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How to Store a Random Walk

Emanuele Viola∗ Omri Weinstein† Huacheng Yu‡

Abstract

Motivated by storage applications, we study the following data structure problem: An encoder wishes

to store a collection of jointly-distributed files X := (X1, X2, . . . , Xn) ∼ µ which are correlated

(Hµ(X) ≪
∑

i Hµ(Xi)), using as little (expected) memory as possible, such that each individual file

Xi can be recovered quickly with few (ideally constant) memory accesses.

In the case of independent random files, a dramatic result by Pǎtraşcu (FOCS’08) and subsequently

by Dodis, Pǎtraşcu and Thorup (STOC’10) shows that it is possible to store X using just a constant

number of extra bits beyond the information-theoretic minimum space, while at the same time decoding

each Xi in constant time. However, in the (realistic) case where the files are correlated, much weaker

results are known, requiring at least Ω(n/poly lgn) extra bits for constant decoding time, even for

“simple” joint distributions µ.

We focus on the natural case of compressing Markov chains, i.e., storing a length-n random walk on

any (possibly directed) graph G. Denoting by κ(G,n) the number of length-n walks on G, we show that

there is a succinct data structure storing a random walk using lg2 κ(G,n) + O(lg n) bits of space, such

that any vertex along the walk can be decoded in O(1) time on a word-RAM. If the graph is strongly

connected (e.g., undirected), the space can be improved to only lg2 κ(G,n)+5 extra bits. For the harder

task of matching the point-wise optimal space of the walk, i.e., the empirical entropy
∑n−1

i=1 lg(deg(vi)),
we present a data structure with O(1) extra bits at the price of O(lg n) decoding time, and show that any

improvement on this would lead to an improved solution on the long-standing Dictionary problem. All

of our data structures support the online version of the problem with constant update and query time.
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1 Introduction

Consider the following information-retrieval problem: an encoder (say, a Dropbox server) receives a

large collection of jointly-distributed files X := (X1, X2, . . . , Xn) ∼ µ which are highly correlated,

i.e.,1

Hµ(X) ≪
∑

i

Hµ(Xi), (1)

and needs to preprocess X into as little (expected) memory as possible, such that each individual file Xi

can be retrieved quickly using few (ideally constant) memory accesses. This data structure problem has

two naiive solutions: The first one is to compress the entire collection using Huffman (or Arithmetic)

coding, achieving essentially optimal space s = Hµ(X) + 1 bits (in expectation), but such entropy-

coding schemes generally require decompressing the entire file even if only a single file Xi needs to be

retrieved. The other extreme is to compress each file separately, achieving (highly) suboptimal space

s ∼
∑

iHµ(Xi) + n ≫ Hµ(X) at the upshot of constant decoding time t = O(1). Is it possible to get

the best of both worlds (time and space), i.e., a locally-decodable data compression scheme? 2

This problem is motivated by large-scale storage applications. The proliferation in digital data be-

ing uploaded and analyzed on remote servers is posing a real challenge of scalability in modern storage

systems. This challenge is incurred, in part, by the redundancy of maintaining very large yet low-

entropy datasets. At the same time, in many modern storage applications such as genome sequencing

and analysis, real-time financial trading, image processing etc., databases are no longer merely serv-

ing archival purposes – data needs to be continually accessed and manipulated for training, predic-

tion and real-time statistical decision making [TBW18, HBB+18, GPL+00, THOW16, CS00]. This

inherent tension between compression and search, i.e., the need to perform local computations and

search over the compressed data itself without first decompressing the dataset, has motivated the de-

sign of compressions schemes which provide random access to individual datapoints, at a small com-

promise of the compression rate, giving rise to the notion of locally-decodable source coding (LDSC)

[Pat08, DLRR13, MHMP15, MCW15, TBW18]. Local decodability is also a crucial aspect in distributed

file systems, where the energy cost of random-accessing a memory address is typically much higher than

that of sending its actual content, especially in SSD hardware [APW+08].

There is a long line of work successfully addressing the LDSC problem in i.i.d or nearly-i.i.d settings

(i.e., when (1) holds with equality or up to ±o(n) additive factor [Pag02, BMRV02, GRR08, Pat08,

DPT10, MCW15, MHMP15, TBW18, BN13]), where succinct data structures are possible. In contrast,

the correlated case (1) is much less understood (more on this in Sections 1.3 and 4.2). Clearly, the

aforementioned tradeoff between compression and search is all the more challenging (yet appealing)

when the dataset exhibits many similarities/correlations (i.e., Hµ(X) ≪
∑

iHµ(Xi)), and this is indeed

the reality of a large portion of digital media [WSY+16]. Once again, joint-compression of the entire

dataset is information-theoretically superior in terms of minimizing storage space, but at the same time,

global compression, by nature, extinguishes any “locality” in the original data, making it useless for

random-access applications.

Unfortunately, a simple observation (see Proposition 1) shows that the general LDSC problem in (1)

is a “complete” static data structure problem (in the cell-probe model), in the sense that any data structure

problem P (with an arbitrary set of n database queries) can be “embedded” as an LDSC problem on

some joint distribution µ = µ(P). This observation implies that locally-decodable data compression is

generally impossible, namely, for most low-entropy distributions µ on n files (Hµ := Hµ(X) ≪ n), any

data structure requires either near-trivial storage space s & n1−o(1) or decoding time t ≥ (Hµ)
1−o(1)

for each file (An explicit hard example is the family of (Hµ)-wise independent distributions, for which

1Hµ(X) denotes the Shannon entropy of X ∼ µ
2Of course, one could consider a combination of the two solutions by dividing the files into blocks of size ∼ t, and compressing

each one optimally, but this method can in general be arbitrarily lossy in entropy (space) when the blocks are correlated.

1



our reduction implies t ≥ Ω(lgHµ) retrieval time unless super-linear s = ω(Hµ) storage space is used).

These unconditional impossibility results naturally raise the question:

Which statistical properties of low-entropy distributionsµ facilitate an efficient LDSC scheme

with space O(Hµ(X)), in the word-RAM model?

Perhaps the most basic family of low-entropy joint distributions is that of Markov chains, which mod-

els “time-decaying” correlations in discrete-time sequences. Ergodicity is a standard statistical model

in many realistic datasets (e.g., financial time-series, DNA sequences and weather forecasting to men-

tion a few [THOW16, CS00, GY07]). We study the LDSC question on Markov chains, captured by the

problem of storing a length-n random walk on (directed or undirected) graphs of finite size. Our data

strucutres greatly improve on previously known time-space tradeoffs for Markov chains obtained via

“universal compression” (e.g. [DLRR13, TBW18], see elaboration in Section 1.3), and also efficiently

support the dynamic version of the problem where the walk evolves step-by-step in an online fashion.

Throughout the paper, all logarithms are base 2 unless otherwise stated.

1.1 Main Results

To build intuition for the problem, let G be an undirected d-regular graph of finite (but arbitrarily large

constant) size, and consider a random walk W = (V0, V1, V2, . . . , Vn) on G starting from a random

vertex (for simplicity), where Vi ∈ [|G|] denotes the ith vertex vi visited in the walk. Excluding the

first vertex V0 for convenience of notation, the joint entropy of W is clearly H(W ) = lg |G| + n lg d,

whereas the sum-of-marginal entropies is

n
∑

i=0

H(Vi) = (n+ 1) lg |G| ≫ n lg d (2)

since each Vi is marginally uniform (as G was assumed to be regular and we started from a uniform ver-

tex). This simple instance already captures an interesting case of the LDSC problem: The information-

theoretic minimum space for storing the walk (lg |G| + n lg d bits) can be achieved by storing for each

vertex vi in the walk the next outgoing edge (when d is not a power of 2 we can use arithmetic coding to

compress the entire sequence jointly with 1 bit loss in space). In either case, such encoding does not en-

able random access: retrieving vi requires “unfolding” the walk all the way to the start, taking t ∼ Ω(n)
time in the worst case (by preprocessing how to unfold consecutive lg n steps, the decoding time can

be improved to Ω(n/ lgn)). The other extreme is to store the walk explicitly (storing Vi using ⌈lg |G|⌉
bits), facilitating O(1) decoding time, at the price of highly redundant space (at least the LHS of (2)). Of

course, it is possible to combine the two approaches and compress each t-step subwalk optimally, losing

at most ∼ lg(|G|/d) bits per block, so that decoding time is O(t/w) and storage is suboptimal by an

additive term of r = O|G|(n/t) bits, where r is the redundancy of the data structure. This linear tradeoff

implies, for example, that if we wish to decode each vertex in constant time, the redundancy of the data

structure is r ∼ n lg(|G|/d)
lgn on a word-RAM with word-size w = Θ(lg n).

