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Abstract: This paper presents a unified and simple treatment of basic questions concern-
ing two computational models: multiparty communication complexity and polynomials
over GF(2). The key is the use of (known) norms on Boolean functions, which capture
their proximity to each of these models (and are closely related to property testers of this
proximity).

The main contributions are new XOR lemmas. We show that if a Boolean function has
correlation at most ε ≤ 1/2 with either of these models, then the correlation of the parity
of its values on m independent instances drops exponentially with m. More specifically:

• For polynomials over GF(2) of degree d, the correlation drops to exp
(
−m/4d

)
. No

XOR lemma was known even for d = 2.
• For c-bit k-party protocols, the correlation drops to 2c · εm/2k

. No XOR lemma was
known for k ≥ 3 parties.
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Another contribution in this paper is a general derivation of direct product lemmas from
XOR lemmas. In particular, assuming that f has correlation at most ε ≤ 1/2 with either
of the above models, we obtain the following bounds on the probability of computing m
independent instances of f correctly:

• For polynomials over GF(2) of degree d we again obtain a bound of exp
(
−m/4d

)
.

• For c-bit k-party protocols we obtain a bound of 2−Ω(m) in the special case when
ε ≤ exp

(
−c ·2k

)
.

We also use the norms to give improved lower bounds or simplified proofs of known
lower bounds in these models. In particular we give a new proof that the Modm function
on n bits, for odd m, has correlation at most exp(−n/4d) with degree-d polynomials over
GF(2).

1 Introduction

1.1 Background

A natural measure of agreement between two functions is their “correlation.”

Definition 1.1. We define the correlation1 between two functions f , p : D→ C with respect to a proba-
bility distribution Q on D as

CorQ( f , p) := |Ex∼Q[ f (x) · p(x)]| .

For a class C of functions (e. g., polynomials of degree d on any number of variables) and Q a family
of distributions, one for every domain D = dom( f ) for f ∈C, we denote by CorQ( f ,C) the maximum
of CorQ( f , p) over all functions p ∈ C whose domain is D := dom( f ). Unless specified otherwise, Q
is the family of uniform distributions. In this case, we simply write Cor( f , p). If our functions are
{−1,1}-valued, the correlation can be written as

Cor( f , p) =
∣∣∣Pr

x
[ f (x) = p(x)]−Pr

x
[ f (x) 6= p(x)]

∣∣∣ ∈ [0,1] ,

where the probabilities are over the uniform distribution.

For functions that are {−1,1}-valued and nearly balanced, Cor( f ,C) captures how well we can
approximate f by a function from C.

Correlation bounds are fundamental in computational complexity. Proving that Cor( f ,C) < 1 is
equivalent to establishing that ± f 6∈C, but what is far more desirable is to prove that Cor( f ,C) is very
close to zero, for natural functions f and classes C. Such bounds yield pseudorandom generators that
“fool” the class C (e. g. [30, 32, 40, 28, 44]), and they also imply lower bounds for richer classes related
to C (e. g., if CorQ( f ,C) < 1/t for some distribution Q then f is not equal to any function which is the

1Our notion of “correlation” differs from the standard notion in that we do not balance and do not normalize our functions.
However, most of our functions of interest will be nearly balanced and automatically normalized (as Boolean functions), so we
stay close to the standard concept.
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majority of t functions from C [20]). For such applications, we would like to prove correlation bounds
as close to zero as possible.

A celebrated way of decreasing correlation (a.k.a. amplifying hardness) is via an XOR lemma, first
suggested by Yao in his seminal paper [46] (cf. [13]). One starts with a function f of nontrivial cor-
relation with C, and constructs a new function f×m (on n ·m bits), which is the exclusive-OR of the
value of f on m independent inputs. (For functions with range in {−1,1} exclusive-OR amounts to
multiplication.) The hope is that the correlation with C will decay exponentially with m. This idea is
best demonstrated in the information-theoretic setting, in which we try to compute the value of a biased
coin. In our language, take C to be the class of constant functions (in any number of variables), and f
any function with |Ex[ f (x)]|= Cor( f ,C) = ε . Then it is easy to see that Cor( f×m,C) = εm for every m.
So the decay of the correlation in this trivial scenario is purely exponential in m, the number of copies.

Yao’s XOR lemma deals with the most studied combinatorial model of computation, namely poly-
nomial-size circuits, and goes as follows. Let C be the set of Boolean circuits of size s on n bits, and let
f be any function on n bits with Cor( f ,C)≤ ε . Then for any m and any α > 0, if C′ is the set of circuits
of size s · (α/nm)2 on n ·m bits then Cor( f×m,C′)≤ εm +α .

Many proofs of this XOR lemma have been given, starting with Levin [27, 23, 13, 24]. All in fact
show that this lemma holds under more restrictive circumstances, namely for any C and C′ as long as C
includes the majority of about 1/ε functions that are in C′ (up to complementing the output). However,
none of these proofs can be applied to the computational models for which we actually can establish
the existence of functions with non-trivial correlation bounds (i. e., prove lower bounds on complexity),
such as low-degree polynomials over GF(2), multiparty protocols, or constant-depth circuits (cf. [41]).
Specifically, none of the above proofs can be applied to obtain a correlation bound of 1/n for a function
on n bits. Another weakness of the results in [27, 23, 13, 24] is their loss in resources (e. g., circuit size)
in C′ compared to C (cf. [13]).

1.2 Our results

In this paper we prove new XOR lemmas for two models: low-degree polynomials over GF(2), and
low-communication multiparty protocols.

Both proofs of our XOR lemmas use a common approach, very different from the one used for
circuits. With each of these classes C we associate a real norm N on all Boolean functions which has the
following properties (informally stated):2

1. N CAPTURES CORRELATION WITH C. For every function f , N( f )≈ Cor( f ,C).

2. N IS MULTIPLICATIVE WITH RESPECT TO XOR. If f ,g are two functions on disjoint inputs then
N( f ·g) = N( f ) ·N(g). In particular, N( f×m) = N( f )m.

Given such a norm N, the proof of an XOR lemma for C is almost straightforward:

Cor( f×m,C)≈ N( f×m) = N( f )m ≈ Cor( f ,C)m .

Of course, the challenge is to find the appropriate norms and prove their properties. As it turns out,
much of this work has already been done. Specifically, we will see that if the functions in C (of a fixed

2As we discuss later, N will not quite be a norm but rather “close” to a norm.
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input length) form a linear code, as is the case with polynomials over GF(2), a norm can be viewed as
arising from a local tester for proximity to this code (cf. [2]). And when the functions in C (of a fixed
input length) do not form a linear code, as is the case with multi-party protocols, it may be useful first to
approximate them by a linear code, for which such a norm exists by the foregoing.

