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Abstract: We give a stripped-down, self-contained exposition of selected results in additive
combinatorics over the vector space Fn

2, leading to the result by Samorodnitsky (STOC
2007) stating that linear transformations are efficiently testable. In particular, we prove the
theorems known as the Balog-Szemerédi-Gowers theorem (Combinatorica 1994 and GAFA
1998) and the Freiman-Ruzsa theorem (AMS 1973 and Astérisque 1999).
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1 Introduction

Additive combinatorics is a fascinating area of mathematics that has found several applications in
theoretical computer science. In addition to the book by Tao and Vu [20], a number of expositions of
various results in additive combinatorics are now available. See, for example, the survey by Trevisan [21]
and the pointers therein.

In this survey we aim to provide a self-contained, friendly introduction to additive combinatorics.
We cover a few selected results, stripped down to the minimum needed to obtain the following result by
Samorodnitsky [17] that linear transformations are efficiently testable.
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Theorem 1.1 (Testing linear transformations (Samorodnitsky)). For all ε > 0 there is ε ′ > 0 such that
for all sufficiently large n and all functions f : Fn

2→ Fn
2 the following holds. If

Pr
x,x′∈Fn

2

[ f (x)+ f (x′) = f (x+ x′)]≥ ε ,

then there is an n×n matrix M such that

Pr
x∈Fn

2

[ f (x) = Mx]≥ ε
′ .

In the statement of this theorem, and throughout the remainder of the paper, F2 denotes the set {0,1}
with mod 2 arithmetic.

Theorem 1.1 shows that the test “pick x,x′ ∈ Fn
2 uniformly at random, and accept if f (x)+ f (x′) =

f (x + x′)” is useful to check if a function f : Fn
2 → Fn

2, given as a black-box, is close to a linear
transformation. Indeed, if f is a linear transformation, i. e., f (x) = Mx for an n× n matrix M, then
clearly the test always accepts; while on the other hand if the test accepts with probability ε then the
theorem guarantees that there is a linear transformation (given by M) that agrees with f on an ε ′ fraction
of the inputs.

This test was first proposed by Blum, Luby, and Rubinfeld [5], who analyze it for functions between
finite groups. Bellare et al. [4] later refine the analysis in the case f : Fn

2→ F2. The proofs in [5, 4] appear
to break down in the setting of Theorem 1.1 where the range of f is Fn

2.
The proof of Theorem 1.1 gives an exponential dependence of ε ′ on ε . The “polynomial Freiman-

Ruzsa conjecture” states that ε ′ is polynomial in ε [10].

To introduce the subject of additive combinatorics and motivate the following sections, let us now
informally see how the property-testing result in Theorem 1.1 follows from some known results in the
subject, which will be presented along the way.

Proof idea for Theorem 1.1. We are interested in the additive combinatorics of the graph A of the function
f :

A := {(x, f (x)) : x ∈ Fn
2} ⊆ F2n

2 .

The approach to prove the theorem is to show that A is approximately a linear space. This approach is
motivated by the observation that if A were exactly a linear space, then f would be a linear transformation,
because in this case

(x, f (x))+(x′, f (x′)) = (x+ x′, f (x)+ f (x′)) ∈ A = {(x, f (x)) : x ∈ Fn
2} ,

and so f (x)+ f (x′) must equal f (x+ x′).
We start by noting that our assumption can be written as

Pr
a,a′∈A

[a+a′ ∈ A]≥ ε . (1.1)

Next, we apply our first result in additive combinatorics, namely the Balog-Szemerédi-Gowers (BSG)
theorem [2, 9]. This theorem states that if a set A satisfies (1.1) then it contains a large subset that is
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nearly closed under addition. More formally, defining 2S := {a+a′ : a,a′ ∈ S}, the BSG theorem says
that there is a set A′ ⊆ A of large size |A′| ≈ |A| such that

|2A′| ≈ |A′| . (1.2)

(From Equation (1.1) we cannot in general conclude that |2A| ≈ |A|, which motivates considering the
subset A′ ⊆ A.)