We show that at the price of r = 3 extra bits of redundancy, each vertex in the walk can be decoded

in constant time, when the underlying graph is d-regular for any d (not necessarily a power of 2):

Theorem 1 (Informal). Given a walk (v0, . . . , vn) in G, there is a succinct cell-probe data structure

using lg |G|+ n lg d+ 3 bits of memory, supporting retrieval of any vertex vi (i ∈ [n]) in constant time,

assuming word-size w ≥ Ω(lg n). Moreover, the data structure can be implemented on a word RAM,

assuming a precomputed3 ℓ-bit look-up table, supporting vertex retrievals in O( lg lgn
lg lg ℓ ) time.

Dealing with general (directed, non-regular) graphs is fundamentally more challenging, the main

reason being that: (a) the stationary distribution of non-regular graphs is not uniform; (b) the number

3This lookup table only contains precomputed information about the graph G and does not depend on the input walk

(v0, . . . , vn). If we are storing multiple walks, it can be shared across instances, hence has a small “amortized” cost.
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of sub-walks between any two vertices (u, v) is not fixed when the graph is non-regular or directed,

i.e., the distribution on sub-walks is again nonuniform. (We elaborate why uniformity is crucial for

succinct solutions and how we resolve this challenge in the following Section 1.2). Intuitively, this

means that if we want our space to (roughly) match the entropy of the walk, then for non-regular graphs

variable-length coding must be used, making decoding in constant-time very challenging (as the memory

locations corresponding to substrings become unpredictable).

To this end, it is natural to consider two space benchmarks for general graphs. The first benchmark

is the point-wise optimal space for storing the walk v = (v0, . . . , vn), i.e., its empirical entropy

lg |G|+
n−1
∑

i=0

lg(deg
G
(vi)), (3)

which is clearly the information-theoretic minimum space (as the expectation of this term over a random

walk V is precisely the Shannon entropy of the walk). A somewhat more modest worst-case space

benchmark (depending on how “non-regular” the graph G is), is

lg κ(G,n) = lg(1⊤AG
n
1) (4)

where κ(G,n) is the number of length-n walks on G and AG is the adjacency matrix of G. Note that for

regular graphs the two benchmarks (3) and (4) are the same, hence Theorem 1 is best possible.

Our first result for general graphs, building on the work of [Pat08], is a data structure with O(1) extra

bits beyond the point-wise optimal space, and O(lg n) decoding time on a word-RAM.

Theorem 2 (Point-wise compression for general graphs, Informal). Given a length-n walk (v0, . . . , vn)

on any directed graph G, there is a succinct data structure that uses lg2 |G|+
∑n−1

i=0 lg(deg(vi))+O(1)
bits of space, and retrieves any vertex vi in O(lg n) time on a word-RAM, assuming a precomputed4

lookup-table of size ℓ = Õ(n6).

Nevertheless, we show that if one is willing to match the worst-case space benchmark (4), then

constant query time is possible for any graph G. This is our main result and the technical centerpiece of

the paper. We state this result in its most general form.

Theorem 3 (Worst-case compression for general graphs, Informal). Given a length-n walk on any

strongly connected directed graph G, there is a data structure that uses lg(1⊤An
1) + O(1) bits of

space, and retrieves any vertex vi in O( lg lgn
lg lg ℓ ) time on a word-RAM, assuming a precomputed lookup

table of size ℓ. For general directed graphs, the same holds albeit with O(lg n) bits of redundancy.

It is natural to ask whether constant-time decoding is possible even with respect to the point-wise

space benchmark. Our final result shows that any improvement on Theorem 2 would lead to an improve-

ment on the long-standing succinct Dictionary problem [Pag02, Pat08]: We present a succinct reduction

from Dictionary to storing a random walk on some non-regular (directed) graph, under the technical

restriction that all marginal symbol frequencies in the input dictionary string are powers of two 5.

Theorem 4. Let D be a succinct cell-probe data structure for storing a walk (v1, . . . , vn) over general

(directed) graphs G, using
∑

i lg(deg(vi)) + r bits of space, and query time t for each vi. Then for any

constant-size alphabet Σ, there is a succinct dictionary storing x ∈ Σn, with space H0(x) + r bits and

query time query time t, where H0(x) is the zeroth-order empirical entropy of x. This reduction holds

for any input string x with empirical frequencies which are inverses of powers of 2 lower bounded by a

constant.

4Once again, this lookup table is independent of the walk and only contains precomputed information about G for decoding,

hence its “amortized” space cost is small as it is shared across instances.
5This seems a minor condition when dealing with arbitrary (nonuniform) priors µ, as the “hard” part is variable-length coding.
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This reduction formalizes the intuition that the bottleneck in both problems is variable-length coding

(unlike the case of regular graphs), and provides evidence that Theorem 2 might be optimal (Indeed, in

the bit-probe model (w = 1), it is known that any succinct Dictionary with constant or even r = O(lg n)
redundancy, must have Ω(lg n) decoding time [Vio12]. For the related succinct Partial Sums problem

[PV10], an Ω(lg n) lower bound holds even in the cell-probe model (w = Θ(lgn))).

Remark 1. It is noteworthy that the assumption throughout the paper that the underlying graph G is of

finite size is necessary: A length-n random walk on the undirected n-cycle is equivalent to the succinct

Partial Sums problem, for which there is a cell-probe lower bound of t ≥ Ω(lg n/ lg lgn) for constant

redundancy [PV10]. A key feature that circumvents this lower bound in our proofs is the fact that the

walk mixes fast (which doesn’t happen on the n-cycle). This justifies the restriction to fixed sized graphs.

1.2 Technical Overview

At a high level, our data structures use a two-level dictionary scheme to encode the random walk. Let us

first focus on d-regular graphs G. To store a walk on G, we begin by storing the set of vertices Vi that

are Θ(lgn)-far apart in the walk (called the milestones) using the succinct dictionary of [DPT10] (which

we will refer to as the DPT dictionary in the following). The DPT dictionary is able to store any string

z ∈ Σk with only constant redundancy (k lg |Σ| + O(1) bits in total) and allow one to retrieve each zi
in constant time (Theorem 5). In particular, when the string z is drawn from the uniform distribution,

its space usage matches the input entropy. When G is regular (and hence has a uniform stationary

distribution), this is indeed the case, as a standard mixing-time argument implies that the milestones are

very close to being uniform and independent.

The second important feature of milestones is that they break the dependence across the remaining

vertices in the walk. That is, the milestones partitions the walk into “blocks” Bj of length Θ(lg n). The

Markov property of a random walk implies that these blocks of vertices are independent conditioned

on the milestones. Thus, the next idea is to use another (separate) dictionary to encode the vector of

intermediate blocks (B1, . . . , BO(n/ lgn)) ∈ wO(n/ lg n), conditioned on the milestones. Again because

of the mixing-time argument, for each block Bj , the number of possible subwalks in the block given

the two milestones Vi and Vi+O(lg n) is always approximately d|Bi|/|G|, regardless of the actual values

that Vi and Vi+O(lg n) take. Hence, one can encode each subwalk using an integer no larger than |Σ| =

(1+ o(1))d|Bi|/|G|, and the second dictionary is used to succinctly store these integer encodings. When

the input is uniformly random, these integer encodings are uniform and independent, hence DPTmatches

the entropy. Also, note that since each block Bj is of length O(lg n), it fits in a constant number of

words (as |G| = O(1)). To see why a vertex between two milestones Vi and Vi+Θ(lg n) can be retrieved

efficiently, note that the DPT dictionary allows us to retrieve each symbol in the vector of milestones

in constant time. Therefore, it suffices to retrieve Vi, Vi+Θ(lg n) as well as the block Bj between them

using a constant number of probes to both dictionaries. This gives us enough information to recover the

entire subwalk from Vi to Vi+Θ(lg n), and in particular, to recover the queried vertex. Although the above

argument assumes a uniformly random input, we emphasize that our data structure works for worst-case

input and queries.

Dealing with general graphs is a different ballgame, and the above construction does not obtain the

claimed worst-case space bound. The main reason is that for a uniformly sampled random length-n
walk, the marginal distribution of each (milestone) Vi may be arbitrary and non-uniform. Hence, we

cannot apply the DPT dictionary directly on the milestone-vector, as for non-uniform vectors its space

usage would be much higher than the input entropy. To overcome this issue, we use an idea inspired

by rejection-sampling: We consider not only each milestone, but also the subwalks near it (with close

indices). We partition the set of subwalks into bundles, such that for a uniformly random input, the

bundle that contains the given subwalk is uniform. More precisely, for each milestone Vi,

1. a bundle is a subset of length-2l subwalks that the input (Vi−l, Vi−l+1, . . . , Vi+l) can take the

value, for l = Θ(lg n);
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2. all subwalks in the same bundle have an identical middle vertex Vi = vi for some vi ∈ [|G|];

3. each bundle consists of approximately the same number of subwalks, i.e., for a uniformly random

input, the bundle that contains it is roughly uniform;

4. for different Vi, the bundles are almost “independent.”