The proofs of some of the central lemmas in this area (notably Lemmas 2.3 and 3.4 in this paper)
follow a certain iterated Cauchy-Schwarz scheme through the segregation of some variables in each
round. This method was first introduced into the subject by Babai, Nisan, and Szegedy [5]. A strikingly
similar method was employed later by Gowers, Bourgain, Green-Tao [14, 15, 6, 16] in various contexts,
some of it closely related to our subject and used in this paper.

1.2.1 Polynomials over GF(2)

Let Pd be the class of all polynomials of degree at most d (in any number of variables) over GF(2). This
class has been studied in many contexts in computational complexity. First, it is a natural class that arises
in other settings, like error-correcting codes. Second, it is related to important computational models.
For example, it is not hard to see that every Boolean decision tree of depth d is in this class. Another,
far less obvious connection was proved by Razborov [36] in his lower bound for unbounded fan-in
polynomial-size constant-depth circuits over GF(2). Razborov proved that any function f : {0,1}n →
{0,1} computable by such circuits satisfies Cor( f ,Pd) ≥ 1− 1/nω(1) for some d = poly(logn). That
same paper of Razborov exhibits a symmetric function f satisfying Cor( f ,Pd) ≤ O(1/

√
n) for such d,

and the quest to find functions of smaller correlation with that class continues. Specifically, no explicit
function is known which has correlation at most 1/n with polynomials of degree log2 n. The XOR lemma
we prove falls short of meeting this challenge: it gives meaningful amplification only if the degree d is
below logn. In particular, we prove that the correlation of the XOR of m copies decays exponentially
with m/2d .

Theorem 1.2 (XOR lemma for polynomials over GF(2)). Let f : {0,1}n →{−1,1} be a function such
that Cor( f ,Pd)≤ 1−1/2d . Then Cor( f×m,Pd)≤ exp

(
−Ω

(
m/
(
4d ·d

)))
.

The implied constants in all occurrences of the Ω notation in this paper are absolute.
No XOR lemma was previously known even for d = 2.
The norm we use for the proof of this XOR lemma is the so-called “Gowers norm,” or “degree-d

norm,” introduced by Gowers [14, 15] and independently by Alon et al. [2]. We note that its relation-
ship to the class Pd has already been applied in a variety of contexts. Gowers [14, 15] used it to give
sharper bounds in Szemerédi’s Theorem on arithmetic progressions in subsets of the integers. Green
and Tao [16] found further applications to arithmetic combinatorics. Alon et al. [2] used it for property
testing of low-degree polynomials. Finally, Samorodnitsky and Trevisan [37, 38] used it to give opti-
mal results on the free-bit complexity of PCPs. These papers contain various inequalities relating these
norms to low-degree polynomials; we use the ones in [16], [2], and in [37].

1.2.2 Multiparty protocols

In Yao’s standard 2-party communication complexity model [45], each party holds a separate input,
and they attempt to compute (or approximate) a given function of these two inputs by exchanging at
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most c bits of communication (cf. the excellent monograph [26]). This model has been one of the
most extensively studied in complexity theory, and captures essential features of diverse computational
settings, from Turing machines, VLSI, and distributed computation, to linear programming and auctions.
A variety of techniques for proving strong lower bounds and correlation bounds have been developed.

This model was generalized by Chandra, Furst, and Lipton [7] to the multiparty model (often called
“number-on-forehead” or NOF model). In k-party communication complexity each party is assigned a
separate input again. However, that input (figuratively) resides on that party’s forehead, and so (formally)
each party knows all but its own input. Again, the parties have to compute (or approximate) a function on
all k inputs by exchanging c bits of communication. The overlapping information of the parties allows
this model to capture more complex settings, like multi-tape Turing machines, branching programs,
constant-depth circuits with modular gates and more. Here, lower bounds and even correlation bounds
are known as long as k is below logn (where n is the total input length). These bounds were proven in the
seminal work of Babai, Nisan, and Szegedy [5], and remain the state-of-the-art after 18 years of intense
work; no explicit function is known to require communication c = ω(logn) for k = log2 n parties.

The fact that the logn barrier in our knowledge appears in both our models is no coincidence; a
beautiful observation of Håstad and Goldmann [21, Proof of Lemma 4] shows that any degree-d poly-
nomial over GF(2) can be computed by k = d + 1 parties, exchanging only c = d + 1 communication
bits.3 Thus, breaking the logn barrier for multiparty protocols would imply breaking the logn barrier
for polynomials over GF(2). Again, our XOR lemma falls short of breaking this barrier, and shows that
when computing the XOR of m copies of a function in this model (with the inputs distributed among
the k parties as before), the correlation decays (roughly) like m/2k. More precisely, denoting by Πk,c the
class of all protocols between k parties exchanging at most c bits, we obtain the following theorem.

Theorem 1.3 (XOR lemma for multiparty protocols). Let f : Dk → {−1,1} be a function such that
Cor( f ,Πk,k)≤ ε . Then Cor( f×m,Πk,c)≤ 2c · εm/2k

.

No such result was known for k ≥ 3 parties (although, as explained below, a related assumption was
known to imply the same consequence). For k = 2 our result can be seen as an alternative proof of an
XOR lemma by Shaltiel [39]; cf. Remark 3.12.

Note that in the hypothesis of Theorem 1.3 we only require that the function f has small correlation
with k-bit protocols (as opposed to c-bit protocols). In fact, we only need that f has small correlation
with a special case of k-bit protocols, cf. Section 3.1. We do not know how to exploit the stronger
assumption that f has small correlation with c-bit protocols, and in general we do not know whether
our XOR lemma is tight. On the other hand, in this work we prove that the “ideal” XOR lemma, i. e.,
replacing 2c · εm/2k

simply by εm in Theorem 1.3, is actually false for k = 2 and c = 2 (Claim 3.13). It
would be interesting to find the correct bound.

The norm we use to prove this XOR lemma is the one supplied (indirectly or directly) in certain lower
bound proofs for this model [5, 9, 35]. In particular, Chung and Tetali [9] show that this norm bounds the
correlation from above (which proves one direction of Property 1 in Section 1.2), and they also observe
that it is multiplicative with respect to XOR (which proves Property 2 in Section 1.2). With this work
in place, we only need to show that this norm bounds the correlation from below, too (which proves

3We point out that the converse is false: multiparty protocols are stronger than low-degree polynomials, as exemplified by
the Mod3 function.
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the other direction of Property 1 in Section 1.2). We also give a somewhat more direct proof that this
norm bounds the correlation from above, and extend the norm to complex-valued functions, to obtain
correlation bounds for certain unbalanced functions.

Such bounds are implicit in the works by Grolmusz [18] and Babai, Hayes, and Kimmel [4]; those
papers introduce discrepancy concepts for complex-valued functions.