At this point we apply our second result in additive combinatorics, namely Ruzsa’s theorem [16],
which is a finite-field analogue of an older theorem due to Freiman [8]. This theorem says that if a set A′

satisfies (1.2) then it is approximately a linear space. Specifically, denoting by span(A′) the vector space
spanned by elements of A′, Ruzsa’s theorem states that

|span(A′)| ≈ |A′| . (1.3)

In other words, Ruzsa’s theorem says that if linear combinations of length 2 (i. e., 2A′) do not buy much
size, then neither do linear combinations of arbitrary length (i. e., span(A′)).

Finally, even though A′ may not be a linear space, from (1.3) one can still draw the conclusion that f
is close to a linear transformation, thus concluding the proof of the theorem.

Before discussing how this exposition is organized, we stress that it focuses on additive combinatorics
in the additive group of the vector space Fn

2. This choice is motivated by the importance of this space to
computer science, and by the fact that the proofs of the relevant results in additive combinatorics appear
to be cleanest over Fn

2. More work is needed to extend these results to more general domains mainly
because of the need to take care of the signs (as discussed in [20], for example). With that more work,
one can extend these results as follows. An analogue of Theorem 1.1 holds over Fn

p for any fixed prime p,
see [17, Theorem 4.1]. The BSG theorem holds over any abelian group, see [20, Theorem 2.29]. The
Freiman-Ruzsa theorem holds over any abelian group with bounded torsion, see [20, Theorem 5.27].

We also mention that Green and Tao [12] have recently given a new direct proof of the combination
of the BSG and Ruzsa theorems over Fn

2 using Fourier analysis. Going back to the proof of Theorem 1.1,
their result goes directly from (1.1) to (1.3).

Organization. After some preliminaries in Section 2, we prove the BSG theorem in Section 3. In
Section 4 we prove Ruzsa’s theorem. In Section 5 we conclude the proof of the testability of linear
transformations (Theorem 1.1). Our presentation of the BSG theorem in Section 3 follows the one by
Sudakov, Szemerédi, and Vu [18], which relies on a graph-theoretic lemma regarding certain paths in
dense graphs. In Section 6 we also present the proof of the optimality of the path length of this lemma,
due to Kostochka and Sudakov [14]. This section is not needed for the proof of Theorem 1.1; we include
it to provide a more complete picture of the proof techniques we present. For the same reason, in Section 7
we present a simpler proof of the testability of linear transformations in the case in which the agreement
is large (corresponding to ε ≈ 1).

2 Preliminaries

In this work we are concerned with subsets of the vector space Fn
2, whose operation is the componentwise

addition mod 2 denoted by “+.” Throughout this survey, A denotes a subset of Fn
2.
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For sets A,B⊆ Fn
2, we denote by A+B the set {a+b : a ∈ A,b ∈ B}. For an integer ` we denote by

`A the set A+A+ · · ·+A where the number of summands is `. Finally, we denote by span(A) the span of
the elements of A, i. e., span(A) =

⋃
` `A.

We use several times the following basic counting argument, whose proof is straightforward.

Proposition 2.1. Let f : D→ S be a function, for finite sets D and S. If it holds that | f−1(s)| ≥ t for
every s ∈ S, then |S| ≤ |D|/t.

Finally, all the graphs in this paper are undirected and have no self-loops.

3 The Balog-Szemerédi-Gowers (BSG) theorem

In this section we prove the Balog-Szemerédi-Gowers (BSG) theorem [2, 9], which is stated next.

Theorem 3.1 (Balog-Szemerédi-Gowers). For all ε > 0, for all sufficiently large n and all sets A⊆ Fn
2,

the following holds. If Pra,a′∈A[a+ a′ ∈ A] ≥ ε then there is A′ ⊆ A, with |A′| ≥ (ε/3) · |A|, such that
|2A′| ≤ (6/ε)8 · |A|.

One way to think of the BSG theorem is the following. For a subset E of the cartesian product A×A,
let us denote its set of sums by ∑E := {a+ b : (a,b) ∈ E}. Then the BSG theorem says that from a
dense E ⊆ A×A such that ∑E is a subset of A and hence is small compared to |E|, we can obtain a dense
A′ ⊆ A such that |∑(A′×A′)|= |2A′| is small compared to |A′|2.

The proof that we present of the above Theorem 3.1 follows one due to Sudakov, Szemerédi, and
Vu [18]. It makes use of the following graph-theoretical statement, which does not use any property of
addition and only relies on the density of the graph. The use of the language of graph theory to prove
results in additive combinatorics has been found fruitful, and it goes back at least to Szemerédi’s theorem
on arithmetic progressions [19].