We prove the existence of such good partition to subwalks using a spectral argument which helps control

the number of subwalks delimited by any fixed pair of vertices (u, v). Given such bundling, instead

of using DPT to store the milestones themselves, we use it to store the name of the bundle near each

milestone. By Item 3 and 4 above, when the walk is uniformly random, the bundles to be stored are

uniform and independent. Hence, the size of DPT dictionary matches the input entropy, as desired. The

second part of the data structure is similar to the regular graph case at the high level. We store the blocks

between the consecutive milestones, but now conditioned on the bundles (not the milestones). The query

algorithm is also similar: to retrieve a vertex between two consecutive milestones, we first retrieve the

bundles that contain the subwalks near them, and then retrieve the block, which is encoded conditioned

on the bundles. The actual construction for the non-regular case is much more technical than regular

graphs. See Section 3 for details.

The final challenge in our scheme is implementing the decoding process on a RAM – The above

scheme only provides a cell-probe data structure (assuming arbitrary operations on O(lg n)-bit words),

since the aforementioned encoding of blocks + bundles is extremely implicit. Therefore, decoding

with standard RAM operations appears to require storing giant lookup tables to allow efficient retrieval.

Circumventing this intuition is one of our main contributions. It turns out that the basic problem that

needs to be solved is the following: Given a walk (v0, . . . , vl) of length l, for l = O(lg n), from x to

y (v0 = x and vl = y), encode this walk using an integer between 1 and the number of such walks

(ex
⊤(AG)

ley), such that given an index i ∈ [0, l], one can decode vi efficiently. Note that both two

endpoints x and y are given, and do not need to be encoded. They would ultimately correspond to

the milestones, which have already been stored elsewhere. Our encoding procedure is based on a B-

way divide-and-conquer. As an example, when B = 2, we first recursively encode (v0, . . . , vl/2) and

(vl/2, . . . , vl), and then “merge” the halves. Given the encoding of the two halves, the final encoding of

the entire walk is the index in the lexicographic order of the triple: I) vl/2, II) encoding of (v0, . . . , vl/2),
and III) encoding of (vl/2, . . . , vl). To decode vi, we first decode the entire triple by enumerate all

possible values for vl/2, and count how many length-l walks have this particular value for vl/2 (these

counts can be stored in the lookup table). Then we recurse into one of the two halves based on the

value of i. This gives us an O(lg l) = O(lg lgn) time decoding algorithm. We can generalize this idea

to larger B, by recursing on each of the 1/B-fraction of the input. However, the decoding algorithm

becomes more complicated, as we cannot afford to recover the entire O(B)-tuple. It turns out that to

efficiently decode, one will need to do a predecessor search on a set of exp(B) integers with increasing

gaps. This set depends only on the underlying graph G, therefore, we can store this predecessor search

data structure in the lookup table, taking exp(B) space. Now, the recursion only has lgB l = lg lgn
lgB

levels, each level still takes constant time, obtaining the claimed tradeoff.

It is worth noting that the DPT dictionary supports appending extra symbols in constant amortized

time, hence it supports the (append-only) online version of the problem. Since our data structure consists

of two instances of DPT, when the vertices in the random walk is given one at a time, our random-walk

data structure can be build online as well, with amortized constant update time. The sizes of the two

instances of DPT may increase over time, but their ratio remains fixed. By storing memory words of

the two instances in interleaving memory locations with respect to the right ratio, we will not need to

relocate the memory words when new vertices arrive.

For the harder task for matching the information-theoretic minimum space (i.e., the point-wise em-

pirical entropy of the walk
∑

i lg(deg(vi))), we show how to efficiently encode the random-walk prob-

lem (on arbitrary constant-size graphs) using Pǎtraşcu’s aB-trees [Pat08]. This provides a constant-

redundancy scheme but increases decoding time to t = O(lg n). We provide evidence that this blowup

might indeed be necessary: We design a succinct reduction showing how to “embed” the classic Dictio-

nary problem on inputs x ∈ µn, as a random-walk on the Huffman Tree of µ, augmented with certain
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directed paths to enable fast decoding (this works for any distribution µ where each µ(i) is the inverse

of a power of 2). This reduction shows that any asymptotic improvement on the aforementioned random

walk data structure would lead to a improvement on the long-standing dictionary problem (see Theorem

9).

1.3 Related work

The “prior-free” version of the (generic) LDSC problem has been studied in the pattern-matching and

information-theory communities, where in this setting the compression benchmark is typically some

(high-order) empirical entropy Hk(x) capturing “bounded-correlations” in the text (see e.g. [Man01] for

a formal definition). It has been shown that classical universal compression schemes (such as Lempel-Ziv

[ZL78] compression as well as the Burrows-Wheeler transform [BW94]) can be made to have random-

access to individual symbols at the price of small (but not succinct) loss in compression (e.g., [FM05,

DLRR13, TBW18, SW]). In general, these results are incomparable to our distributional setting of the

LDSC problem, as the space analysis is asymptotic in nature and based on the (ergodic) assumption that

the input (X1, . . . , Xn) has finite-range correlations or restricted structure (Indeed, this is confirmed by

our impossibility result for general LDSC in Corollary 3). In the case of k-order Markov chains, where

the k’th empirical and Shannon entropies actually match (Hk(X) = H(X)), all previously known LDSC

schemes generally have redundancy at least r ≥ Ω(n/ lgn) regardless of the entropy of the source and

decoding time (see e.g., [DLRR13, TBW18] and references therein). In contrast, our schemes for achieve

r = O(1) redundancy and constant (or at most logarithmic) query time on a RAM.

Technically speaking, the most relevant literature to our paper is the work on succinct Dictionary

problem [BMRV02, Pag02, RRS07, GRR08, Pat08, DPT10] (see Section 4.1 for the formal problem

definition). The state-of-art, Due to Pǎtraşcu [Pat08], is a succinct data structure (LDSC) for product

distributions on n-letter strings X ∼ µn, with an exponential tradeoff between query time and redun-

dancy r = O(n/(lg n/t)t) over the expected (i.e., zeroth-order) entropy of X . Whether this tradeoff is

optimal is a long-standing open problem in succinct data structures (more on this in Section 4.1). Inter-

estingly, if µ is the uniform distribution, a followup work of Dodis et. al [DPT10] showed that constant

redundancy and decoding time is possible on a word-RAM. (see Theorem 5, which will also play a key

role in our data structures). In some sense, our results show that such optimal tradeoff carries over to

strings with finite-length correlations.

2 Preliminaries

2.1 Graphs and Random walks.

Let G be an unweighed graph, A be its adjacency matrix, and P be the transition matrix of the random

walk on G. P is A with every row normalized to sum equal to 1.

Undirected regular graphs. When G is undirected and d-regular, A is real symmetric, and P =
1
dA. All of the eigenvalues are real. In particular, the largest eigenvalue of A is equal to d, with eigenvec-

tor 1, the all-one vector. Moreover, if G is connected and non-bipartite, then all other eigenvalues have

absolute values strictly less than d. Suppose all other eigenvalues are all at most (1− ǫ)d, the following

lemma is known.

Lemma 1. Let X be a vector of dimension |G| corresponding to some distribution over the vertices. Let

U be the vector corresponding to the uniform distribution. We have

‖
1

d
·A(X − U)‖2 ≤ (1− ǫ)‖X − U‖2.

That is, every step of the random walk on G makes the distribution X close to the uniform by a

constant factor.
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Strongly connected aperiodic graphs. For directed graphG, it is strongly connected if every node

can be reached from every other node via directed paths. For strongly connected G, it is aperiodic if the

greatest common divisor of the lengths of all cycles in G is equal to 1. One may view strongly connec-

tivity and aperiodicity as generalization of connectivity and non-bipartiteness for undirected graphs from

above.

For strongly connected aperiodic G, the Perron–Frobenius theorem asserts that

• let λ be the spectral radius of A, then λ is an eigenvalue with multiplicity 1;

• let π⊤ and σ be its left and right eigenvectors with eigenvalue λ respectively, all coordinates of π
and σ are positive.

Similarly, for the transition matrix P ,

• it has spectral radius 1, and 1 is an eigenvalue with multiplicity 1;

• let ν⊤ be its left eigenvector, then ν⊤ is the unique stationary distribution.