1.2.3 Direct product vs. XOR lemmas

XOR lemmas are intimately related to direct product lemmas. Here we again start with a function
f : D → {−1,1} that does not belong to some class C, and want to amplify its hardness by taking
many copies of it on independent inputs. However, rather than requiring the computation of only the
XOR of all outputs, we simply require the computation of all outputs. In other words, the new function
f (m) : Dm →{−1,1}m is the concatenation of m copies of f ,

f (m)(x1,x2, . . . ,xm) := ( f (x1), f (x2), . . . , f (xm)) .

Here the natural measure is the success probability, denoted Suc
(

f (m),C
)
, of giving the right answer

when the m-tuple of inputs is chosen uniformly at random. In this setting it makes sense to allow every
output to be computed by a function from C (thus, in a sense, allowing a factor m more resources for
this solution), and the results in this section indeed hold in this strong form: we define Suc

(
f (m),C

)
to

be the maximum, over functions p1, . . . , pm ∈C with domain Dm and range {−1,1}, of the probability
over x ∈ Dm that f (m)(x) = (p1(x), p2(x), . . . , pm(x)).

As for XOR lemmas, one expects exponential decay of the probability Suc
(

f (m),C
)

with m, and
in fact such direct product lemmas are known for several models. For Boolean decision trees, Nisan
et al. [31] show that the success probability of computing f (m) using decision trees of depth d decays
purely exponentially with m (independently of d). For c-bit 2-party protocols, Parnafes et al. [33] prove a
decay of the form ε → (1/2+ε/2)Ω(m/c), which mildly deteriorates with the communication complexity
c. This bound is proved using (and somewhat extending and strengthening) the celebrated parallel
repetition theorem of Raz [34].

We now discuss the connection between XOR lemmas and direct product lemmas and highlight our
contributions.

From XOR to direct product. Intuitively, computing all the m f -outputs for f (m) seems like a much
harder task than computing only their exclusive-or for f×m. However, a formal connection of this sort
does not seem to have been known. We observe that one can indeed formalize such a connection.

We need the following notation: for a set D, let F(D) =
⋃

k≥0{−1,1}Dk
denote the set of all {−1,1}-

valued functions of any number of variables where each variable ranges over D.

Proposition 1.4 (XOR lemma implies direct product lemma). Let T (m,m′) := 2−m
∑k<m′

(m
k

)
be the tail

of the sum of the binomial coefficients. For every m and 0 < m′ < m, function f : D→{−1,1} and class
C ⊆ F(D) of {−1,1}-valued functions that is closed under projections (i. e., under fixing some of the
input variables), we have:

Suc
(

f (m),C
)
≤ Cor

(
f×m′

,C′
)

+T (m,m′) ,
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where C′ consists of products of m′ functions from C.
In particular, Suc

(
f (m),C

)
≤ Cor

(
f×m/3,C′)+αm for an absolute constant α ≈ 0.945.

Proof. Let p1, . . . , pm ∈ C, pi : Dm → {−1,1} for every i, be such that with probability ε over X =
(X1, . . . ,Xm) ∈Dm we have f (Xi) = pi(X) for every i. For x = (x1, . . . ,xm) and z = (z1, . . . ,zm) ∈ {0,1}m

let P(z,x) denote the quantity ∏i≤m( f (xi) · pi(x))zi . Let us choose Z = (Z1, · · · ,Zm) uniformly in {0,1}m.
Observe that the expectation of ( f (xi) · pi(x))Zi , over the choice of Zi, is 0 if f (xi) · pi(x) =−1, which is
equivalent to f (xi) 6= pi(x); otherwise the expectation is 1. Therefore,

ε = E
Z,X

[P(Z,X)]≤ E
Z,X

[P(Z,X)|wt(Z)≥ m′]+Pr
Z
[wt(Z) < m′] = E

Z,X
[P(Z,X)|wt(Z)≥ m′]+T (m,m′) ,

where wt denotes Hamming weight. Therefore for some fixed z with wt(z)≥ m′ we have

E
X
[P(z,X)]≥ ε−T (m,m′) .

The result now follows by fixing the values of all xi except exactly m′ of them corresponding to zi = 1
so as to maximize the expectation; which shows that the XOR of the function in the non-fixed m′ inputs
has correlation at least ε−T (m,m′) with an XOR of m′ functions in C with some inputs fixed.

The “in particular part” follows from the standard estimate T (m,m/3) < 2(H(1/3)−1)m, where H is
the binary entropy function.

Remark 1.5. Proposition 1.4 strengthens a result by Impagliazzo and Wigderson [24, Theorem 11]
which is about the special case m′ = 1 (i. e., computing f ), and simplifies its proof: in Proposition 1.4,
setting m′ = 1 gives Suc

(
f (m),C

)
≤ Cor( f ,C′) + 2−m, whereas in [24] they obtain Suc

(
f (m),C

)
≤

Cor( f ,C′)+O(
√

m ·2−m).

Combining Proposition 1.4 with our XOR lemma for polynomials over GF(2) (Theorem 1.2) we
obtain a direct product lemma for polynomials over GF(2). We note that there is no loss in the degree
because, although the reduction given by Proposition 1.4 requires taking products of functions from C,
recall that in our {−1,1} notation multiplication corresponds to exclusive-OR, an operation which does
not increase the degree.

Corollary 1.6 (Direct product lemma for polynomials over GF(2)). Let f : {0,1}n → {−1,1} be a
function such that Cor( f ,Pd)≤ 1−1/2d . Then Suc

(
f (m),Pd

)
≤ exp

(
−Ω

(
m/
(
4d ·d

)))
.

Similarly, we obtain a direct product lemma for multiparty protocols. As discussed above, we allow
each of the m protocols to use c bits of communication (i. e., c represents the amount of communication
per instance). However, in the reduction in Proposition 1.4, the protocol for the XOR needs to run Ω(m)
of the protocols for the direct product, and this increases the communication by a factor of m, making
the result only meaningful when ε � 2−c·2k

.

Corollary 1.7 (Direct product lemma for multiparty protocols). Let f : D→{−1,1} be a function such
that Cor( f ,Πk,k)≤ ε ≤ 2−(c+1)·2k

. Then Suc
(

f (m),Πk,c
)
≤ 2−Ω(m).
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The above corollary, in its range of parameter ε � 2−c·2k
, beats the bound for 2-party protocols

in [33] discussed above, because the latter never gives success probability smaller than exp(−Ω(m/c)),
no matter what ε is. Also, the proof of our bound is simpler. Moreover, the above corollary is the first
direct product result for k ≥ 3 parties. We stress again that to apply the above corollary we only require
that f has small correlation with a special case of k-bit protocols (cf. Section 3.1). Finally, we note that
the rightmost quantity 2−Ω(m) in the corollary does not depend on c or k; intuitively, this is possible
because the bound only holds when ε � 2−c·2k

.

