalling that we have $|P(t)| \leq 2 \cdot(4 t)^{K}$ for $t \geq 1 / 2$, we get that

$$
q_{u}(x)=P(H(x)) \leq 2(2 j+2)^{K} .
$$

Since $h(x)=1$, we get

$$
\begin{equation*}
q_{u}(x)-h(x)=q(x)-1 \leq 2(2 j+2)^{K}-1 . \tag{5}
\end{equation*}
$$

Next we bound $\operatorname{Pr}_{x}\left[H(x) \in I_{j}^{+}\right]$using the Hoeffding bound.

$$
\begin{align*}
\operatorname{Pr}\left[H(x) \in I_{j}^{+}\right] & \leq \operatorname{Pr}_{x}\left[w \cdot x-\theta \geq \frac{j Z}{2}\right] \\
& \leq \operatorname{Pr}_{x}\left[w \cdot x \geq \frac{j Z}{4}\right] \leq e^{-j^{2} Z^{2} / 32} \tag{6}
\end{align*}
$$

where the second inequality uses the fact that $|\theta| \leq Z / 4$.
The analysis of the intervals I_{k}^{-}is similar (except $h(x)=-1$). For $H(x) \in I_{k}^{-}$we get

$$
\begin{align*}
|H(x)| \leq \frac{k+1}{2} & \Rightarrow q_{u}(x) \leq 2(2 k+2)^{K} \\
& \Rightarrow q_{u}(x)-h(x) \leq 2(2 k+2)^{K}+1 \tag{7}
\end{align*}
$$

Similarly, the Hoeffding bound gives

$$
\begin{align*}
\operatorname{Pr}\left[H(x) \in I_{k}^{-}\right] & \leq \operatorname{Pr}_{x}\left[w \cdot x-\theta \leq \frac{-k Z}{2}\right] \\
& \leq \operatorname{Pr}_{x}\left[w \cdot x \leq \frac{-k Z}{4}\right] \leq e^{-k^{2} Z^{2} / 32} . \tag{8}
\end{align*}
$$

Plugging equations (5), (6), (7), (8) back into (4), we get

$$
\begin{aligned}
& \operatorname{Pr}_{x}\left[S_{3}\right] \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid S_{3}\right] \leq \\
& \sum_{j \geq 1} \frac{2(2 j+2)^{K}-1}{e^{j^{2} Z^{2} / 32}}+\sum_{k \geq 1} \frac{2(2 k+2)^{K}+1}{e^{k^{2} Z^{2} / 32}} \\
& \quad=4 \sum_{j \geq 1} \frac{(2 j+2)^{K}}{e^{j^{2} Z^{2} / 32}}<4 \sum_{j \geq 1} e^{j\left(2 K-Z^{2} / 32\right)},
\end{aligned}
$$

where the last inequality follows by noting that, for $j \geq 1,(2 j+2)^{K}<e^{2 K j}$ and $e^{j^{2} Z^{2} / 32} \geq e^{j Z^{2} / 32}$. But now observe that

$$
2 K-\frac{Z^{2}}{32}<\frac{C \log ^{2}(1 / \epsilon)}{\epsilon^{2}}\left(10 c-\frac{C}{128}\right) .
$$

For a suitable choice of $C \gg c$, we have that $10 c-C / 128 \leq-1$, so

$$
\operatorname{Pr}_{x}\left[S_{3}\right] \mathbf{E}_{x}\left[q_{u}(x)-h(x) \mid S_{3}\right]<4 \sum_{j} e^{-j C \frac{\log ^{2}(1 / \epsilon)}{\epsilon^{2}}}<\epsilon
$$

Thus overall, we have $\mathbf{E}_{x}\left[q_{u}(x)-h(x)\right] \leq 10 \epsilon$.

The lower sandwich bound follows by symmetry:
Lemma 4.2. $\mathbf{E}_{x}\left[h(x)-q_{l}(x)\right]<10 \epsilon$.
Proof. Since $q_{l}(x) \leq h(x)$ for every x, we also have $-h(x) \leq-q_{l}(x)$. Thus

$$
-q_{l}(x)=P\left(\frac{\theta-w \cdot x}{Z}\right)
$$

is an upper sandwich for the function $-h(x)=\operatorname{sign}(\theta-w \cdot x)$. As this does not change the magnitude of θ, we can apply the analysis of Lemma 4.1 to conclude that $\mathbf{E}_{x}\left[h(x)-q_{l}(x)\right]=\mathbf{E}_{x}\left[-q_{l}(x)-(-h(x))\right]<10 \epsilon$.