Moreover, let X1 and X2 be two vectors, we have the following approximation on X⊤
1 AlX2 (e.g.,

see [Fil91]).

Lemma 2. We have

X⊤
1 AlX2 = λl ·

(

〈σ,X1〉 〈π,X2〉

〈σ, π〉
±O(‖X1‖2‖X2‖2) · exp(−Ω(l))

)

.

Proof (sketch). Let us first decompose X2 into two vectors α · σ and X ′ such that 〈π,X ′〉 = 0. Thus,

we have

α =
〈π,X2〉

〈σ, π〉
,

and

X ′ = X2 − α · σ.

For the first term, we have Al(α · σ) = λlα · σ. To estimate the second term, let D = diag(σ/π),
i.e., D is the diagonal matrix with the i-th diagonal entry equal to σi/πi. Since A is strongly connected

and aperiodic, there exists a constant c such that all entries in Ac are positive. We will show that λ−2l ·
X ′⊤(A⊤)lD−1AlX ′ decreases exponentially. To this end, consider the matrix

D1/2(A⊤)cD−1AcD1/2.

This matrix is positive real symmetric, and π⊤D1/2 is its left eigenvector with eigenvalue λ2c. Since

π⊤D1/2 is positive, by the Perron–Frobenius theorem, all other eigenvalues have magnitude strictly less

than λ2c, and assume they are all at most ((1− ǫ)λ)2c for some ǫ > 0.

For every i, since
〈

π⊤D1/2, D−1/2AiX ′
〉

= 0, we have

X ′⊤(A⊤)i+cD−1Ai+cX ′ ≤ ((1− ǫ)λ)2c ·X ′⊤(A⊤)iD−1AiX ′.

Therefore, we have

X ′⊤(A⊤)lD−1AlX ′ ≤ exp(−Ω(l)) · λ2lX ′⊤D−1X ′

≤ exp(−Ω(l)) · λ2l ·O(‖X ′‖22)

≤ exp(−Ω(l)) · λ2l ·O(‖X2‖
2
2).

Thus, ‖AlX ′‖2 ≤ λl · O(‖X2‖2) · exp(−Ω(l)).
Combining the two parts, we have

X⊤
1 AlX2 =

〈σ,X1〉 〈π,X2〉

〈σ, π〉
· λl ± λl · O(‖X1‖2‖X2‖2) · exp(−Ω(l)).

This proves the lemma.
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One can also prove a similar statement about P .

Lemma 3. X⊤
1 P lX2 = 〈1, X1〉 〈ν,X2〉 ±O(‖X1‖2‖X2‖2) · exp(−Ω(l)).

2.2 Space Benchmarks

There are 1
⊤An

1 different walks (v0, . . . , vn) on G of length n. Thus, lg 1⊤An
1 bits is the optimal

worst-case space for storing a n-step random walk.

However, for non-regular graphs, some walk may appear with a higher probability than the others.

By Lemma 3, the marginal of Vi quickly converges to ν. Therefore, we have

H(Vi+1 | Vi) =
∑

x

νx · lg deg(x) + exp(−Ω(i)).

By chain-rule and the Markov property of a random walk, we have

H(V0, . . . , Vn) = n ·

(

∑

x

νx · lg deg(x)

)

+O(1).

This is the optimal expected space any data structure can achieve.

Finally, note that the point-wise space benchmark defined in the introduction

lg |G|+
n−1
∑

i=0

lg deg(vi)

implies almost optimal expected, since it assigns ⌈log 1/p⌉ bits to a walk that appears with probability

p.

2.3 Word-RAM model and Succinct Data Structures

The following surprising (yet limited) result of [DPT10] will be used as a key subroutine in our data

structures.

Theorem 5 (Succinct dictionary for uniform strings, [DPT10]). For any |Σ| ≤ w (not necessarily a

power of 2), there is a succinct Dictionary storing any string x ∈ Σn using ⌈n lg |Σ|⌉ bits of space,

supporting constant-time retrieval of any xi, on a word-RAM with word size w = Θ(lgn), assuming

pre-computed lookup tables of O(lg n) words. Moreover, the dictionary supports the online (“append-

only”) version with constant update and query times.

We remark that the cost of the pre-computed lookup tables is negligible and they are shared across

instances (they are essentially small code-books for decoding and hence do not depend on the input

itself). This is a standard requirement for variable-length coding schemes.

3 Succinct Data Structures for Storing Random Walks

3.1 Warmup: d-Regular Graphs

Fix a d-regular graph G with k vertices, we assume that G is connected and non-bipartite. Denote its

adjacency matrix by A. In the following, we show that a walk on G can be stored succinctly, and allow

efficient decoding of each vertex.

Theorem 6. Given a walk (v0, . . . , vn) in G, there is a succinct cell-probe data structure that uses at

most lg2 |G| + n lg2 d + 3 bits of memory, and supports retrieving each vq in constant time for q =
0, . . . , n, assuming the word-size w ≥ Ω(lg n). Moreover, the data structure can be implemented on a

word RAM using an extra r-bit lookup table, which depends only on G, supporting vertex retrievals in

O( lg lgn
lg lg r ) time, for any r ≥ Ω(lg2 n).
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Proof. The idea is to divide the walk into blocks of length l for l = Θ(lg n), so that if we take every l-th
node in a uniformly random walk (which we call the milestones), they look almost independent. We first

store all these milestones using the DPT dictionary, which introduces no more than one bit of redundancy.

Then note that conditioned on the milestones, the subwalk between any two adjacent milestones are also

independent and uniform over some set, then we store the subwalks conditioned on the milestones using

DPT again.

More formally, the top eigenvalue of A is equal to d. Suppose all other eigenvalues are at most

(1 − ǫ)d, we set m = ⌊ ǫ
2 · n/ lnn⌋, and l = n/m ≥ 2

ǫ lnn. We divide the walk into m blocks of length

approximately l each. Let ai = ⌊(i − 1) · l⌋ for 1 ≤ i ≤ m + 1, be the m + 1 milestones. Note that

a1 = 0 and am+1 = n. The i-th block is from the i-th milestone vai
to the (i + 1)-th vai+1

. Hence, the

length of the block is in (l − 1, l+ 1).
The first part of the data structure stores all milestones, i.e., vai

for all 1 ≤ i ≤ m + 1 using DPT.

This part uses ⌈(m+ 1) lg2 |G|⌉ bits of memory.

Next, we store the subwalks between the adjacent milestones. By Lemma 1, after l steps of random

walk from any vertex vai
, the ℓ2 distance to the uniform distribution U is at most (1− ǫk)

l ≤ n−2, hence

the ℓ∞ distance to U is also at most n−2. In particular, the probability that the random walk ends at each

vertex is upper bounded by 1/|G| + 1/n2. That is, given the milestones vai
and vai+1

, the number of

possible subwalks in the i-th block (from vai
to vai+1

) is always at most

(

1

|G|
+

1

n2

)

· dai+1−ai ,

regardless of the values of vai
and vai+1

.

Hence, the subwalk can be encoded using a positive integer between 1 and ⌊(1/|G| + 1/n2) ·
dai+1−ai⌋. Note that since l = O(lg n), this integer has O(w) bits. For cell-probe data structures,

one can hardwire an arbitrary encoding for every possible pair of milestones and every possible length

of the block. We will defer the implementation on RAM to the end of this subsection (Lemma 4), and

let us focus on the main construction for now.

We obtain an integer for each subwalk between adjacent milestones. We again use DPT to store these

integers. This part uses at most

⌈

m
∑

i=1

lg2
((

1/|G|+ 1/n2
)

· dai+1−ai
)

⌉

bits of memory.

Therefore, the number of bits we use in total is at most

((m+ 1) lg2 |G|+ 1) + (
m
∑

i=1

lg2
((

|G|−1 + n−2
)

· dai+1−ai
)

+ 1)

= (m+ 1) lg2 |G|+
m
∑

i=1

(ai+1 − ai) lg2 d+m lg2(|G|−1 + n−2) + 2

= lg2 |G|+ (am+1 − a1) lg2 d+m lg2(1 + |G| · n−2) + 2

≤ lg2 |G|+ n lg2 d+m|G| · n−2 + 2

≤ lg2 |G|+ n lg2 d+ 3.