Lemma 3.2 (Sudakov-Szemerédi-Vu). Let G = (A,E) be a graph with |A|= N nodes, |E|= ε ·N2 edges.
Then there is a set A′ ⊆ A, |A′| ≥ ε ·N such that for every a,b ∈ A′ there are at least (ε/2)8 ·N3 paths of
length 4 in G from a to b.

Proof of Theorem 3.1, assuming Lemma 3.2. Consider the graph G = (A,E) on |A| nodes where two
distinct nodes are adjacent if and only if their sum is in A, i. e., E := {{a,b} : a+ b ∈ A,a 6= b}. By
assumption, |E| ≥ (ε/3) · |A|2. (For large values of n, the factor 1/3 generously accounts for the translation
between the hypothesis, which talks about pairs, and Lemma 3.2, which talks about edges.) Now let
A′ be the subset of A given by Lemma 3.2, and consider any two a,b ∈ A′. By Lemma 3.2, there are
ε ′ · |A|3 paths (a,c1,c2,c3,b) with edges in E, where ε ′ = (ε/6)8. By the definition of E, the sum of two
consecutive nodes in any path lies in A. Thus, considering the function f (x1,x2,x3,x4) := x1+x2+x3+x4,
we have that, for every a,b ∈ A′,

f (a+ c1,c1 + c2,c2 + c3,c3 +b) = (a+ c1)+(c1 + c2)+(c2 + c3)+(c3 +b) = a+b ,

for at least ε ′ · |A|3 inputs

(x1,x2,x3,x4) := (a+ c1,c1 + c2,c2 + c3,c3 +b) ∈ A4.
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Note that distinct triples (c1,c2,c3) give rise to distinct inputs (x1,x2,x3,x4), which follows from the fact
that a and b are fixed. In other words, we have shown that each element of 2A′ can be represented in at
least ε ′|A|3 different ways as a sum of 4 elements of A. Via Proposition 2.1 this leads to the following
upper bound on |2A′|:

|2A′| ≤ |A|4/(ε ′ · |A|3) ,
concluding the proof.

Proof of Lemma 3.2. The idea is to exhibit a set A′ ⊆ A such that every a ∈ A′ shares Ω(N) neighbors
with most nodes in A′. (We may think of “most” as a 0.9 fraction.) From this we infer that, for every two
nodes a,b ∈ A′, most nodes c2 in A′ share Ω(N) neighbors c1 with a and also share Ω(N) neighbors c3
with b, which implies the result. We now give the details.

For a node v ∈ G let us denote by N(v) ⊆ A the neighborhood of v. The set A′ will be a subset of
N(v′) for some v′ given by a probabilistic argument. For this argument, let us call a pair {u,w} of distinct
vertices bad if |N(u)∩N(w)| ≤ ε3 ·N. Let, moreover, v ∈ G be a uniformly distributed random node of
G. We are interested in the number of bad pairs inside N(v). Let B{u,w} be the 0/1 indicator variable
that is 1 when u,v ∈ N(v) and {u,w} is bad. For every bad pair {u,w} (not necessarily in N(v)) it holds
that {u,w} ⊆ N(v) if and only if v is a common neighbor of u and w, which by the definition of “bad”
happens with probability at most ε3. Consequently, by the linearity of expectation, we have

Ev∈A[number of bad pairs in N(v)]≤ ε
3 ·
(

N
2

)
≤ ε

3 ·N2/2 . (3.1)

Let us now denote by S(v) the set of nodes u ∈ N(v) that form a bad pair with at least ε2 ·N other nodes
w ∈ N(v). Since there are always at least |S(v)| · ε2 ·N/2 bad pairs in N(v), where the factor 1/2 comes
from the fact that each bad {u,w} is counted once for u and once for w, Equation (3.1) implies that

Ev∈A[|S(v)|]≤ (ε3 ·N2/2)/(ε2 ·N/2) = ε ·N . (3.2)

Therefore, using the fact that E[|N(v)|] = 2 · ε ·N because the graph has ε ·N2 edges, we have

Ev∈A[|N(v)\S(v)|] = E[|N(v)|]−E[|S(v)|]≥ 2 · ε ·N− ε ·N = ε ·N .