4.2 $|\theta|$ is large $(|\theta|>Z / 4)$

We assume for simplicity that $\theta \geq Z / 4$ (the case when θ is negative is handled similarly). The sandwich polynomials we use are:

$$
\begin{equation*}
r_{u}(x)=P\left(\frac{w \cdot x-Z / 4}{Z}\right), \quad r_{l}(x)=-1 . \tag{9}
\end{equation*}
$$

Lemma 4.3. $h(x) \geq r_{l}(x)$ for all $x \in\{-1,+1\}^{n}$. Further, $\mathbf{E}_{x}\left[h(x)-r_{l}(x)\right] \leq 2 \epsilon$.
Proof. Note that $\mathbf{E}_{x}\left[h(x)-r_{l}(x)\right]=2 \operatorname{Pr}_{x}[h(x)=1]$. For large enough C we have $\operatorname{Pr}_{x}[h(x)=$ $1]=\operatorname{Pr}_{x}[w \cdot x \geq \theta]<e^{-Z^{2} / 32}<\epsilon$.

Lemma 4.4. $r_{u}(x) \geq h(x)$ for all $x \in\{-1,+1\}^{n}$. Further, $\mathbf{E}_{x}\left[r_{u}(x)-h(x)\right] \leq 12 \epsilon$.
Proof. Observe that $r_{u}(x)$ is the upper sandwich polynomial for the halfspace $h^{\prime}(x)=\operatorname{sign}(w$. $x-Z / 4)$ as specified in Section 4.1. Thus we have $r_{u}(x) \geq h^{\prime}(x) \geq h(x)$ hence

$$
\mathbf{E}_{x}\left[r_{u}(x)-h(x)\right]=\mathbf{E}_{x}\left[r_{u}(x)-h^{\prime}(x)\right]+\mathbf{E}_{x}\left[h^{\prime}(x)-h(x)\right] .
$$

By Lemma 4.1, $\mathbf{E}_{x}\left[r_{u}(x)-h^{\prime}(x)\right] \leq 10 \epsilon$ whereas by the Hoeffding bound $\mathbf{E}_{x}\left[h^{\prime}(x)-h(x)\right] \leq 2 \epsilon$ which completes the proof.

5 Fooling non-regular halfspaces

In this section we show how to fool halfspaces that are not regular. We proceed by case analysis based on the critical index of the halfspace, which we define shortly. Throughout this section we assume that the weights of the halfspace are decreasing:

$$
\left|w_{1}\right| \geq\left|w_{2}\right| \ldots \geq\left|w_{n}\right|
$$

We can assume this without loss of generality because we are going to prove that, for a suitable k, any k-wise independent distribution fools such halfspaces, and the property of being k-wise independent is clearly invariant under permutation of the variables.

Some notation: For $T \subseteq[n]$ we denote by σ_{T} the quantity $\sigma_{T}:=\sqrt{\sum_{i \in T} w_{i}^{2}}$. For $k \in[n]$ we also write σ_{k} for $\sigma_{\{k, k+1, \ldots, n\}}$.

Definition 5.1 (Critical index). We define the τ-critical index $\ell(\tau)$ of a halfspace $h=\operatorname{sign}(w \cdot x-\theta)$ as the smallest index $i \in[n]$ for which

$$
\left|w_{i}\right| \leq \tau \cdot \sigma_{i} .
$$

If this inequality does not hold for any $i \in[n]$, we define $\ell(\tau)=\infty$.
Note that a halfspace is τ-regular if $\ell(\tau)=1$; in this section we handle the case $\ell(\tau)>1$.
We assume without loss of generality that ϵ is sufficiently small. Given ϵ, our threshold for the critical index is

$$
L(\epsilon):=\frac{8 \log ^{2}(10 / \epsilon)}{\epsilon^{2}}
$$

We argue separately depending on whether $\ell(\epsilon)>L(\epsilon)$ or not. Both proofs rely on the following simple property of k-wise independent distributions.

Fact 5.2. Let \mathcal{D} be a k-wise independent distribution over $\{-1,+1\}^{n}$. Condition on any fixed values for any $t \leq k$ bits of \mathcal{D}, and let \mathcal{D}^{\prime} be the projection of \mathcal{D} on the other $n-t$ bits. Then \mathcal{D}^{\prime} is $(k-t)$-wise independent.