From direct product to XOR. Connections are also known in the other direction: The seminal
Goldreich-Levin theorem [12] shows that if a circuit has correlation ε with f×m, then a slightly larger cir-
cuit will succeed in computing f (m) correctly with probability poly(ε) (cf. [13]). However, this reduction
suffers again from the problems discussed at the end of Section 1.1: it usually cannot be implemented in
the models for which we can currently prove lower bounds, as it needs to compute majority on inputs of
length about 1/ε (cf. [41]). Because of this fact, the direct product lemma for 2-party protocols in [33]
does not yield an XOR lemma.

Another important computational model where the direct product problem has been studied is that
of k-prover one-round proof systems, which are often viewed as games between a verifier and k provers
who cannot communicate with each other (cf. [10]). The problem was first formulated by Fortnow [11,
Sec. 4.5] and answered by Raz’s celebrated “Parallel Repetition Theorem” [34] which is an essentially
tight direct product lemma for two provers.

In this work we show that the XOR lemma for games is false in a strong sense. Specifically, we
exhibit a very simple game G for which any prover strategy has correlation at most 1/2, but there is a
prover strategy that has correlation 1−1/2m with G×m (see Section 3.2.2).

Equivalence of direct product and XOR lemmas for circuits. Although in this paper we mainly
apply Proposition 1.4 to the models C of low-degree polynomials over GF(2) and multiparty proto-
cols, the proposition is very general and in particular applies to the model of polynomial-size circuits.
For this latter model, using the Goldreich-Levin theorem discussed above, we now have the following
equivalence.

Corollary 1.8 (Equivalence of direct product and XOR lemmas for circuits). Let C(s) denote the class
of Boolean circuits of size s, and let f : {0,1}n →{−1,1} be any function. We have:

1. (Proposition 1.4) Suc
(

f (m),C(s)
)
≤ Cor

(
f×m′

,C(s′)
)

+2−Ω(m), where m′ = m/3 and s′ = O(s ·
m′), and

2. (Goldreich and Levin [12]) Cor( f×m,C(s))≤
(
n ·Suc

(
f (m),C(s′)

))Ω(1)
,

where s′ = s ·poly(n/Cor( f×m,C(s))).

In particular, let C be the set of all poly(n)-size circuits, and let m = m(n) be any function such that
m(n) = ω(logn). Then we have that

Suc
(

f (m(n)),C
)
≤ 1/nω(1) if and only if Cor

(
f×m(n),C

)
≤ 1/nω(1) .
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1.2.4 Lower bounds

The intimate connection of the norms used above to correlation bounds in these models naturally invites
their use for proving lower bounds. Indeed, as mentioned earlier, this is exactly what was done in the
case of multiparty protocols. We apply this connection to polynomials over GF(2), obtaining a number
of new bounds which somewhat improve and considerably simplify correlation bounds for some natural
functions. Our bounds rely on the fact that the correlation of any function f with a degree-d polynomial
over GF(2) can (essentially) be bounded from above by the degree-d norm of the function f raised to
the power of 2−d (Lemma 2.3). Using this fact we obtain the following results.

(1) We consider the Modm function on n bits, defined as Modm(x1,x2, . . . ,xn) = 1 iff ∑i xi ≡ 0
(mod m), for a fixed odd integer m. We prove that this function has correlation at most exp

(
−Ω

(
n/4d

))
with any polynomial over GF(2) of degree d with respect to a certain distribution Q on {0,1}n (the dis-
tribution Q is defined in Section 2.3). A correlation bound of exp

(
−Ω

(
n/8d

))
was first proved in a

breakthrough result by Bourgain [6]4.
After our work [43], Chattopadhyay [8] showed how to modify Bourgain’s proof to obtain the same

exp
(
−Ω

(
n/4d

))
bound we obtain. Our proof appears to be more modular than the proofs in [6, 17, 8].

It proceeds by again relating the correlation to the degree norm, and then giving an exact calculation of
the degree norm of the Modm function, yielding exp

(
−Θ

(
n/2d

))
. However, the techniques of [6, 17, 8]

generalize to polynomials modulo q for arbitrary q relatively prime to m, while our methods appear to
be limited to q = 2.

(2) We exhibit a polynomial-time computable function on n bits whose correlation with any polyno-
mial of degree d over GF(2) is at most exp

(
−Ω

(
n/2d

))
. Prior to our work, in the range d � logn the

best correlation bound for an explicit function was exp
(
−Ω

(
n/
(
d ·2d

)))
, which follows from the mul-

tiparty communication complexity lower bound by Babai, Nisan, and Szegedy [5] and the connection
between such multiparty protocols and low-degree polynomials discussed in Section 1.2.2. To obtain this
result, we note that (for any d ≤ n/2) a random function F : {0,1}n → {−1,1} has degree-d norm that
is exponentially small (i. e., exp(−Ω(n))) with high probability. We derandomize this probabilistic con-
struction by showing that the same holds when the truth-table of F (of length 2n) is selected at random
from a small-bias space [29, 1]. A function Fs from such a sample space can be generated using only an
O(n)-bit random string s, which we can include as part of the input to our function. Thus, we see that the
function f (s,x) := Fs(x) has correlation at most exp

(
−Ω

(
n/2d

))
with any polynomial over GF(2) of

degree d. In particular, using a construction by Alon et al. [1], we obtain the result that this correlation
bound holds for the function (α,β ,x) 7→ 〈αx,β 〉, where α is an element of GF(2n) and 〈·, ·〉 denotes
inner product modulo 2.

Organization of the paper. This paper is organized as follows. In Section 2 we discuss polynomials
over GF(2), while in Section 3 we discuss multiparty protocols. For each of these models, we first
describe the associated norm, then use it to prove the XOR and direct product lemmas, and finally to
prove lower bounds.

4Bourgain’s proof [6] contains all the main ideas but has a slight error. A correct proof is given by F. Green et al. [17].
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2 Polynomials over GF(2)

In this section we present our results on polynomials over GF(2). It is convenient to think of a poly-
nomial p over GF(2) as a function from {0,1}n to {−1,1}. For example, p(x1,x2,x3) := (−1)x1·x2+x3 ,
where xi ∈ {0,1}, is a polynomial over GF(2) mapping {0,1}3 to {−1,1}. In this notation, a product
of functions is equivalent to their exclusive-or in the 0/1 notation.

2.1 Degree-k norm

It is convenient to use the following notation.

Notation 2.1. For a complex number z and an integer j, we denote by z j the complex number z if j is
even, and the complex conjugate z if j is odd.

We now define the degree-k norm of a function. Although this is syntactically defined as the expec-
tation of a complex-valued random variable, it is always a non-negative real number (cf. [38]).