The query algorithm in the cell-probe model is straightforward. To retrieve vq, we first compute

the block it belongs to: i = ⌈q/l⌉. Then we query the first part of the data structure to retrieve both

vai
and vai+1

, and query the second part to retrieve the integer that encodes the subwalk between them

conditioned on vai
and vai+1

. They together recover the whole subwalk, and in particular, vq .
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Decoding on the word-RAM. Denote by Nl(x, y), the number of different walks from x to y of

length l, i.e., Nl(x, y) = e
⊤
x A

l
ey . In the following, we show that for every x, y and l = O(lg n), there

is a way to encode such a walk using an integer in [Nl(x, y)], which allows fast decoding.

Lemma 4. For l = O(lg n), given a length-l walk from x to y, one can encode it using an integer

K ∈ [Nl(x, y)] such that with an extra lookup table of size r, depending only on the graph G, one can

retrieve the q-th vertex in the walk in O( lg lgn
lg lg r ) time, for any r ≥ Ω(lg2 n).

Proof. To better demonstrate how we implement this subroutine, we will first present a solution with a

slower decoding time of O(lg lgn
lg r ) = O(lg lgn− lg lg r), and for simplicity, we assume l is a power of

two for now.

Given a length-l walk from x to y, the encoding procedure is based on divide-and-conquer. We

first find the vertex z in the middle of the walk, and recursively encode the two length-l/2 walks from

x to z and from z to y (given the endpoints). Suppose from the recursion, we obtained two integers

K1 ∈ [Nl/2(x, z)] and K2 ∈ [Nl/2(z, y)], then the final encoding will be the index in the lexicographic

order of the triple (z,K1,K2). That is, we encode the walk by the integer

K =
∑

z′<z

Nl/2(x, z
′)Nl/2(z

′, y) + (K1 − 1)Nl/2(z, y) +K2.

Hence, K is an integer between 1 and
∑

z Nl/2(x, z)Nl/2(z, y) = Nl(x, y).
We store the constants Nl′(x, y) for all l′ ∈ [1, l] and vertices x, y in the lookup table. The de-

coding procedure is straightforward. Given x, y and K , to decode the q-th vertex in the walk, we

first recover the triple (z,K1,K2). To this end, we cycle through all z in the alphabetic order: If

K > Nl/2(x, z)Nl/2(z, y), subtract K by Nl/2(x, z)Nl/2(z, y), and increment z; Otherwise, the cur-

rent z is the correct middle vertex. Then K1 and K2 can be computed by K1 = ⌊(K−1)/Nl/2(z, y)⌋+1
and K2 = (K − 1) mod Nl/2(z, y) + 1. Next,

• if q = l/2, z is the queried vertex, and return z;

• if q < l/2, recursively query the q-th vertex in the length-l/2 walk from x to z;

• if q > l/2, recursively query the (q − l/2)-th vertex in the walk from z to y.

This gives us a decoding algorithm running in O(lg lgn) time. To obtain a faster decoding time of

t < lg lgn, we could run the above recursion for t levels, and arrive at a subproblem asking to decode

a length-(l/2t) walk from an integer no larger than 2O(l/2t). Instead of continuing the recursion, we

simply store answers to all possible such decoding subproblems in a lookup table of size r = k2 · (l/2t) ·

2O(l/2t) = 2O(2−t lg n). Hence, the decoding time is t = O(lg lgn
lg r ).

To obtain the claimed decoding time of O( lg lg n
lg lg r ), the encoding algorithm will be based on a B-way

divide-and-conquer for some parameterB > 2. Given a length-l walk from x to y, we first considerB+1
vertices (x =)z1, z2, . . . , zB, zB+1(= y) such that zi is the ⌊(i − 1)l/B⌋-th vertex in the walk, and re-

cursively encode the length-l/B walks from zi to zi+1 for i = 1, . . . , B, obtaining integers K1, . . . ,KB .

Next, we encode the vertices z2, . . . , zB by an integer Z ∈ [|G|B−1]. The final encoding is according

to the lexicographic order of the tuple (Z,K1, . . . ,KB). To decode a vertex between zi and zi+1, the

algorithm will need to recover zi, zi+1 and Ki in order to recurse. However, when B is large, we cannot

afford to enumerate Z as before. Instead, we will use a trick from [Pat08], which allows us to recover

each zi in constant time, as well as Ki.

More specifically, for each tuple (z2, . . . , zB), consider the number of walks that go through them at

the corresponding vertices
B
∏

i=1

N⌊il/B⌋−⌊(i−1)l/B⌋(zi, zi+1).
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In the lookup table, we store all these tuples in the sorted order by this number (break ties arbitrarily),

using |G|B−1 · (B − 1)⌈lg |G|⌉ bits. The encoding Z of the tuple will be the index in this order. There-

fore, to decode Z from x, y and K , it suffices to find the largest Z such that the total number of walks

corresponding to a tuple (z2, . . . , zB) ranked prior to Z , is smaller than K . This is precisely a predeces-

sor search data structure problem over a set of size |G|B−1 with monotone gaps, where the set consists

of for all Z , the total number of walks corresponding to a tuple ranked prior to Z , and the query is K .

Because we sort the tuples by the number of corresponding walks, the numbers in the set have monotone

gaps. It was observed in [Pat08] that the monotone gaps allow us to solve predecessor search with linear

space and constant query time. Hence, we further store in the lookup table, this linear space predecessor

search data structure, using O(|G|B−1) words (the standard predecessor search problem only returns the

number, however, it is not hard to have the data structure also return the index Z .) From the predecessor

search data structure, we obtain Z , hence zi and zi+1 from the first lookup table above, as well as K ′,

the rank of the tuple (K1, . . . ,KB) given Z . Thus, Ki can be computed by

Ki = ⌊(K ′ − 1)/

B
∏

i′=i+1

N⌊i′l/B⌋−⌊(i′−1)l/B⌋(zi′ , zi′+1)⌋ mod N⌊il/B⌋−⌊(i−1)l/B⌋(zi, zi+1) + 1.

It can be computed in constant time, once we also have stored in the lookup table, for all (z2, . . . , zB)
and all i, the number

B
∏

i′=i+1

N⌊i′l/B⌋−⌊(i′−1)l/B⌋(zi′ , zi′+1).

Finally, the recursion has O(lgB l) = O( lg lgn
lgB ) levels, and each level takes constant time. We store

in the lookup table for all x, y and l′ ≤ l, the above tables and the predecessor search data structure using

in total r = O(|G|B−1 · l2) = 2O(B) · lg2 n bits. Thus, for r ≥ lg2 n, the decoding time is O( lg lgn
lg lg r ).

This proves the lemma.

3.2 General Graphs

In this subsection, we prove our theorem for storing a walk in a general directed graph with respect to

worst-case space bound. Fix a strongly connected aperiodic directed graph G. Let A be its adjacency

matrix. The total number of length-n walks in G is equal to 1
⊤An

1.

Theorem 7. Let G be a strongly connected aperiodic directed graph. Given a length-nwalk (v0, . . . , vn)
on G, one can construct a data structure that uses lg(1⊤An

1) + 5 bits of space. Then there is a query

algorithm that given an index q ∈ [0, n], retrieves vq in O( lg lgn
lg lg r ) time with access to the data structure

and a lookup table of r ≥ Ω(lg2 n) bits, where the lookup table only contains precomputed information

about G, on a word RAM of word-size w = Θ(lgn).

The previous solution fails for general graph G. The main reason is that if we take a uniformly

random length-n walk, the marginal distribution of each milestone is not uniform. In other words,

the entropy of each milestone is strictly less than lg |G|. If we store them as before, using lg |G| bits

per milestone, this part of the data structure already introduces an unaffordable amount of redundancy

(constant bits per milestone).

To circumvent this issue, we partition the set of subwalks near each milestone into subsets, which

we refer to as the bundles. More specifically, let l = Θ(lg n) be a parameter. For each milestone vi, we

partition the set of all possible subwalks from vi to vi+l into groups {gx,j}, such that

1. all subwalks in gx,j have vi = x;

2. the size |gx,j| is roughly the same for all x and j;

3. if we sample a uniformly random walk from gx,j , the marginal distribution of vi+l is roughly the

same for all x and j.
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The second property above implies that if the input walk is random, then the group gx,j that contains the

subwalk is uniformly random. The third property implies that which group gx,j contains the subwalk

almost does not reveal anything about the walk after vi+l, as the distribution already “mixes” at vi+l.

We then partition the set of subwalks from vi−l to vi into groups {hx,j} with the similar properties.

Finally, a bundle Bx,j1,j2 will be the product set of hx,j1 and gx,j2 , i.e., it is obtained by concatenating

one subwalk from hx,j1 and one from gx,j2 (they both have vi = x, and thus, can be concatenated). The

bundles constructed in this way have the following important properties:

1. all subwalks in each bundle go through the same vertex at the milestone;

2. each bundle consists of approximately the same number of subwalks;

3. adjacent bundles are almost “independent”.