We now fix a v′ = v that maximizes the quantity |N(v) \ S(v)| and let A′ := N(v′) \ S(v′) be the corre-
sponding set; therefore |A′| ≥ ε ·N.

To see that A′ satisfies the conclusion of the lemma, consider any a,b ∈ A′. Since we removed the
nodes in S(v′), i. e., those that form a bad set with at least ε2 ·N other nodes w ∈ N(v′), both a and b form
a good pair with all but at most ε2 ·N nodes of A′. So there are at least

|A′|−2 · ε2 ·N ≥ ε ·N−2 · ε2 ·N ≥ ε
2 ·N

nodes c2 ∈ A′ that form a good set with both a and b, where the last inequality holds if we assume that
ε ≤ 1/3. (To optimize exponents, one can replace the last inequality with ε − 2ε2 ≥ ε/3.) For every
such c2 we have, by the definition of “good,” ε3 ·N choices for c1 and ε3 ·N choices for c3 such that
(a,c1,c2,c3,b) is a path in G. In total, we have at least (ε3 ·N)(ε2 ·N)(ε3 ·N) = ε8 ·N3 such paths in
G. This proves the theorem under the the assumption that ε ≤ 1/3. If ε > 1/3, the same proofs works
when ε is replaced with ε/2, which is at most 1/3 because any graph trivially has at most N2/2≥ ε ·N2

edges.
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4 Ruzsa’s theorem

In this section we prove Ruzsa’s theorem [16], which states that the span of A does not expand too much
if 2A does not.

Theorem 4.1 (Ruzsa). For all c there is c′ such that for all n and all sets A⊆ Fn
2 the following holds. If

|2A| ≤ c · |A| then |span(A)| ≤ c′ · |A|.

The core of the proof of Theorem 4.1 is the following lemma, which states that 4A does not expand
too much if 2A does not.

Lemma 4.2. For all n and all sets A⊆ Fn
2 we have |4A| ≤ 16 · (|2A|/|A|)4 · |2A|.

Proof of Theorem 4.1 assuming Lemma 4.2. We start with the following covering claim showing that we
can cover all of 4A by few translates of A: There is a set X ⊆ 3A whose size depends only on c such that
for every b ∈ 3A we have

|(X +A)∩ (b+A)| ≥ 1 . (4.1)

To prove the covering claim, initialize X to the empty set, and as long as there is some b ∈ 3A violating
(4.1), add b to X . The resulting X satisfies the intersection requirement by construction. To verify the
bound on the size of X , note that at each iteration the set X +A grows in size by |A|, but X +A ⊆ 4A
always holds, and so at the end of the process |X | is at most |4A|/|A|. By Lemma 4.2, together with our
assumption that |2A| ≤ c · |A|, it follows that this quantity depends only on c.

Now we show by induction that, for every ` ≥ 3, `A ⊆ (`− 2)X + 2A. This will conclude the
proof, as the size of X depends only on c. Specifically we obtain that span(A)⊆ span(X)+2A, and so
|span(A)| ≤ |span(X)| · |2A| ≤ 2|X | · c · |A|.

For the base case ` = 3 of the induction, take any b ∈ 3A. By (4.1), X +A intersects b+A, which
means x+a = b+a′ for some x ∈ X and a,a′ ∈ A, and so b = x+a+a′ ∈ X +2A.

For the inductive step, write

`A = (`−1)A+A⊆ (`−3)X +2A+A⊆ (`−2)X +2A ,

where we apply the inductive hypothesis and then the base case.

Proof of Lemma 4.2. We start with the following covering claim, whose statement and proof are very
similar to those of the covering claim in the proof of Theorem 4.1 above. (We omit the proof.) For any
A⊆ Fn

2 there is a set X ⊆ A of size |X | ≤ 2 · |2A|/|A| such that for every b ∈ A we have

|(X +A)∩ (b+A)| ≥ |A|/2 .