The first theorem addresses the simpler case when $\ell(\epsilon) \leq L(\epsilon)$.
Theorem 5.3 (Fooling non-regular halfspaces with small critical index). Let $h(x)$ be a halfspace with ϵ-critical index $\ell(\epsilon) \leq L(\epsilon)$. Then any $(K(\epsilon)+L(\epsilon))$-wise independent distribution $O(\epsilon)$-fools h.

Proof. Condition on any setting to the first $\ell-1$ variables. Each of these defines a halfspace of the form

$$
h^{\prime}(x)=\operatorname{sign}\left(\sum_{i \geq \ell} w_{i} x_{i}-\theta^{\prime}\right)
$$

where θ^{\prime} depends on the values assigned to the head. Every such halfspace is ϵ-regular by the definition of ϵ-critical index. Also, the conditional distribution on the remaining variables is $K(\epsilon)$ wise independent by Fact 5.2. Thus, Theorem 3.2 implies that we fool h^{\prime} with error ϵ. Since both the uniform distribution and \mathcal{D} induce the same (uniform) distribution on the first $\ell-1$ variables, an averaging argument concludes the proof of the theorem.

In the rest of this section we study the case of large critical index $\ell(\epsilon)>L(\epsilon)$, and prove the following theorem.

Theorem 5.4 (Fooling non-regular halfspaces with large critical index). Let $h(x)$ be a halfspace with critical index $\ell(\epsilon)>L(\epsilon)$. Any $(L(\epsilon)+2)$-wise independent distribution \mathcal{D} fools h with error 9ϵ.

To prove Theorem 5.4 we partition the coordinate set $[n]$ into a head H consisting of the first $L(\epsilon)$ coordinates, and a tail $T=[n] \backslash H$ consisting of the rest. We then show that a random setting of the head variables induces with high probability a partial sum $\sum_{i \in H} w_{i} x_{i}-\theta$ which is so large in magnitude that the values of the tail variables are essentially irrelevant, in the sense that they are very unlikely to change the sign of $w \cdot x-\theta$ and hence the value of the halfspace.

We will show that this statement holds both for the uniform distribution and for the distribution \mathcal{D} with limited independence. For the latter we will use that after restricting the variables in the head we still have a 2-wise independent distribution on the tail (by Fact 5.2), which is enough for Chebyshev's concentration bound to apply. To show that the partial sum is likely to be large we use ideas from [57], in particular that the weights decrease geometrically up to the critical index.

We partition the coordinate set $[n]$ into a head H consisting of the first $L(\epsilon)$ coordinates, and a tail $T=[n] \backslash H$ consisting of the rest. Any fixing of the variables in H results in a halfspace

$$
h^{\prime}\left(x_{T}\right):=\operatorname{sign}\left(\sum_{i \in T} w_{i} x_{i}-\theta_{H}^{\prime}\right)
$$

over the tail variables x_{T} where

$$
\theta_{H}^{\prime}:=\theta-\sum_{i \in H} w_{i} x_{i} .
$$

As discussed before, our goal is to show that, for a random setting of the head variables, θ_{H}^{\prime} is likely to be so large in magnitude that the value of the tail sum $\sum_{i \in T} w_{i} x_{i}$ is unlikely to influence the outcome of $h(x)$. The key idea here is the following lemma from [57] showing that the weights decrease geometrically up to the critical index.

Lemma 5.5. For any $1 \leq i<j \leq \ell+1$ we have

$$
\left|w_{j}\right| \leq \sigma_{j}<\left(\sqrt{1-\epsilon^{2}}\right)^{j-i} \sigma_{i} \leq\left(\sqrt{1-\epsilon^{2}}\right)^{j-i}\left|w_{i}\right| / \epsilon
$$

In particular, if $j \geq i+\left(4 / \epsilon^{2}\right) \ln (1 / \epsilon)$ then

$$
\left|w_{j}\right| \leq\left|w_{i}\right| / 3
$$

Proof. For any $k \leq \ell$, we have by the definition of ϵ-critical index that

$$
w_{k}^{2}>\epsilon^{2} \sigma_{k}^{2}
$$

Hence

$$
\sigma_{k+1}^{2}=\sigma_{k}^{2}-w_{k}^{2}<\left(1-\epsilon^{2}\right) \sigma_{k}^{2} .
$$

Repeating this calculation yields

$$
\sigma_{j}^{2}<\left(1-\epsilon^{2}\right)^{j-i} \sigma_{i}^{2}
$$

To conclude the first chain of inequalities in the statement of the lemma, use again $\sigma_{i}^{2}<w_{i}^{2} / \epsilon^{2}$ and the obvious inequality $\sigma_{j}^{2} \geq w_{j}^{2}$. The "in particular" part can be verified by straightforward calculation, using that ϵ is sufficiently small.