The data structure first stores for each milestone vi, which bundle contains the subwalk near it, using

DPT (Item 2 and 3 above guarantee that this part introduces less than one bit of redundancy). Next,

the data structure stores the exact subwalk between each pair of adjacent milestones, given bundles

that contain (part of) it. In the following, we elaborate on this idea, and present the details of the

data structure construction. To prove the theorem, we will use the following property about strongly

connected aperiodic graphs, which is a corollary of Lemma 2.

Lemma 5. Let λ be the largest eigenvalue of A, π⊤ and σ be its left and right eigenvectors, i.e., π⊤A =
λπ⊤ and Aσ = λσ. Then σ and π both have positive coordinates. For large l ≥ Ω(lg n), we have the

following approximation on X⊤
1 AlX2 for vectors X1 and X2:

X⊤
1 AlX2 = λl ·

(

〈σ,X1〉 · 〈π,X2〉

〈σ, π〉
±O(n−2 · ‖X1‖2‖X2‖2)

)

.

Proof of Theorem 7. Let m = Θ(n/ lgn) be an integer, such that l = n/2m is large enough for

Lemma 5 and λl ≥ n4. Similar to the regular graph case, we divide the walk into m blocks of roughly

equal length. For i = 0, . . . ,m, let ai = ⌊2il⌋. The i-th block is from the ai−1-th vertex in the walk to

the ai-th, and each ai is a milestone. Let bi be the midpoint between the milestones ai and ai+1, i.e.,

bi = ⌊(2i+ 1)l⌋.

Consider the set of all possible subwalks from bi−1 to bi, we will partition this set into bundles, such

that all subwalks in each bundle has the same vai
(different bundles may not necessarily have different

vertex at ai). To formally define the bundles, let us first consider the subwalk from vai
to vbi , which

has length bi − ai ≈ l. In total, there are 1
⊤Abi−ai1 subwalks of length bi − ai. For any vertices x, y,

e
⊤
x A

bi−ai1 of them have vai
= x, and e

⊤
x A

bi−aiey have vai
= x and vbi = y. Using the notation from

Lemma 4, we have Nbi−ai
(x, y) = e

⊤
x A

bi−aiey .

Now we partition the set of all possible subwalks from vai
to vbi such that vai

= x into

sx :=

⌊

e
⊤
x A

bi−ai1

1⊤Abi−ai1
· n2

⌋

groups gx,1, . . . , gx,sx . By Lemma 5, we have

sx =
〈σ, ex〉 〈π,1〉λbi−ai

〈σ,1〉 〈π,1〉λbi−ai
· n2

(

1±O(n−2)
)

=
σx

〈σ,1〉
· n2(1±O(n−2)). (5)

For each vertex y, we ensure that the number of subwalks with vbi = y in each gx,j for j ∈ [sx]
is approximately the same. More specifically, we use Lemma 4 to encode the subwalk from vai

to vbi
using an integer K

(i)
2 ∈ [Nbi−ai

(vai
, vbi)]. This subwalk belongs to gx,j for x = vai

and

j =

⌊

(K
(i)
2 − 1) · sx

Nbi−ai
(vai

, vbi)

⌋

+ 1. (6)
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Therefore, by Lemma 5 and Equation (5) for every x, y, j, the number of subwalks from x to y in gx,j is

at most

Nbi−ai
(x, y)

sx
+ 1 =

σxπy

〈σ, π〉
· λbi−ai ·

〈σ,1〉

σx
· n−2(1±O(n−2))

=
〈σ,1〉 · πy

〈σ, π〉
· λbi−ain−2(1 ±O(n−2)). (7)

Note that it is important that the +1 term is absorbed into the O(n−2) term, since λbi−ai = Θ(λl) ≥
Ω(n4).

Similarly, we also partition the set of subwalks from vbi−1
to vai

into groups hx,1, . . . , hx,tx , for

tx :=

⌊

1
⊤Aai−bi−1ex

1⊤Aai−bi−11
· n2

⌋

=
πx

〈π,1〉
· n2(1±O(n−2)). (8)

Again, we use Lemma 4 to encode the subwalk from vbi−1
to vai

using an integerK
(i)
1 ∈ [Nai−bi−1

(vbi−1
, vai

)].
This subwalk belongs to hx,j for x = vai

and

j =

⌊

(K
(i)
1 − 1) · tx

Nai−bi−1
(vbi−1

, vai
)

⌋

+ 1. (9)

The number of subwalks from y to x in hx,j is at most

Nai−bi−1
(y, x)

tx
+ 1 =

σy · 〈π,1〉

〈σ, π〉
· λai−bi−1n−2(1 ±O(n−2)). (10)

Now we describe how we partition the subwalks from vbi−1
to vbi into bundles. Each bundle has the

form hx,j1 × gx,j2 for some vertex x and j1 ∈ [tx], j2 ∈ [sx]. That is, we define the bundle Bx,j1,j2 as

Bx,j1,j2 := {p1 ◦ p2 : p1 ∈ hx,j1 , p2 ∈ gx,j2},

where p1 ◦ p2 concatenates the two paths. It is not hard to verify that {Bx,j1,j2} is a partition, and the

number of different bundles is

∑

x

sxtx =
〈σ, π〉

〈σ,1〉 〈π,1〉
· n4(1±O(n−2)) (11)

by Equation (5) and (8). In particular, the index of the bundle (x, j1, j2) can be encoded using the integer

∑

x′<x

sx′tx′ + (j − 1)tx + j2.

As special cases, for i = 0, the subwalk is from va0
to vb0 , and the bundles are defined to be

Bx,j2 := gx,j2 for vertex x and j2 ∈ [sx]. For i = m, the bundles are Bx,j1 := hx,j1 for vertex x and

j1 ∈ [tx]. In both cases, the number of bundles is at most n2.

Data structure construction and space analysis. Now, we are ready to describe how to construct

the data structure from the input (v0, . . . , vn). We first use Lemma 4 to encode the subwalks from vai

to vbi obtaining K
(i)
2 , and subwalk from vai−1

to vbi obtaining K
(i)
1 , and compute the m + 1 bundles

consisting of each subwalk. More specifically, we compute j
(1)
1 , . . . , j

(m)
1 and j02 , . . . , j

(m−1)
2 using

Equation (9) and (6).

The first part of the data structure stores the indices of the m + 1 bundles using DPT. These indices

can be stored using
⌈

2 lgn2 + (m− 1) lg

(

∑

x

sxtx

)⌉

+ 1
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bits of space, which by Equation (11) is at most

4 lgn+ (m− 1) lg
〈σ, π〉 · n4

〈σ,1〉 〈π,1〉
+O(m · n−2) + 2. (12)

Next, we compute the index of the subwalk within each bundle. More specifically, we compute

k
(1)
1 , . . . , k

(m)
1 and k02 , . . . , k

(m−1)
2 as follows:

k
(i)
1 = K

(i)
1 −

⌈

(j
(i)
1 − 1) ·

Nai−bi−1
(vbi−1

, vai
)

sx

⌉

,

and

k
(i)
2 = K

(i)
2 −

⌈

(j
(i)
2 − 1) ·

Nbi−ai
(vai

, vbi)

tx

⌉

.

They are the indices within each gx,j and hx,j .

The second part of the data structure stores the subwalk between the milestones within the bundles.

In particular, we store the triples (vbi , k
(i)
1 , k

(i)
2 ) for every i = 0, . . . ,m − 1. By Equation (7) and (10),

the number of triples is at most

∑

y

〈σ,1〉πy

〈σ, π〉
· λbi−ain−2 ·

σy 〈π,1〉

〈σ, π〉
· λai+1−bi · n−2 · (1 ±O(n−2))

=
〈σ,1〉 〈π,1〉

〈σ, π〉
· λai+1−ain−4(1±O(n−2)).

Again, we store these triples using DPT. The total space of the second part is at most

m lg
〈σ,1〉 〈π,1〉

〈σ, π〉n4
+ n lg λ+ O(m · n2) + 2. (13)

Finally, summing up Equation (12) and (13), the total space usage of the data structure is at most

4 lgn+ (m− 1) lg
〈σ, π〉 · n4

〈σ,1〉 〈π,1〉
+m lg

〈σ,1〉 〈π,1〉

〈σ, π〉 n4
+ n lgλ+O(m · n−2) + 4

≤ lg
〈σ,1〉 〈π,1〉

〈σ, π〉
+ n lg λ+O(m · n−2) + 4

= lg

(

〈σ,1〉 〈π,1〉

〈σ, π〉
· λn

)

+O(m · n−2) + 4

which by Lemma 5 again, is at most

≤ lg(1⊤An
1) + 5.