As a consequence of the covering claim, we have that for every b ∈ A there are at least |A|/2 triples
(a0,a1,x)∈ A×A×X such that b = x+a0+a1. This is because each element y∈ (X +A)∩(b+A) gives
rise to, say, one such triple with a1 := b+y. (This last requirement makes all the triples distinct.) Now we
use this implication to prove the lemma. The idea is to represent each element w of 4A in at least (|A|/2)2

distinct ways as a sum of a quintuple (c,c′,c′′,x,x′) with c,c′,c′′ ∈ 2A and x,x′ ∈ X ; then an application
of Proposition 2.1 completes the proof. More specifically, write w ∈ 4A as w = z+ z′ for z,z′ ∈ 2A. We
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first represent each of z and z′ separately in many ways as a sum of a triple, then we represent the pair
(z,z′) in many ways as a sum of a sextuple, and finally we map the sextuples in a one-to-one fashion into
quintuples that represent the sum z+ z′ = w in many ways. We now give the details.

Fix an arbitrary w ∈ 4A, and fix some z,z′ ∈ 2A for which w = z+ z′. Further write z = b0 +b1, for
b0,b1 ∈A. By the above, there are at least |A|/2 triples (a0,a1,x)∈A×A×X such that z= b0+a0+a1+x.
Since b0 +a0 ∈ 2A, there are at least |A|/2 triples (c,a1,x) ∈ (2A)×A×X such that z = c+a1 + x. By
repeating the argument for z′ = b′0 +b′1, we obtain that there are at least (|A|/2)2 sextuples

(c,c′,a1,a′1,x,x
′) ∈ (2A)× (2A)×A×A×X×X

such that
z = c+a1 + x ,

z′ = c′+a′1 + x′ .

Note that, in any solution to the above system, a1 and a′1 are uniquely determined once c,x,c′,x′ are
chosen (as z and z′ are fixed). So, two different solutions cannot differ only in the two coordinates ranging
in A. In particular, the map that takes a solution

(c,c′,a1,a′1,x,x
′) ∈ (2A)× (2A)×A×A×X×X

to the quintuple
(c,c′,a1 +a′1,x,x

′) ∈ (2A)× (2A)× (2A)×X×X

is one-to-one. Moreover, such a quintuple sums up to z+ z′ = w.
Therefore, similar to the proof of Theorem 3.1, we have a function

f (x1,x2,x3,x4,x5) := x1 + x2 + x3 + x4 + x5

such that, for every element w ∈ 4A, there are at least (|A|/2)2 distinct inputs y such that f (y) = w. By
Proposition 2.1, we have

|4A| ≤ |2A|3 · |X |2 ·4/|A|2 ≤ 16 · (|2A|/|A|)4 · |2A| ,

where we are using the fact, established at the beginning of this proof, that |X | ≤ 2 · |2A|/|A|.

Remark 4.3 (On the loss in parameters). We remark that one can eliminate the factor 16 in Lemma 4.2
by applying the lemma as stated to the set A×A× ·· ·×A. (See [20, Corollary 2.18], for example.)
Turning back to the main result of this section, Theorem 4.1, we note that the current best upper bound on
c′ is obtained by Green and Tao [11] who prove c′ ≤ 22c modulo lower order factors. Taking A to be a set
of 2c independent vectors one notes that c′ ≤ 22c is the best possible, and in particular that c′ in general
must be exponential in c.

However, if one is willing to settle for the span of a large subset A′ of A, rather than all of A, in the
same spirit as the BSG theorem, then it is conjectured [10] that c′ can be made polynomial in c. This
would imply a polynomial dependence of ε ′ on ε in Theorem 1.1.
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5 Obtaining a linear transformation

In this section we conclude the proof of the property testing result in Theorem 1.1. The last component
of the proof is the following linear-algebraic fact that states that if the span of (a large subset of)
{(x, f (x)) : x ∈ Fn

2} does not grow much, then f is approximately a linear transformation.

Lemma 5.1. For all ε > 0, for all sufficiently large n, all functions f : Fn
2 → Fn

2, and all sets A ⊆
{(x, f (x)) : x ∈ Fn

2} ⊆ F2n
2 , the following holds. If

ε ·2n ≤ |A| ≤ |span(A)| ≤ 2n/ε ,

then there is an n×n matrix M such that

Pr
x∈Fn

2

[ f (x) = Mx]≥ ε
3/3 .

Proof. We start by finding an affine transformation T x+u with the required property, then we observe
how this implies the existence of a linear transformation. Let v1,v2, . . . ,va be a basis of span(A). By
definition, every vector (x, f (x)) ∈ A is a linear combination of the vi, i. e., for every (x, f (x)) ∈ A there
exists w ∈ Fa

2 such that, in matrix form,

x

f (x)

= v1 v2 · · · va ·w .