Now consider the set of

$$
t:=\log (10 / \epsilon)
$$

"nicely separated" coordinates (variables)

$$
G:=\left\{k_{i}:=1+i \cdot\left(4 / \epsilon^{2}\right) \ln (1 / \epsilon): i=0,1, \ldots, t-1\right\} \subseteq H .
$$

Observe that indeed $G \subseteq H$ because the maximum index in G is at most $1+t \cdot\left(4 / \epsilon^{2}\right) \log (1 / \epsilon) \leq$ $\left(4 / \epsilon^{2}\right) \log ^{2}(10 / \epsilon)$, whereas H consists of all the first $L(\epsilon)=\left(8 / \epsilon^{2}\right) \log ^{2}(10 / \epsilon)$ indices. The key features of G are that we can apply the 'in particular" part of Lemma 5.5 and prove the following claim.

Claim 5.6. $\sigma_{T}<\epsilon\left|w_{k_{t}}\right|$.
Proof. By our choice of $L(\epsilon), t$, and k_{t}, we have

$$
L(\epsilon)-k_{t} \geq 8 \log ^{2}(10 / \epsilon) / \epsilon^{2}-4 \log ^{2}(10 / \epsilon) / \epsilon^{2} \geq \log ^{2}(1 / \epsilon) / \epsilon^{2} .
$$

An application of Lemma 5.5 gives

$$
\sigma_{T}<\sqrt{1-\epsilon^{2}}{ }^{\log ^{2}(1 / \epsilon) / \epsilon^{2}}\left|w_{k_{t}}\right| / \epsilon \leq \epsilon^{2}\left|w_{k_{t}}\right| / \epsilon=\epsilon\left|w_{k_{t}}\right|
$$

where we use that ϵ is sufficiently small.
We now show that a random setting of H is likely to result in a value of $\left|\theta_{H}^{\prime}\right|$ which is at least $\left|w_{k_{t}}\right| / 4$. The proof relies on the following claim.

Claim 5.7. Let $v_{1}>v_{2}>\cdots>v_{t}>0$ be a sequence of numbers so that $v_{i+1} \leq v_{i} / 3$. Then for any two points $x \neq y \in\{-1,+1\}^{t}$, we have $|v \cdot x-v \cdot y| \geq v_{t}$.

Proof. Let $z:=x-y \in\{-2,0,2\}^{t}$, which is not zero. Let $j \leq t$ be the smallest index such that $z_{j} \neq 0$. Then

$$
\begin{aligned}
|v \cdot x-v \cdot y| & =|v \cdot z|=\left|\sum_{i \geq j} v_{i} z_{i}\right| \geq\left|v_{j} z_{j}\right|-\sum_{i>j}\left|v_{i} z_{i}\right| \geq 2\left(v_{j}-\sum_{i>j} v_{i}\right) \\
& \geq 2\left(v_{j}-\sum_{i>j} \frac{v_{j}}{3^{i-j}}\right) \geq 2\left(v_{j}-v_{j} / 2\right)=v_{j} \geq v_{t},
\end{aligned}
$$

using $v_{i} \leq v_{j} / 3^{i-j}$ by assumption.
We are now ready to show our intended lemma:
Lemma 5.8. $\operatorname{Pr}_{x_{i}: i \in H}\left[\left|\theta-\sum_{i \in H} w_{i} x_{i}\right| \leq\left|w_{k_{t}}\right| / 4\right] \leq \epsilon / 10$.

Proof. Fix any assignment to the variables in $H \backslash G$. For this fixing, the event $\left|\theta-\sum_{i \in H} w_{i} x_{i}\right| \leq$ $\left|w_{k_{t}}\right| / 4$ happens only if

$$
\sum_{i \in G} w_{i} x_{i} \in\left[\theta-\sum_{i \in H \backslash G} w_{i} x_{i}-\left|w_{k_{t}}\right| / 4, \theta-\sum_{i \in H \backslash G} w_{i} x_{i}+\left|w_{k_{t}}\right| / 4\right],
$$

i.e., $\sum_{i \in G} w_{i} x_{i}$ falls in an interval of length $\left|w_{k_{t}}\right| / 2$. Applying Claim 5.7 to the weights in G, any two possible outcomes of $\sum_{i \in G} w_{i} x_{i}$ differ by at least $\left|w_{k_{t}}\right|$. So there is at most one setting $x_{k_{1}}=$ $a_{1}, \ldots, x_{k_{t}}=a_{t}$ of the variables in G for which this event occurs. This setting has probability at most $2^{-t}=\epsilon / 10$.