Definition 2.2 (Degree-k norm5). Let f : {0,1}n → C be a function and k ≥ 1 an integer. The degree-k
norm of f is defined as

Uk ( f ) := E
y1,y2,...,yk,x∈{0,1}n

∏
S⊆[k]

f

(
x⊕

⊕
j∈S

y j

)|S| ,

where ⊕ denotes bitwise XOR.

Degree-d polynomials form a linear code, known as the Reed-Muller code. A “parity check” of a
code is a vector in the dual code. In the above definition, we focus on parity checks of low Hamming
weight, pick a random one among these (corresponding to the choice of y1, . . . ,yk,x) and essentially
check if it is orthogonal to the given function f by computing ∏S⊆[k] f

(
x⊕

⊕
j∈S y j

)|S|. The same
is done in many property testers, see, e. g., [2]. For a Boolean function, the above norm equals the
probability that a random parity check succeeds, minus the probability that it fails. It can be shown that
a function f belongs to the class of polynomials of degree k−1 if and only if every parity check is 1, in
which case the norm is 1 as well. So the norm being 1 captures membership in the class. Now we turn
to the study of how smaller values of the norm capture proximity to (or correlation with) the class.

The following lemma shows that the degree norm provides an upper bound on the correlation of a
function with polynomials of low degree. This lemma is implicit in the works by Gowers [15] and Green
and Tao [16].

Lemma 2.3 (Cf. [15, 16]). For every function f : {0,1}n → C, Cor( f ,Pd)≤Ud+1 ( f )1/2d+1
.

We need the following lemma for the proof of Lemma 2.3.

Lemma 2.4. For every function h : {0,1}n → C, and every k, Uk (h)≤
√

Uk+1 (h).

5The degree-k norm is indeed a norm when raised to the power of 1/2k; see, e. g., [16].
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Proof of Lemma 2.4. We have:

Uk (h) = E
y1,y2,...,yk−1

 E
x,yk

 ∏
S⊆[k−1]

h

(
x⊕

⊕
j∈S

y j

)|S|
·h

(
x⊕

⊕
j∈S

y j⊕ yk

)|S|+1


= E
y1,y2,...,yk−1

E
x

 ∏
S⊆[k−1]

h

(
x⊕

⊕
j∈S

y j

)|S| ·E
x

 ∏
S⊆[k−1]

h

(
x⊕

⊕
j∈S

y j

)|S|


= E
y1,y2,...,yk−1


∣∣∣∣∣∣Ex
 ∏

S⊆[k−1]
h

(
x⊕

⊕
j∈S

y j

)|S|∣∣∣∣∣∣
2


≥

∣∣∣∣∣∣ E
y1,y2,...,yk−1,x

 ∏
S⊆[k−1]

h

(
x⊕

⊕
j∈S

y j

)|S|∣∣∣∣∣∣
2

= Uk−1 (h)2 .
(

Because E
[
|Z|2
]
≥ |E [Z]|2 .

)

Proof of Lemma 2.3. The lemma follows readily from the following claims, which hold for every func-
tion h : {0,1}n → C:

1.
∣∣Ex∈{0,1}n [h(x)]

∣∣=√U1 (h),

2. for every k, Uk (h)≤
√

Uk+1 (h) (Lemma 2.4),

3. for every polynomial over GF(2) p of degree at most d, Ud+1 ( f · p) = Ud+1 ( f ).

To see that the above claims imply the lemma, let p ∈ Pd maximize Cor( f ,Pd), let h := f · p, and write

Cor( f ,Pd) = |E
x
[h(x)] |=

√
U1 (h)≤U2 (h)1/22

≤ . . .≤Ud+1 (h)1/2d+1
= Ud+1 ( f )1/2d+1

.

We now explain how one obtains the above claims. Claim (1) follows from the definition:

|E
x
[h(x)] |=

√
E
x,y

[
h(x) ·h(x⊕ y)

]
=
√

U1 (h) .

Claim (2) is Lemma 2.4.
Claim (3) follows from the fact that for every polynomial over GF(2) p(x) of degree d and every

fixed y ∈ {0,1}n, the polynomial q(x) := p(x) · p(x + y) has degree d− 1. For example, consider the
polynomial p of degree d = 2 defined as p(x) = (−1)x1·x2 for x = x1x2 ∈ {0,1}2. Then

q(x) = p(x) · p(x+ y) = (−1)x1·x2+(x1+y1)·(x2+y2) = (−1)x1·y2+y1·x2+y1·y2 ,

which is a polynomial of degree 1.
The same three claims above are stated in [16, Equations 1.1, 1.2, and 2.1] for Uk (h)1/2k

.
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We now discuss the other direction, namely lower bounds on the correlation in terms of the degree
norm. Such bounds arose from the study of property testing of low-degree polynomials. Specifically,
Alon et al. [2] define, for a given function f : {0,1}n →{−1,1}, a probabilistic procedure and essentially
show that if the function satisfies Ex [ f (x) · p(x)]≤ ε for every degree-d polynomial p : {0,1}n →{−1,1}
then their procedure rejects with probability Ω

(
min

{
2d(1− ε),1/(d ·2d)

})
. As noted in [37], the re-

jection probability of their procedure is (1−Ud+1 ( f ))/2. Thus we have the following lemma (stated
in [25, Theorem 4.1] but essentially proved in [2]).

Lemma 2.5 ([2, 25]). Let f : {0,1}n →{−1,1} be a function such that Cor( f ,Pd)≤ ε . Then

Ud+1 ( f )≤ 1−Ω

(
min

{
2d(1− ε),1/(d ·2d)

})
.

The above lemma does not bound Ud+1 ( f ) by less than 1−Ω(1/(d · 2d)), no matter how small
the correlation ε is. Samorodnitsky [37] improved this dependence in the special case of quadratic
polynomials (i. e., d = 2).

Lemma 2.6 ([37]). Let f : {0,1}n →{−1,1} be a function such that Cor( f ,P2)≤ ε . Then U3 ( f )≤ ε ′,
where ε ′ ≤ log−Ω(1)(1/ε).

Next, we state the important observation that the norm is multiplicative for functions over disjoint
sets of input variables.

Fact 2.7. For functions f : {0,1}n → C and f ′ : {0,1}n′ → C, define the function ( f · f ′) : {0,1}n ×
{0,1}n′ → C by ( f · f ′)(x,y) := f (x) · f ′(y). Then Uk ( f · f ′) = Uk ( f ) ·Uk ( f ′) .

2.2 XOR and direct product lemmas for low-degree polynomials over GF(2)

In this section we show how the degree norm can be used to obtain XOR lemmas for low-degree poly-
nomials over GF(2). Then we derive a direct product lemma as a corollary.

We repeat our XOR lemma for polynomials for the reader’s convenience.

Theorem 1.2 (XOR lemma for polynomials over GF(2), restated). Let f : {0,1}n → {−1,1} be a
function such that Cor( f ,Pd)≤ 1−1/2d . Then Cor( f×m,Pd)≤ exp

(
−Ω

(
m/
(
4d ·d

)))
.