Let us now add to our collection new vectors va+1,va+2, . . . ,vk so that the projection onto the first n
coordinates of span({v1, . . . ,vk}) is all of Fn

2. In order to bound k, note that since A⊆ {(x, f (x)) : x∈ Fn
2},

the projection of A on the first n coordinates has size ≥ ε ·2n. Iteratively adding vectors that double this
projection, we see that we can choose k−a≤ log(1/ε). Also note that a≤ n+ log(1/ε) by assumption,
hence k≤ n+2log(1/ε). Let Vk be the resulting matrix of the vectors v1, . . . ,vk. By performing Gaussian
elimination on the columns, we can find an invertible transformation that brings Vk into the following
canonical form:

I 0

T U

,

where I is the n×n identity matrix, T is also n×n, and U is n× (k−n). This is possible because the
projection of the vectors v1, . . . ,vk onto the first n coordinates spans Fn

2. In other words, there is an

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 3 (2011), pp. 1–15 8

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


SELECTED RESULTS IN ADDITIVE COMBINATORICS

invertible k× k matrix L such that Vk ·L is in the canonical form. Since L is invertible, we still have the
property that for every vector (x, f (x)) ∈ A there exists w ∈ Fk

2 such that

x

f (x)

=

I 0

T U

·w .

This means that the first n coordinates of w must equal x. Consequently, for every (x, f (x)) ∈ A it holds
f (x) = T x+Uz, for some z of length k−n ≤ 2log(1/ε). Therefore, by an averaging argument, there
exists a fixed u =Uz so that

Pr
x∈Fn

2

[ f (x) = T x+u]≥ ε ·2−(k−n) ≥ ε
3 ,

where we also use the fact that the projection of A on the first n coordinates has size ≥ ε ·2n.
This gives us an affine transformation, and in what follows we show how one can get a linear

transformation, i. e., get rid of the ‘u’ above, with only a slight loss in probability. We claim that

(∃i≤ n)
[

Pr
x∈Fn

2

[ f (x) = T x+u | xi = 1]≥ 0.99 · ε3
]
. (5.1)

Such a claim lets us construct a linear transformation M by summing u to the i-th column of T (in other
words, Mx = T x+ xi ·u), concluding the proof of the lemma. The different factor in the conclusion of the
lemma generously accounts for the probability that xi = 1.

It remains to prove (5.1). For this, let X be the uniform distribution over Fn
2 and let Y be the distribution

on Fn
2 that is obtained by selecting a random index i≤ n, setting to 1 the i-th bit, and choosing the other

bits uniformly at random. We would like to argue that there is not much difference in working with X
or Y . This is useful because if we work with Y we easily obtain (5.1) by an appropriate choice of the
index i in the definition of Y . To formalize this, consider the statistical distance between X and Y , i. e., the
maximum over all sets S of |Pr[X ∈ S]−Pr[Y ∈ S]|. (While we are interested in S := {x : f (x) = T x+u},
the following applies to any S.)

Note that this distance is maximized by the set S̄ of strings of weight at most n/2, which is the set of
strings having larger probability according to X than Y . Also, by Stirling’s approximation [6, Lemma
17.5.1], both Pr[X ∈ S̄] and Pr[Y ∈ S̄] are 1/2+Θ(1/

√
n). Therefore for large n their distance is at most

0.01 · ε3, and in particular
Pr

x∈Y
[ f (x) = T x+u]≥ 0.99 · ε3 ,

which proves (5.1).

We can now paste everything together for a quick conclusion of the proof of Theorem 1.1 about
testability of linear transformations.

Proof of Theorem 1.1. The proof amounts to defining A := {(x, f (x)) : x ∈ Fn
2} ⊆ F2n

2 and composing
Theorems 3.1 and 4.1, and Lemma 5.1.
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6 Optimality of the path length in Lemma 3.2

In this section we discuss the optimality of the path length in the graph-theoretic Lemma 3.2 that is the
core of the proof of the BSG theorem. Recall that the lemma establishes that every dense graph contains
a large subset of nodes such that every two nodes in the subset are connected by many paths of length
4. It is natural to ask if the path length can be reduced from 4, and one can quickly see that it cannot
be set to 3: the graph could be bipartite, for instance, and any set of at least 3 nodes would have two
nodes on the same side which cannot be connected by any path of odd length 3. We now state and prove
a result by Kostochka and Sudakov [14] that also rules out path length 2. Thus, path length 4 is optimal
in Lemma 3.2.