With this lemma in hand, we can show that limited independence suffices to fool halfspaces with a large critical index.

Proof of Theorem 5.4. We compare the behavior of $h(x)$ on \mathcal{D} and the uniform distribution \mathcal{U}. In either case, the marginal distribution for the variables in H is uniform. For each setting of these variables, we are left with a halfspace of the form $h^{\prime}\left(x_{T}\right)=\operatorname{sign}\left(\sum_{i \in T} w_{i} x_{i}-\theta_{H}^{\prime}\right)$ on the variables in T. The combination of Lemma 5.8 and Claim 5.6 shows that with probability at least $1-\epsilon / 10$ we have

$$
\left|\theta-\sum_{i \in H} w_{i} \cdot x_{i}\right| \geq \frac{\left|w_{k_{t}}\right|}{4} \geq \frac{\sigma_{T}}{4 \epsilon} .
$$

We condition on this event (\star). Consider the projections \mathcal{U}^{\prime} and \mathcal{D}^{\prime} of \mathcal{U} and \mathcal{D} on x_{T}. By Fact $5.2, \mathcal{D}^{\prime}$ is 2 -wise independent. We now argue that for both \mathcal{U}^{\prime} and \mathcal{D}^{\prime}, it is very likely that $h^{\prime}\left(x_{T}\right)=-\operatorname{sign}\left(\theta_{H}^{\prime}\right)$ (for small enough ϵ). Indeed if this does not happen, then we have

$$
\left|\sum_{i \in T} w_{i} x_{i}\right| \geq\left|\theta-\sum_{i \in H} w_{i} \cdot x_{i}\right| \geq \frac{\left|w_{k_{t}}\right|}{4} \geq \frac{\sigma_{T}}{4 \epsilon}
$$

Under the uniform distribution, by a Hoeffding bound (Theorem 2.3), the probability of this event is bounded by

$$
\operatorname{Pr}_{x \sim \mathcal{U}^{\prime}}\left[\left|\sum_{i \in T} w_{i} x_{i}\right| \geq \frac{\sigma_{T}}{4 \epsilon}\right] \leq 2 e^{-\frac{1}{32 \epsilon^{2}}} \ll 4 \epsilon .
$$

While by Chebyshev's inequality (Theorem 2.4) we get

$$
\operatorname{Pr}_{x \sim \mathcal{D}^{\prime}}\left[\left|\sum_{i \in T} w_{i} x_{i}\right| \geq \frac{\sigma_{T}}{4 \epsilon}\right] \leq 16 \epsilon^{2} \leq 4 \epsilon
$$

Thus, we have

$$
\left|\mathbf{E}_{\mathcal{D}^{\prime}}\left[h^{\prime}\left(x_{T}\right)\right]-\mathbf{E}_{\mathcal{U}^{\prime}}\left[h^{\prime}\left(x_{T}\right)\right]\right| \leq 2\left|\underset{\mathcal{D}^{\prime}}{\operatorname{Pr}}\left[h^{\prime}\left(x_{T}\right)=-\operatorname{sign}\left(\theta_{H}^{\prime}\right)\right]-\underset{\mathcal{U}^{\prime}}{\operatorname{Pr}}\left[h^{\prime}\left(x_{T}\right)=-\operatorname{sign}\left(\theta_{H}^{\prime}\right)\right]\right| \leq 8 \epsilon .
$$

To conclude, our goal was to bound from above $\left|\mathbf{E}_{\mathcal{U}}[h(x)]-\mathbf{E}_{\mathcal{D}}[h(x)]\right|$. Using the fact that both distributions induce the uniform distribution on variables in H, and conditioning on the event (\star), we get

$$
\left|\mathbf{E}_{\mathcal{U}}[h(x)]-\mathbf{E}_{\mathcal{D}}[h(x)]\right| \leq 8 \epsilon+2 \cdot \epsilon / 10<9 \epsilon .
$$