Proof. Letting k := d +1 we have, for p ∈ Pd :

E
x

[
f×m(x) · p(x)

]
≤Uk

(
f×m)1/2k

= Uk ( f )m/2k
≤
(

1−Ω

(
1/(2d ·d)

))m/2k

≤ 2−Ω(m/(4d ·d)) ,

where the first inequality holds by Lemma 2.3, the next equality by Fact 2.7, and the next inequality by
Lemma 2.5.

Note that if the initial correlation is ε ≥ 1− 1/
(
d ·4d

)
, then in fact we can obtain an XOR lemma

with the ‘correct’ dependence on ε , namely exp(−Ω(m · (1− ε))) ≈ εm (for simplicity, we did not
state this in the theorem). However, if the initial correlation is ε ≤ 1− 1/

(
d ·4d

)
, we only obtain the

stated bound of exp
(
−Ω

(
m ·/(d ·4d)

))
. This latter dependence can be improved in the special case

of quadratic polynomials (i. e., d = 2). Specifically, using Lemma 2.6 and reasoning as in the proof
Theorem 1.2, we obtain the following XOR lemma for quadratic polynomials over GF(2).
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Theorem 2.8 (XOR lemma for quadratic polynomials over GF(2)). Let f : {0,1}n → {−1,1} be a
function such that Cor( f ,P2)≤ ε . Then Cor( f×m,P2)≤ (ε ′)m, where ε ′ ≤ log−Ω(1)(1/ε).

As discussed in Section 1.2.3, combining Theorem 1.2 with Proposition 1.4 we immediately obtain
our direct product lemma for low-degree polynomials over GF(2) (Corollary 1.6).

Similarly, one can obtain a direct product lemma for quadratic polynomials over GF(2) by combin-
ing Proposition 1.4 with Theorem 2.8.

2.3 The correlation of the Modm function with polynomials over GF(2)

In this section we study the correlation of low-degree polynomials over GF(2) with the function Modm :
{0,1}n → {−1,1}, for odd m ≥ 3, where Modm(x1,x2, . . . ,xn) equals −1 if and only if ∑i xi is divisible
by m. When working with unbalanced functions like Modm, i. e., functions f such that Prx[ f (x) = 1] is
far from 1/2, one needs to use a non-uniform distribution Q in the definition of correlation. For fixed
n,m, we define Q as follows: with probability 1/2, Q is uniform over the inputs x such that Modm(x) = 1;
with probability 1/2, Q is uniform over the inputs such that Modm(x) = −1. Although we will not use
this directly, the reader may find it useful to note that

CorQ(Modm, p) =
∣∣∣∣ Pr
x:Modm(x)=1

[p(x) = 1]− Pr
x:Modm=−1

[p(x) = 1]
∣∣∣∣ .

Theorem 2.9. For any odd m, CorQ(Modm,Pd)≤ exp
(
−α ·n/4d

)
, where α = α(m) > 0 depends on m

only.

Proof. To model the Modm function, define f : {0,1}n → C as f (x1, . . . ,xn) := em
(
∑ j x j

)
= ∏ j em (x j),

where, denoting by i the imaginary unit, em (y) := e2π·i·y/m. We prove below (Lemma 2.10) that there
is a constant α = α(m) > 0, depending only on m, such that the correlation between any function
p(x) : {0,1}n →{−1,1} and the Modm function can be bounded as follows:

CorQ(Modm, p)≤ (1/α) · max
a∈{1,...,m−1}

∣∣∣∣ E
x∈{0,1}n

[ f (x)a · p(x)]
∣∣∣∣+2−α·n . (2.1)

We now focus on bounding the quantity ∣∣∣∣ E
x∈{0,1}n

[ f (x)a · p(x)]
∣∣∣∣

for any fixed a, in the case that p is a polynomial of degree d. For this, we use Lemma 2.3 to relate
the quantity to the degree-(d + 1) norm of f , and then we use the fact that the norm of the product of
functions on disjoint input bits multiplies (Fact 2.7). Formally, letting k := d +1, we obtain:∣∣∣∣ E

x∈{0,1}n
[ f (x)a · p(x)]

∣∣∣∣≤Uk ( f a)1/2k
= Uk (ea

m)n/2k
.

Thus, we are left with the task of bounding the norm of the 1-bit function ea
m. We have:

Uk (ea
m) = E

y1,...,yk,x∈{0,1}

[
em

(
a · ∑

S⊆[k]
(−1)|S| ·

(
x⊕

(⊕
j∈S

y j

)))]
.
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To bound Uk (ea
m), note that whenever y1 = y2 = · · ·= yk = 1, we have that

E
x∈{0,1}

[
em

(
a · ∑

S⊆[k]
(−1)|S| ·

(
x⊕

(⊕
j∈S

y j

)))]

= E
x∈{0,1}

[
em

(
a · ∑

S⊆[k]
(−1)|S| ·

(
x⊕

(⊕
j∈S

1

)))]

=
em
(
a ·2k−1

)
+ em

(
−a ·2k−1

)
2

= ℜ

(
em

(
a ·2k−1

))
< 1,

where ℜ(·) denotes the real part, and the last inequality holds because m is odd and a ∈ {1, . . . ,m−1}.
It is also easy to see that the expectation is 0 whenever y j = 0 for some j (though we do not need this for
the upper bound). Since it is the case that y1 = y2 = · · ·= yk = 1 with probability 2−k, we have, letting
δ := ℜ

(
em
(
a ·2k−1

))
:

Uk (ea
m) = δ ·2−k +1−2−k .

Putting everything together, we obtain∣∣∣∣ E
x∈{0,1}n

[ f (x)a · p(x)]
∣∣∣∣≤ (1− 1−δ

2k

)n/2k

< e−(1−δ )n/22k
,

which concludes our proof. (Recall that δ < 1 and that k = d +1.)

We conclude this section with a proof of Equation (2.1). Because of later needs, we actually prove a
slightly more general claim that holds for the function GIPm : ({0,1}n)k →{−1,1}. The inputs to GIPm

are k-tuples (x1, . . . ,xk)∈ ({0,1}n)k, and we denote by (xi) j the j-th bit of the i-th coordinate xi ∈ {0,1}n

of x = (x1, . . . ,xk). GIPm(x) equals −1 iff ∑i≤n ∏ j≤k(x j)i is divisible by m. Note that the Modm function
is a special case of GIPm for k = 1.

Again, we consider the following non-uniform distribution Q: with probability 1/2, Q is uniform
on the inputs x such that GIPm(x) = 1; with probability 1/2, Q is uniform on the inputs x such that
GIPm(x) =−1. Let now f : ({0,1}n)k →C be defined as f (x) := em

(
∑`≤n ∏ j≤k(x j)`

)
, where em (y) :=

e2π·i·y/m. Note this coincides with our previous definition for k = 1.