Theorem 6.1 (Kostochka-Sudakov). For all ε > 0 there exist arbitrarily large values of N such that there
is a graph on N vertices with N2/4 edges such that in every set of ε ·N nodes there are two nodes with
less than ε ·N common neighbors.

In fact, this is true for all sufficiently large values of N but we only prove it for certain powers of 2.

6.1 Proof of Theorem 6.1

Let n be a sufficiently large even integer, and let N := 2n. Identify the set of N nodes with the binary
strings of length n. Let ∆(u,v) denote the Hamming distance between nodes u and v, i. e., the number of
positions i such that ui 6= vi, and connect two nodes u 6= v if and only if ∆(u,v)≤ n/2. Each node has at
least N/2 neighbors, and thus the graph has at least N(N/2)/2 = N2/4 edges. We now show that it also
has the desired property. The main idea is that any set of ε ·N nodes must contain two nodes at Hamming
distance at least n−O(

√
n), but two such nodes have less than ε ·N common neighbors.

We now present the formal proof, starting with the next claim that gives us two distant nodes.

Claim 6.2. Let S be any set of ε ·N nodes. Then S contains two nodes at Hamming distance at least
n− c ·

√
n, where c is a constant that only depends on ε .

Let us give some details on how the claim is proved. (For a somewhat different argument, see [22].)
The proof will use the following lemma from a set of notes by Barvinok. The history of this lemma

goes back to Harper [13], and similar lemmas can be found elsewhere, see for example [15, Theorem
14.2.3]. The following formulation is particularly useful to us because it is not limited to sets of measure
1/2.

Lemma 6.3 (Corollary 4.4 in [3]). Let S⊆ Fn
2 be a non-empty set. Then, for any b > 0, we have

|{x ∈ Fn
2 : ∀y ∈ S ∆(x,y)≥ b

√
n}|

2n ≤ 2n

|S|
e−b2

.

Proof sketch of Claim 6.2. First, note that if ε > 1/2 then the claim is easily proved with maximal
Hamming distance n, that is, we can find two nodes u and v such that ∆(u,v) = n. This is because we can
pair off each node with its complement at distance n, and a set S of size |S| ≥ ε ·N > N/2 must take both
nodes from some pair.
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To handle the case ε ≤ 1/2, we apply the argument to the set S′ of nodes u such that there exists
v ∈ S at distance ∆(u,v)≤ b ·

√
n. Specifically, by applying Lemma 6.3 with a large enough constant b

depending only on ε , we obtain that this set S′ has size > 2n/2. We can now apply the previous “ε > 1/2”
argument to S′, from which the claim follows with c = 2 ·b.

Now that we have these two nodes at distance n− c ·
√

n, we conclude the proof of Theorem 6.1 by
showing that the number of their common neighbors is less than ε ·N. Without loss of generality, let
these two nodes, which we denote by u1 and u2, be the all-zero vector and the vector that is 0 exactly in
the first k := c ·

√
n coordinates, respectively. Let us now see what nodes are common neighbors of u1 and

u2. Let X ∈ Fn
2 be a node, and let P = P(X) be its number of 1’s in the first k coordinates, and Q = Q(X)

its number of 1’s in the other n− k coordinates. The node X is a common neighbor of u1 and u2 precisely
when P+Q≤ n/2 and P+(n− k−Q)≤ n/2. By combining the inequalities, we obtain that

n/2− k+P≤ Q≤ n/2−P , (6.1)

i. e., for a given P, if X is a neighbor of both u1 and u2 then Q has to lie in a set of k−2 ·P+1 integers.
The intuition for the rest of the proof is as follows. A typical P is within O(

√
k) of k/2, and by (6.1)

such a P constricts Q to lie in a set of k−2 ·P+1 = O(
√

k) integers. As is well known, by Stirling’s
approximation [6, Lemma 17.5.1] the probability that Q is equal to any particular integer is O(1/

√
n− k).

Since k = O(
√

n) and n is large, we have O(1/
√

n− k) = o(1/
√

k), and so by a union bound Q falls in
the set of O(

√
k) integers with probability tending to 0, and this proves the theorem.