5.1 Proof of the main theorem

For completeness in this section we summarize what is needed to prove our main theorem.
Theorem 1.2 (Main). (Restated.) Let \mathcal{D} be a k-wise independent distribution on $\{-1,+1\}^{n}$, and let $h:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ be a halfspace. Then \mathcal{D} fools h with error ϵ, i.e.,

$$
\left|\mathbf{E}_{x \leftarrow \mathcal{D}}[h(x)]-\mathbf{E}_{x \leftarrow \mathcal{U}}[h(x)]\right| \leq \epsilon, \text { provided } k \geq \frac{C}{\epsilon^{2}} \log ^{2}\left(\frac{1}{\epsilon}\right),
$$

where C is an absolute constant and \mathcal{U} is the uniform distribution over $\{-1,+1\}^{n}$.
Proof. Consider the parameters $K(\epsilon), L(\epsilon)$ defined in Sections 3 and 5, respectively, and recall that they are both $O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right)$. For a given halfspace, consider its critical index ℓ. If $\ell \leq L(\epsilon)$ we apply Theorem 5.3, otherwise we apply Theorem 5.4.

Acknowledgements. Rocco Servedio thanks Troy Lee for a helpful conversation about amplifying polynomials and Adam Klivans for useful conversations about Jackson's Theorem. Parikshit Gopalan would like to thank Jaikumar Radhakrishnan and Amir Shpilka for many stimulating discussions about this problem.