Lemma 2.10. For any m ≥ 2 there is a constant α > 0 such that for any n,k and any function p :
({0,1}n)k →{−1,1}, the function GIPm : ({0,1}n)k →{−1,1} satisfies

Cor(p,GIPm)≤ (1/α) · max
a∈{1,...,m−1}

∣∣∣∣∣ E
x∈({0,1}n)k

[ f (x)a · p(x)]

∣∣∣∣∣+2−α·n/2k
.

The proof of the above lemma uses “relatively standard” techniques, but a self-contained proof does
not seem to have appeared in the literature (but see, e. g., [6, Equation (4)]).
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Proof. For a given input x ∈ ({0,1}n)k, let δ (GIPm(x) = 1) denote 1 if GIPm(x) = 1 and 0 otherwise.
Similarly, let δ (GIPm(x) 6= 1) denote 1 if GIPm(x) 6= 1 and 0 otherwise. Observe that

δ (GIPm(x) =−1) =
1
m
·

m−1

∑
b=0

f (x)b, δ (GIPm(x) = 1) = 1− 1
m
·

m−1

∑
b=0

f (x)b .

We need the following claim.

Claim 2.11. For every m≥ 2 there is a constant ε > 0 such that for all n,k we have:∣∣∣∣ Pr
x∈{0,1}n

[GIPm(x) =−1]−1/m
∣∣∣∣≤ 2−ε·n/2k

.

Also, for every m ≥ 2 there is a constant ε > 0 such that for all n,k where n/2k is sufficiently large we
have:

max
{∣∣∣∣ 1
|{x : GIPm(x) =−1}|

− m
2n

∣∣∣∣ , ∣∣∣∣ 1
|{x : GIPm(x) = 1}|

− m
m−1

· 1
2n

∣∣∣∣}≤ 2m2 ·2−n ·2−ε·n/2k
.

We can assume that n/2k is sufficiently large by picking α sufficiently small in the statement of the
lemma, and thus we can apply the above claim. Recall that the distribution Q with probability 1/2 is
uniformly distributed over the inputs x such that GIPm(x) = −1, and with probability 1/2 is uniformly
distributed over the inputs x such that GIPm(x) = 1. Therefore we can write

CorQ(p,GIPm) =
∣∣∣∣ E
x∼Q

[p(x) ·GIPm(x)]
∣∣∣∣= ∣∣∣∣∑

x
Pr[Q = x] · p(x) ·GIPm(x)

∣∣∣∣
=
∣∣∣∣∑

x
Pr[Q = x] · p(x) ·χ(GIPm(x) =−1)−∑

x
Pr[Q = x] · p(x) ·χ(GIPm(x) = 1)

∣∣∣∣
≤
∣∣∣∣2−n−1

∑
x

p(x)
(

m ·χ(GIPm(x) =−1)− m
m−1

·χ(GIPm(x) = 1)
)∣∣∣∣+mO(1) ·2−ε·n/2k

=

∣∣∣∣∣2−n−1
∑
x

p(x)

(
m

(
1
m

m−1

∑
b=0

f (x)b

)
− m

m−1

(
1− 1

m

m−1

∑
b=0

f (x)b

))∣∣∣∣∣+mO(1) ·2−ε·n/2k

=

∣∣∣∣∣2−n−1
∑
x

p(x)

(
1+

m−1

∑
b>0

f (x)b− m
m−1

+
1

m−1

(
1+

m−1

∑
b>0

f (x)b

))∣∣∣∣∣+mO(1) ·2−ε·n/2k

=

∣∣∣∣∣2−n−1
∑
x

p(x)

(
m

m−1

m−1

∑
b>0

f (x)b

)∣∣∣∣∣+mO(1) ·2−ε·n/2k

≤ mO(1) ·max
b>0

∣∣∣E
x
[p(x) · f (x)b]

∣∣∣+mO(1) ·2−ε·n/2k

≤ (1/α) ·max
b>0

∣∣∣E
x
[p(x) · f (x)b]

∣∣∣+2−α·n/2k
.

The last inequality holds for a suitable choice of α , again using that n/2k is sufficiently large, and proves
the lemma.
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Proof of Claim 2.11. Let Zm = {0,1, . . . ,m− 1} be the additive group with m elements and consider
i.i.d. random variables z1, . . . ,zn ∈ Zm where zi = 1 with probability β := 2−k and zi = 0 with probability
β̄ := 1−β . Let S := ∑i≤n zi, where the sum is modulo m. Note that

Pr
x∈{0,1}n

[GIPm(x) =−1] = Pr
z1,...,zm

[S = 0] .

Let t(a) := Prz1,...,zm [S = a]. By the Fourier Inversion formula (or direct verification),

t(0) = E
i∈Zm

[(
∑

x∈Zm

t(x) · em (−i · x)

)
· em (i ·0)

]
= E

i∈Zm

[
∑

x∈Zm

t(x) · em (−i · x)

]
= E

i∈Zm
[E

S
[em (−i ·S)]] .

Note that ES[em (−i ·S)] = 1 for i = 0. Now fix any i 6= 0, and note that

|E
S
[em (−i ·S)]|= |E

z1
[em (−i · z1)]|n ≤ (1−δ ·β )n ≤ 2−ε·n·β ,

for constants δ and ε that depend on m only. To verify the second to last inequality, write em (−i) =
(u,v) ∈ R2, where u is bounded away from 1 by γ > 0 that depends only on m, and u2 + v2 = 1. Then

|E
z1
[em (−i · z1)]|= |(uβ +1 · β̄ ,vβ +0β̄ )|=

√
u2β 2 +2uββ̄ + β̄ 2 + v2β 2

=
√

β 2 +2uββ̄ + β̄ 2 =
√

1+2ββ̄ (u−1)≤ 1+ββ̄ (u−1) = (1−δ ·β )

for δ := (1−u)β̄ . Therefore,

t(0) = E
i∈Zm

[E
S
[em (−i ·S)]|i = 0] ·Pr

i
[i = 0]+ E

i∈Zm
[E

S
[em (−i ·S)]|i 6= 0] · Pr

i∈Zm
[i 6= 0] = 1 · 1

m
+A ,

where |A| ≤ 2−ε·n·β . This proves the first part of the claim.
The “also” part follows from the following general fact: For all strictly positive real numbers φ ,γ,ρ ,

such that ρ ≤ γ/2, we have that
φ ∈ [γ−ρ,γ +ρ]

implies
φ
−1 ∈ [γ−1− c ·ρ,γ−1 + c ·ρ] ,

where c = 2γ−2. To see this, note that by hypothesis

φ
−1 ∈ [1/(γ +ρ),1/(γ−ρ)] .