More formally, let d = d(ε) be a sufficiently large constant to be determined later. Let us choose a
random node X , and let P = P(X) and Q = Q(X) respectively denote the Hamming weight of its first k
and last n− k bits. We have:

Pr
P,Q

[ (6.1) holds ] ≤ Pr
Q

[
(6.1) holds

∣∣∣|P− k/2| ≤ d ·
√

k
]
+Pr

P

[
|P− k/2|> d ·

√
k
]

≤ 2 ·d ·
√

k ·Pr
Q
[Q = (n− k)/2]+ ε/2

≤ O(d ·
√

k/
√

n− k)+ ε/2

< ε .

To bound the term
Pr
Q

[
(6.1) holds

∣∣∣|P− k/2| ≤ d ·
√

k
]

we use a union bound (where actually a factor 2 could be saved noting that if P > k/2 then (6.1) does not
hold) and the fact that PrQ [Q = (n− k)/2]≥ PrQ [Q = (n− k)/2+ r] for any r ∈ R. To bound the term

Pr
P

[
|P− k/2|> d ·

√
k
]

we apply a Chernoff Bound (see, e. g., [7]), choosing d = d(ε) to be sufficiently large. Later, we use
Stirling’s approximation [6, Lemma 17.5.1] to bound PrQ [Q = (n− k)/2]. Finally, the last inequality
holds for sufficiently large n recalling that k = c ·

√
n.
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7 Testing linear transformations when the agreement is large

In this section we show a simpler proof of Theorem 1.1 in the case in which the agreement is large. This
proof was communicated to us by Shachar Lovett; it uses the ideas in [1].

Theorem 7.1. For all γ ∈ [0,1/8), all n, and all functions f : Fn
2→ Fn

2, the following holds. If

Pr
x,x′∈Fn

2

[ f (x)+ f (x′) = f (x+ x′)]≥ 1− γ ,

then there is an n×n matrix M such that

Pr
x∈Fn

2

[ f (x) = Mx]≥ 1−2γ .

The constant 2 in Thm 7.1 can be somewhat reduced at the cost of a more complicated proof.

7.1 Proof of Theorem 7.1

Define g(x) to be the “majority vote,” i. e., a value that maximizes Pry[ f (x+ y)+ f (y) = g(x)]. First, we
claim that

Pr
x
[ f (x) 6= g(x)]≤ 2 · γ .

To see this, note that
Pr
x
[Pr

y
[ f (x) 6= f (y)+ f (x+ y)]≥ 1/2]≤ 2 · γ ,

for else the assumption is contradicted. So, for all but a 2 · γ fraction of x, we have that

Pr
y
[ f (x+ y)+ f (y) = f (x)]>

1
2

and consequently g(x) = f (x).
To complete the proof, it remains to see that g is linear. The first step is to show that the majority in

the definition of g is always overwhelming.

Claim 7.2. For every x, Pry[g(x) 6= f (x+ y)+ f (y)]≤ 2 · γ .

Proof. By the union bound, we have

Pr
y,z
[ f (x+ y)+ f (y) 6= f (x+ z)+ f (z)]

≤ Pr
y,z
[ f (y)+ f (z) 6= f (y+ z)]+Pr

y,z
[ f (x+ y)+ f (x+ z) 6= f (y+ z)]≤ 2 · γ .

So there is a fixed z such that Pry[ f (x+ y)+ f (y) 6= f (x+ z)+ f (z)] ≤ 2 · γ . Since γ < 1/4, g(x) =
f (x+ z)+ f (z).

To see that g is linear, fix any x,x′, choose y,y′ uniformly at random, and consider the following 5
equations (3 rows and 2 columns):
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g(x) = f (x+ y) + f (y)
+ +

g(x′) = f (x′+ y′) + f (y′)
= =

g(x+ x′) = f (x+ x′+ y+ y′) + f (y+ y′) .

By applying Claim 7.2 to the rows, and the theorem’s hypothesis to the columns, and using a union bound,
we see that with probability at least 1−3 ·2 ·γ−2 ·γ = 1−8 ·γ > 0 all the 5 equations hold, which means
that g(x)+g(x′) = g(x+x′). Since x and x′ were arbitrary, g is linear and one can write g(x) = Mx for an
n×n matrix M.
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