Query algorithm. Given an integer q ∈ [0, n], we first compute the block that contains vt, suppose

ai ≤ q ≤ ai+1. Suppose q is in the first half (ai ≤ q ≤ bi), we use the query algorithm of DPT on the

first part of the data structure, retrieving the index of the bundle containing the subwalk from bi−1 to bi,

(vai
, j

(i)
1 , j

(i)
2 ). Similarly, we retrieve the triple (vbi , k

(i)
1 , k

(i)
2 ) from the second part. Then the encoding

of the subwalk from vai
to vbi can be computed

K
(i)
2 = k

(i)
2 +

⌈

(j
(i)
2 − 1) ·

Nbi−ai
(vai

, vbi)

tx

⌉

.

Finally, we use the query algorithm of Lemma 4 to decode the (q − ai)-th vertex in this subwalk, which

is vt. The case where q is in the second of the block (bi ≤ q ≤ ai+1) can be handled similarly. With an

extra lookup table of size r for Lemma 4, each query can be answered in O( lg lgn
lg lg r ) time. This proves the

theorem.
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The above data structure also extends to general directed graphs.

Corollary 1. With an extra O(1) bits of space, Theorem 7 also applies to general strongly connected

graph G.

Proof. Suppose G is periodic with period p. Then its vertices can be divided into p sets V1, . . . , Vp such

that each vertex Vi only has outgoing edges to Vi+1 (defining Vp+1 = V1). We can reduce the problem

to the aperiodic case as follows.

Let us first only consider walks that both start and end with vertices in V1. Therefore, the length

of the walk n must be a multiple of p. We divide the walk into subwalks of length p, and view each

length-p subwalk as a vertex in a new graph. That is, consider the graph Gp|V1
whose vertices are all

possible length-p walks that start and end with vertices in V1 in G, such that directed edges connect two

subwalks if they can be concatenated, i.e., if the last vertex in u is the same as the first vertex in u′, then

there is an edge from u to u′. It is easy to verify that this graph is strongly connected and aperiodic, and

a length-n walk on G can be viewed as a length-n/p walk on this graph. Then we apply Theorem 7 to

store the length-n/p walk on Gp|V1
. To retrieve vq , it suffices to retrieve the ⌊q/p⌋-th vertex in the walk

on Gp|V1
, and recover vq via a look-up table.

For general inputs that do not necessarily start or end in V1, we store a prefix and suffix of walk of

length at most p naively, such that the remaining middle part starts and ends in V1, for which we use the

above construction.

Finally, our data structure also applies to general directed graphs.

Corollary 2. With an extra O(lg n) bits of space, Theorem 7 also applies to general directed graph G.

Proof. We precompute the strongly connected components (SCC) of G. Given input walk (v0, . . . , vn),
observe that it can only switch between different SCCs a constant number of times, since after the walk

leaves an SCC, it could never come back. Hence, we first store the steps in the input that switch from

one SCC to another using O(lg n) bits, then apply Corollary 1 on each subwalk within an SCC.

3.3 Matching the point-wise optimal space for non-regular graphs

The data structure from Theorem 7 used approximately lg 1⊤AG1 bits of space uniformly on any pos-

sible input sequence. This means that our data structure achieves the best possible space for a uniformly

chosen length-n walk in G, by Shannon’s source coding theorem. However, the distribution we actually

care about is that of a random walk of length n starting from a random vertex in G, which for non-regular

graphs may have much lower Shannon entropy. In the other words, for non-regular G, the following two

distributions may be very far in KL divergence:

• νn: A uniformly chosen length-n walk in G.

• µn: An n-step random walk starting from a random vertex in G.

By Huffman coding, H(µn) is therefore the correct expected space benchmark. To achieve this expecta-

tion, the corresponding poin-wise space benchmark per walk (v0, . . . , vn) ∼ µn in G is

⌈lg |G|+
n−1
∑

i=0

lg deg(vi)⌉

bits of space, since the space allocated to each sequence (v0, . . . , vn) is approximately 1/ lg Pr[(v0, . . . , vn)].

To match the above point-wise space bound, we use the augmented B-tree from [Pat08]. Fix a

parameter B ≥ 2, [Pat08] defines data structure aB-trees as follows:

• The data structure stores an array A ∈ Σn. The data structure is a B-ary tree with n leaves storing

elements in A.
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• Every node is augmented with a label from some alphabet Φ, such that the label of the i-th leaf is

a function of A[i], and the label of an internal node is a function of the labels of its B children, and

the size of the subtree.

• The query algorithm examines the label of the root’s children, decides which child to recurse on,

examines all labels of that child’s children, recurses to one of them, and so on. The algorithm must

output the query answer when it reaches a leave.

Pǎtraşcu proves a general theorem to compress any such aB-tree, almost down to its input entropy:

Theorem 8 ([Pat08], Theorem 8). Let B ≤ O( w
lg(n+|Φ|)), and let N (n, ϕ) be the number of instances

of A ∈ Σn that has the root labeled by ϕ. An aB-tree of size n with root label ϕ can be stored using

lg2 N (n, ϕ) + 2 bits. The query time is O(lgB n), assuming a precomputed lookup tables of O(|Σ| +
|Φ|B+1 +B · |Φ|B) words, which only depend on n, B and the aB-tree algorithm.

We build an aB-tree on top of the input. The alphabet size |Σ| = |G|. For each node of the tree

that corresponds to a subwalk (vl, . . . , vr), we set its label ϕ to be the triple (vl, vr, S), such that S is an

integer equal to
r−1
∑

i=l

⌈n lg2 deg(vi)⌉,

with the exception of root, whose label is only the integer S =
∑n−1

i=0 ⌈n lg2 deg(vi)⌉, without v0 and

vn. In the other words, S encodes the optimal “space” that this subsequence uses. Thus, the alphabet

size of the labels |Φ| is O(n2). The label of a leaf vl is (vl, vl, 0), a function of vl. To see why the

label of an internal node is a function of the labels of its B children, suppose the B children have

labels (vl, vm1−1, S1), (vm1
, vm2−1, S2), . . ., (vmB−1

, vr, SB) respectively. Then the label of this node

is (vl, vr, S) (or just S for the root) for

S =

B
∑

i=1

SB +

B−1
∑

i=1

⌈n2 lg2 deg(vmi−1)⌉.

Theorem 8 compresses this data structure to lg2 N (n + 1, ϕ) + 2 bits, where φ is the label of the

root, and supports queries in O(lgB n) time. The following lemma bounds the value of N (n+ 1, ϕ).

Lemma 6. For root label ϕ = S, we have N (n+ 1, ϕ) ≤ 2lg |G|+S/n.

Proof. Let V be a uniformly random walk V = (V0, . . . , Vn) with root label ϕ. Then H(V ) =
lg2 N (n+1, ϕ). On the other hand, by the chain rule and the fact that conditioning only reduces entropy,

we have

H(V ) = H(V0, . . . , Vn) ≤ H(V0) +

n−1
∑

i=0

H(Vi+1|Vi) ≤ lg |G|+
n−1
∑

i=0

E[lg deg(vi)] ≤ lg |G|+ S/n,

where the last inequality is by definition of N (n, ϕ). Rearranging sides completes the proof.

Therefore, the space usage is at most

lg |G|+ S/n+ 2 ≤ lg |G|+
n−1
∑

i=0

lg deg(vi) + 3.

In particular, setting B = 2 gives us query time O(lg n) and lookup table size Õ(n6).

16



4 Lower Bounds

4.1 A Succinct Reduction from Dictionaries to Directed Random Walks

In this section, we exhibit a succinct reduction from the well-studied Dictionary data structure problem

to the LDSC problem of storing random walks on (directed) non-regular graphs. Before we describe the

reduction, we begin with several definitions. Recall that the zeroth-order empirical entropy of a string

x ∈ Σn is H0(x) :=
∑

σ∈Σ fσ lg(n/fσ(x)) where fσ is the number of occurrences (frequency) of the

symbol σ in x. The succinct Dictionary problem is defined as follows:

Definition 1 (Succinct Dictionaries). Preprocess an n-letter string x ∈ Σn into H0(x)+ r bits of space,

such that each xi can be retrieved in time t. We denote this problem DictionaryΣ,n.

Note that in the special case of bit-strings (Σ = {0, 1}), this is the classic Membership problem

[Pag02, GM07, Pat08]. The best known time-space tradeoff for DictionaryΣ,n (for constant-size al-

phabets) is r = O(n/( lgn
t )t) [Pat08].6 While this exponential tradeoff is known to be optimal in the

bit-probe model (w = 1) [Vio12], no cell-probe lower bounds are known, and this is one of the long-

standing open problems in the field of succinct data structures.