References

[1] N. Achieser, Theory of Approximation. New York: Frederik Ungar Publishing Co, 1956. 11
[2] M. Ajtai and A. Wigderson, "Deterministic simulation of probabilistic constant depth circuits," in Proc. 26th IEEE Symposium on Foundations of Computer Science (FOCS), 1985, pp. 11-19. 2
[3] N. Alon, L. Babai, and A. Itai, "A fast and simple randomized algorithm for the maximal independent set problem," Journal of Algorithms, vol. 7, pp. 567-583, 1986. 2
[4] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, "Simple constructions of almost k-wise independent random variables," Random Structures \& Algorithms, vol. 3, no. 3, pp. 289-304, 1992. 2
[5] L. Bazzi, "Polylogarithmic independence can fool DNF formulas," in 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007). IEEE Computer Society, 2007, pp. 63-73. 2, 3, 8
[6] R. Beigel, "Perceptrons, PP, and the Polynomial Hierarchy," Computational Complexity, vol. 4, pp. 339-349, 1994. 2
[7] I. Benjamini, O. Gurel-Gurevich, and R. Peled, "On k-wise independent distributions and boolean functions," 2007, available at http://www.wisdom.weizmann.ac.il/ origurel/. 2, 3, 5, 6
[8] I. Benjamini, G. Kalai, and O. Schramm, "Noise sensitivity of Boolean functions and applications to percolation," Inst. Hautes Études Sci. Publ. Math., vol. 90, pp. 5-43, 1999. 6
[9] A. Bogdanov and E. Viola, "Pseudorandom bits for polynomials," SIAM Journal on Computing, vol. 39, no. 6, pp. 2464-2486, 2010. 2
[10] M. Braverman, "Poly-logarithmic independence fools $A C^{0}$ circuits," in Proc. 24th Annual IEEE Conference on Computational Complexity (CCC), 2009, pp. 3-8. 2
[11] N. Carothers, A Short Course on Approximation Theory, 1998. Available at http://personal.bgsu.edu/~carother/Approx.html. 10, 13
[12] I. Ben-Eliezer, S. Lovett and A. Yadin, "Polynomial Threshold Functions: Structure, Approximation and Pseudorandomness," Manuscript, 2009. 3
[13] E. Cheney, Introduction to Approximation Theory. New York, New York: McGraw-Hill, 1966. 10
[14] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky, "The bit extraction problem and t-resilient functions," in 26th Annual Symposium on Foundations of Computer Science, IEEE, 1985, pp. 396-407. 2
[15] B. Chor and O. Goldreich, "On the power of two-point based sampling," Journal of Complexity, vol. 5, no. 1, pp. 96-106, Mar. 1989. 2
[16] M. Dertouzos, Threshold Logic: A Synthesis Approach. Cambridge, MA: MIT Press, 1965. 1
[17] I. Diakonikolas, P. Gopalan, R. Jaiswal, R.A. Servedio and E. Viola, "Bounded Independence Fools Halfspaces." In Proc. 50th Annual Symposium on Foundations of Computer Science (FOCS), 2009, pp. 171-180. 0
[18] I. Diakonikolas, D.M. Kane and J. Nelson, "Bounded Independence Fools Degree-2 Threshold Functions." Manuscript, 2009. Available as ECCC Technical Report 09-117. 3
[19] I. Diakonikolas, R.A. Servedio, L.Y. Tan and A. Wan, "A Regularity Lemma, and LowWeight Approximators, for Low-Degree Polynomial Threshold Functions." Proc. 25th Annual IEEE Conference on Computational Complexity (CCC), 2010, to appear. Available at http://arxiv.org/abs/0909.4727. 3
[20] I. Diakonikolas and R. Servedio, "Improved approximation of linear threshold functions," in Proc. 24th Annual IEEE Conference on Computational Complexity (CCC), 2009, pp. 161172. 4
[21] P. Dubey and L. Shapley, "Mathematical properties of the Banzhaf power index," Mathematics of Operations Research, vol. 4, pp. 99-131, 1979. 1
[22] A. Eremenko and P. Yuditskii, "Uniform approximation of $\operatorname{sgn}(x)$ by polynomials and entire functions," J. d'Analyse Math., vol. 12, pp. 313-324, 2007. 5, 6, 9
[23] J. Forster, M. Krause, S. Lokam, R. Mubarakzjanov, N. Schmitt, and H.-U. Simon, "Relations between communication complexity, linear arrangements, and computational complexity," in Proc. 21st Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2001, pp. 171-182. 1
[24] M. Goldmann, J. Håstad, and A. Razborov, "Majority gates vs. general weighted threshold gates," Computational Complexity, vol. 2, pp. 277-300, 1992. 1, 2
[25] M. Goldmann and M. Karpinski, "Simulating threshold circuits by majority circuits," SIAM Journal on Computing, vol. 27, no. 1, pp. 230-246, 1998. 1
[26] P. Gopalan, R. O'Donnell, Y. Wu and D. Zuckerman, "Fooling functions of halfspaces under product distributions," Proc. 25th Annual IEEE Conference on Computational Complexity (CCC), 2010, to appear. 3
[27] P. Gopalan and J. Radhakrishnan, "Finding duplicates in a data stream," in Proc. 20th Annual Symposium on Discrete Algorithms (SODA), 2009, pp. 402-411. 3
[28] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan, "Threshold circuits of bounded depth," Journal of Computer and System Sciences, vol. 46, pp. 129-154, 1993. 1
[29] J. Håstad, "On the size of weights for threshold gates," SIAM Journal on Discrete Mathematics, vol. 7, no. 3, pp. 484-492, 1994. 2
[30] P. Harsha, A. Klivans and R. Meka, "Bounding the sensitivity of polynomial threshold functions," Manuscript, 2009. Available at vailable at http://arxiv.org/abs/0909.5175. 3
[31] S. Hu, Threshold Logic. University of California Press, 1965. 1