A key component in our reduction will be the Huffman tree (c.f, Huffman code) of a distribution.

Definition 2 (Huffman Tree). The Huffman Tree Tµ of a discrete distribution µ supported on alphabet

Σ, is a rooted binary tree (not necessarily complete) with Σ leaves, one per alphabet symbol. For every

symbol σ ∈ Σ, the unique root-to-leaf path to the symbol σ is of length exactly ℓσ := ⌈lg2(1/µ(σ))⌉.

We remark that the existence of such trees for any discrete distribution µ is guaranteed by Kraft’s

inequality (for more context and construction of the Huffman tree, see [CT06]). We are now ready to

prove Theorem 4, which we restate below.

Theorem 9. Let D be a succinct cell-probe data structure for storing a walk (v1, . . . , vn) over general

(directed) graphs G, using
∑

i lg(deg(vi)) + r bits of space, and query time t for each vi. Then for any

constant-size alphabet Σ, there is a succinct dictionary storing x ∈ Σn, with space H0(x) + r bits and

query time query time t+ 1. This reduction holds for any input x with empirical frequencies (fσ(x)/n)

which are inverses of powers of 2 lower bounded by a constant.

Proof. First, we claim that the Dictionary problem can be reformulated as follows: Store an n-letter

string drawn from some arbitrary product distribution X ∼ µn, using expected space s = nH(µ) + r
bits, decoding Xi in time t, where H(µ) is the Shannon entropy of µ. Indeed, let µ = µ(x) denote

the empirical distribution of the input string x ∈ Σn to DictionaryΣ,n. Since the zeroth-order space

benchmark H0(x) only depends on the marginal frequencies of symbols in the input string, we may as-

sume that each coordinate Xi is drawn independently from the induced distribution µ (which is arbitrary

nonuniform), and H0(x) = H(µn) = nH(µ) holds.

By this reformulation, we may assume the input to DictionaryΣ,n is X ∼ µn for some µ. We

now define a (directed) graph such that a uniform random walk on this graph encodes the input string

X1, . . . , Xn ∼ µn without losing entropy. Let Tµ be the Huffman Tree of the distribution µ, where all

edges are directed downwards from root to leaves. By Definition 2, the probability that a random walk W
on Tµ starting from the root reaches leaf σ ∈ Σ is precisely 2−ℓσ = 2−⌈lg2(1/µ(σ))⌉. If all probabilities

in µ are (inverses of) powers of 2, then the probability of this event is exactly

Pr[W reaches leaf σ] = 2− lg2(1/µ(σ)) = µ(σ). (14)

6On a RAM, there is an extra n1−ε additive term for storing lookup-tables whose “amortized” cost is small, see Theorem 1 in

[Pat08].
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In other words, under the assumption that all probabilities are powers of 2, samplingXi ∼ µ is equivalent

to sampling a random leaf of Tµ according to a uniform random walk starting from the root vr. Let

dµ := max
σ

ℓσ

be the height of the tree Tµ (i.e., the length of the deepest path maxσ lg(1/µ(σ))). To complete the

construction of the graph, we connect each leaf (corresponding to symbol) σ back to the root of Tµ via a

vertex-disjoint directed path of length dµ+1− ℓσ. Call the resulting graph Gµ. This simple trick makes

sure that all “cycles” have fixed length dµ +1, hence each sampled leaf in the walk can be decoded from

a fixed block, despite the fact that each leaf is sampled at unpredictable depth. The key observation is

that adding these vertex-disjoint paths does not increase the entropy of a random walk (lg2(1) = 0), but

merely increases the size of the graph by a constant factor |Gµ| = O(|Σ|dµ) = O(1).
Let (V1, . . . , Vn′) be a uniform random walk of length n′ := (dµ + 1)n on Gµ starting from the

root. By (14) and definition of Gµ, it follows that the unique leaf Vji ∈ Σ sampled in the ith “cycle”

of the walk (ji ∈ [(i − 1)(dµ + 1), i(dµ + 1)] ), is distributed precisely as Xi ∼ µ. In particular,

H(Vj1 , . . . , Vjn) = nH(µ), while the (conditional) entropies of all the rest of the Vj’s are identically

0 (as all previous vertices V<ji in the ith “cycle” are determined by Vji by the tree structure, and all

remaining vertices V>ji in the ith cycle correspond to the part of the walk that is a vertex-disjoint path

and hence the conditional entropy of this subwalk is 0). Thus, by the chain rule and the premise of

the theorem, we conclude that there is a succinct data structure storing a random walk V1, . . . , Vn on

Gµ using space nH(µ) + r bits of space, which by the above reformulation implies the same space

for storing x ∈ Σn up to the O(|Σ| lg n) additive term, so long as marginal frequencies (fσ(x)/n) are

inverses of powers of 2.

Decoding of xi is straightforward: Go to the second-before-last vertex Vi(dµ+1)−1 in the ith cycle

(i.e., the one just before coming back to the root); Either Vi(dµ+1)−1 is a leaf of Tµ, or it belongs to a

unique path corresponding to some leaf ℓσ (as all back-tracking paths are vertex disjoint) hence we know

immediately that Xi = σ. By the premise of the theorem, the decoding time of each vertex in the walk

is t, hence so is that of Xi. We conclude that the resulting succinct data structure is an (r, t)-Dictionary,

as claimed.

4.2 Completeness of LDSC in the static cell-probe model

In this section, we prove unconditional (cell-probe) lower bounds on the LDSC problem, demonstrating

that for some (in fact, most) classes of non-product distributions, this storage problem does not admit

efficient time-space tradeoffs. Our first observation is that the LDSC problem under an arbitrary joint

distribution µ is a “complete” static data structure problem:

Proposition 1 (Completeness of LDSC). For any prior µ on n files, LDSC
µ
n,Σ is equivalent to some static

data structure problem P = P(µ) with |Q| = n queries, on an input database Y of size E[|Y |] ≤ Hµ+1
bits. Conversely, any static data structure problem P with |Q| queries on a database x ∈ Σn, can be

embedded as an LDSC problem on some µ = µ(P), where Hµ(X) = n. These equivalences hold in the

cell-probe model with word size w ≥ Ω(lg |Σ|).

Proof. The converse statement is straightforward: Given any static problem P on input x ∈ ΣN with

query set Q, consider the distribution µ(P) of (q1(X), q2(X), . . . , q|Q|(X)), i.e., of all query answers

(A1, . . . , A|Q|) to problem P under a uniformly random input database X ∈R Σn. The joint entropy of

µ(P) is H(A1, . . . , A|Q|) ≤ H(X) = N lg Σ, since X determines all query answers. Hence this is a

valid LDSC instance on n = |Q| files, over a joint distribution µ(P) with entropy Hµ ≤ N lg Σ ≤ n.

For the first direction of the proposition, let X := (X1, . . . , Xn) be the (random variable) input files

to LDSC
µ
n,Σ, and let Y := Huff(X1, . . . , Xn) denote the Huffman code of the random variable X . By

the properties of the Huffman code (c.f. Definition 2), Y = Huff(X) is invertible and has expected
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length Eµ[Y ] ≤ Hµ(X) + 1 bits. This implies that Y is a uniformly distributed random variable with

entropy H(Y ) = H(X). Now, define the data structure problem P , in which the answer to the ith query

is P(i, Y ) := (Huff−1(Y ))i = Xi where the last inequality follows from the fact that Huffman coding

is lossless and hence X is determined by some deterministic function g(Y ). While this provides a bound

only on the expected size of the input (“database”) Y , a standard Markov argument can be applied for

bounding the worst-case size, if one is willing to tolerate an arbitrarily small failure probability of the

data structure over the distribution µ.

Corollary 3 (LDSC Lower Bounds). Proposition 1 has the following lower bound implications:

1. (k-wise independent distributions) Using the cell-sampling arguments of [Sie04, Lar12], the above

reduction implies that any linear-space data-structure (storing O(Hµ) bits) for LDSCµ
n,Σ when

µ is an (Hµ)-wise independent distribution, requires

t ≥ Ω(lgHµ) = Ω(lgn)

decoding time even in the cell-probe model (note that this type of tradeoff is the highest explicit

lower bound known for any static problem).

2. A rather simple counting argument ([Mil93]) implies that for most joint distributions µ with en-

tropy H(µ) := h ≪ n, locally decodable source coding is impossible, in the sense that decoding

requires h1−o(1) time unless trivial ≈ n1−o(1) space is used (and this is tight by Huffman coding).

Such implicit hard distribution µ can be defined by n random functions on a random h-bit string,

where h = nε.
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