[32] J. Isbell, "A Counterexample in Weighted Majority Games," Proc. of the AMS, vol. 20, no. 2, pp. 590-592, 1969. 1
[33] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio, "Agnostically learning halfspaces," SIAM Journal on Computing, vol. 37, no. 6, pp. 1777-1805, 2008. 6
[34] A. Klivans, R. O'Donnell, and R. Servedio, "Learning intersections and thresholds of halfspaces," Journal of Computer \& System Sciences, vol. 68, no. 4, pp. 808-840, 2004. 6
[35] A. R. Klivans and A. A. Sherstov, "A lower bound for agnostically learning disjunctions," in Conference on Learning Theory (COLT'07), 2007, pp. 409-423. 5, 6
[36] M. Krause, "Geometric arguments yield better bounds for threshold circuits and distributed computing," in Proc. 6th Structure in Complexity Theory Conference, 1991, pp. 314-322. 1
[37] M. Krause and S. Waack, "Variation ranks of communication matrices and lower bounds for depth two circuits having symmetric gates with unbounded fanin," in Proc. 32nd IEEE Symposium on Foundations of Computer Science (FOCS), 1991, pp. 777-782. 1
[38] P. Lewis and C. Coates, Threshold Logic. New York, Wiley, 1967. 1
[39] N. Linial and N. Nisan, "Approximate inclusion-exclusion," Combinatorica, vol. 10, no. 4, pp. 349-365, 1990. 2
[40] S. Lovett, "Unconditional pseudorandom generators for low degree polynomials," in 40th Annual Symposium on the Theory of Computing (STOC). ACM, 2008, pp. 557-562. 2
[41] M. Luby, B. Velickovic, and A. Wigderson, "Deterministic approximate counting of depth-2 circuits," in Proc. of the 2nd Israel Symposium on Theory of Computing and Systems (ISTCS), 1993, pp. 18-24. 2
[42] W. Maass and G. Turan, "How fast can a threshold gate learn?" in Computational Learning Theory and Natural Learning Systems: Volume I: Constraints and Prospects. MIT Press, 1994, pp. 381-414. 2
[43] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio, "Testing halfspaces," SIAM Journal on Computing, vol. 39, no. 5, 2010, pp. 2004-2047. 4
[44] S. Muroga, Threshold logic and its applications. New York: Wiley-Interscience, 1971. 1
[45] R. Meka and D. Zuckerman, Pseudorandom Generators for Polynomial Threshold Functions. Manuscript, 2009. Available at http://arxiv.org/abs/0910.4122 3
[46] J. Naor and M. Naor, "Small-bias probability spaces: efficient constructions and applications," SIAM J. on Comput., vol. 22(4), pp. 838-856, 1993. 2
[47] N. Nisan, "Pseudorandom generators for space-bounded computations," Combinatorica, vol. 12, no. 4, pp. 449-461, 1992. 2, 3
[48] N. Nisan and M. Szegedy, "On the degree of Boolean functions as real polynomials," in Proc. 24th Annual Symposium on Theory of Computing (STOC), 1992, pp. 462-467. 6
[49] N. Nisan, "Pseudorandom bits for constant depth circuits," Combinatorica, vol. 11, no. 1, pp. 63-70, 1991. 2
[50] R. O'Donnell and R. Servedio, "The Chow Parameters Problem," in Proc. 40th Annual ACM Symposium on Theory of Computing (STOC), 2008, pp. 517-526. 4
[51] R. Paturi, "On the degree of polynomials that approximate symmetric Boolean functions," in Proc. of the 24th Symposium on Theory of Computing (STOC), 1992, pp. 468-474. 5, 6
[52] L. Penrose, "The elementary statistics of majority voting," Journal of the Royal Statistical Society, vol. 109, no. 1, pp. 53-57, 1946. 1
[53] Y. Peres, "Noise stability of weighted majority," 2004. Available: http://arxiv.org/abs/math/0412377 6
[54] Y. Rabani and A. Shpilka, "Explicit construction of a small epsilon-net for linear threshold functions," in Proc. 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 649658, 2009. 3
[55] A. Razborov, "A simple proof of Bazzi's theorem," Transactions on Computation Theory, vol. 1, no. 1, pp. 1-5, 2009. 2
[56] T. J. Rivlin, The Chebyshev Polynomials. John Wiley and Sons, 1974. 13
[57] R. Servedio, "Every linear threshold function has a low-weight approximator," Computational Complexity, vol. 16, no. 2, pp. 180-209, 2007. 2, 4, 19
[58] Q. Sheng, Threshold Logic. London, New York, Academic Press, 1969. 1
[59] A. Taylor and W. Zwicker, "A Characterization of Weighted Voting," Proc. of the AMS, vol. 115, no. 4, pp. 1089-1094, 1992. 1
[60] E. Viola, "The sum of d small-bias generators fools polynomials of degree d," Computational Complexity, vol. 18, no. 2, 2009, pp. 209-217. 2
[61] E. Viola, "Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates," SIAM Journal on Computing, vol. 36, no. 5, pp. 1387-1403, 2007. 2

[^0]: *An extended abstract of this work appeared in the Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS) [17].
 ${ }^{\dagger}$ Research supported by NSF grants CCF-0728736, CCF-0525260, and by an Alexander S. Onassis Foundation Fellowship. Email: ilias@cs.columbia.edu
 ${ }^{\ddagger}$ Email: parik@microsoft.com
 ${ }^{\text {§ }}$ Research supported by DARPA award HR0011-08-1-0069. Email: rjaiswal@cs.columbia. edu
 ${ }^{\text {I }}$ Supported in part by NSF grants CCF-0347282, CCF-0523664 and CNS-0716245, and by DARPA award HR0011-08-1-0069. Email: rocco@cs.columbia.edu
 ${ }^{11}$ Supported by NSF grant CCF-0845003. This work was partially done while the author was a postdoctoral fellow at Columbia University, supported by grants NSF award CCF-0347282 and NSF award CCF-0523664. Email: viola@ccs.neu.edu.