To conclude, note that

γ
−1− c ·ρ ≤ 1/(γ +ρ)⇔ 1+ γ

−1
ρ− cργ− cρ

2 ≤ 1 ,

which is true for c≥ γ−2, and

1/(γ−ρ)≤ γ
−1 + c ·ρ ⇔ 1≤ 1+ γcρ−ργ

−1−ρ
2c⇔ γ

−1 +ρc≤ γc ,
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which using that ρ ≤ γ/2 is true for c≥ 2γ−2.

To obtain the “also” part, let φ := Prx[GIPm(x) = −1] (respectively, Prx[GIPm(x) = 1]), γ := 1/m
(respectively, 1−1/m), and ρ := 2−ε·n/2k

. We have ρ ≤ γ/2 by our assumption that n/2k is sufficiently
large, and thus we conclude the proof by applying the first part of the claim and the above general
fact.

2.4 A function with correlation exp
(
−Ω
(
n/2d))

In this section we exhibit a polynomial-time computable function on n bits whose correlation with any
polynomial over GF(2) of degree d is at most exp

(
−Ω

(
n/2d

))
.

Theorem 2.12. There is a polynomial-time computable function f : {0,1}n → {−1,1} such that for
every d < n/2 we have Cor( f ,Pd)≤ exp

(
−α ·n/2d

)
, where α > 0 is a universal constant.

As mentioned in the Introduction, previously the best correlation bound in the range d � logn was
the one implicit in BNS [5] via the Håstad-Goldmann argument [21], namely, an exp

(
−α ·n/(d ·2d)

)
bound in the stronger computational model of (d + 1)-party protocols. Our proof is similar to theirs; it
exploits a property of the target function which is captured in Lemma 2.13 below. Our main contribution
is to show that using the degree-norm one obtains a slightly better bound for the special case of Pd .

Proof. It is sufficient and more convenient to prove the theorem for a function with input length O(n)
rather than n. We prove that the theorem holds for the function that on input (σ ,x) equals the xth
output bit of a small-bias generator on seed σ . The following lemma summarizes the definition and the
existence of small-bias generators.

Lemma 2.13 ([29, 1]6). There is a polynomial-time computable function f : {0,1}O(n) ×{0,1}n →
{−1,1} such that for every /0 6= T ⊆ {0,1}n, we have:

E
σ

[
∏
x∈T

f (σ ,x)

]
≤ 2−n .

Let f be the function in Lemma 2.13 and write fσ for the function that maps x to f (σ ,x). We now
show that, over the choice of σ , we expect fσ to have small degree norm.

Claim 2.14. Eσ [Uk ( fσ )]≤ 2−α·n, for every k ≤ n/2, where α > 0 is a universal constant.

6Our presentation is syntactically different from the one in [1], which is in terms of sample spaces. The lemma stated here
follows from the results in [1] by considering a small-bias sample space over {0,1}N , where N := 2n, and defining f (α,x) to
be the xth bit of the sample that corresponds to α .
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Proof. Let D be the event (over the choice of y1, . . . ,yk) that the dimension of the vector space generated
by the y′is is k, i. e., that for every S,S′ ⊆ [k] we have ∑ j∈S y j 6= ∑ j∈S′ y j. We have:

E
σ

[Uk ( fσ )] = E
x,y1,...,yk

[
E
σ

[
∏

S⊆[k]
fσ

(
x+ ∑

j∈S
y j

)]]

≤ Ex,y1,...,yk

[
E
σ

[
∏

S⊆[k]
fσ

(
x+ ∑

j∈S
y j

)]∣∣∣∣∣D
]

+Pr[¬D]≤ 2−α·n.

The last inequality above is obtained by bounding each term separately. For the first term, we observe
that, conditioned on D, ∏S⊆[k] fσ

(
x+∑ j∈S y j

)
= ∏z∈T fσ (z) where T consists of the 2k distinct values

x + ∑ j∈S y j for S ⊆ [k], and then we apply Lemma 2.13. As for the second term, we note that D is the
event: “y1 6∈ Span(0) and y2 6∈ Span(y1) and ... and yk 6∈ Span(y1,y2, . . . ,yk−1)”. Thus we obtain

Pr[¬D] = 1−
(
1−2−n)(1−2−n+1) · · ·(1−2−n+k−1

)
≤ 1−

(
1−2−n+k−1

)k−1
≤ 2−α·n

for a universal constant α > 0, using that k ≤ n/2.

To conclude the proof of the theorem, let p : {0,1}n → {−1,1} be any polynomial over GF(2) of
degree d, and notice that

E
σ ,x

[ f (σ ,x) · p(σ ,x)] = E
σ

[
E
x
[ fσ (x) · p(σ ,x)]

]
≤ E

σ

[
Ud+1 ( fσ )1/2d+1

]
≤ E

σ
[Ud+1 ( fσ )]1/2d+1

≤ 2−α·n/2d
,

where α > 0 is a universal constant, the first inequality holds by Lemma 2.3, the second is Jensen’s
inequality, and the last holds by Claim 2.14.

Remark 2.15 (On the tightness of Theorem 2.12). It is natural to ask whether the exp
(
−Ω

(
n/2d

))
correlation bound is tight for the particular function f given by Theorem 2.12, which (recall) computes
the xth bit of a small-bias generator, given the seed and x. We observe that this bound is somewhat tight
in the sense that, for some small-bias generator, the associated function f has correlation 1−o(1) with
some polynomial over GF(2) of degree d = logO(1) n. This follows from the fact that, for some small-
bias generator, the associated function f is computable by polynomial-size constant-depth circuits with
parity gates [19, 22]7 and the well-known fact that any such function has correlation at least 1− o(1)
with some polynomial over GF(2) of degree logO(1) n [36, 42].

3 Multiparty protocols

In this section we discuss our results on multiparty protocols. Rather than working directly with multi-
party protocols, in the next section we introduce a simple subclass Π∗

k of such protocols, which happens

7These works give uniform circuits, while for the point made here, non-uniform circuits would suffice. However, we do not
know of a simpler proof of existence of such circuits.

THEORY OF COMPUTING, Volume 4 (2008), pp. 137–168 154



NORMS, XOR LEMMAS, AND LOWER BOUNDS FOR POLYNOMIALS AND PROTOCOLS

to be a linear code. We introduce a norm capturing proximity with this class in a way analogous to what
we did with polynomials over GF(2). Then in Section 3.2 we discuss the general multiparty model, and
show that it can be reasonably well approximated by simple protocols, and hence the same norm yields
an XOR lemma and lower bounds for it as well. (When dealing with linear codes such as Π∗

k , recall that
addition modulo 2 becomes multiplication with our {−1,1} notation.)

3.1 k-party norm and Π∗
k protocols

In this section we discuss the relationship between the model Π∗
k and the k-party norm, both of which

are defined next, and then we prove an XOR lemma for Π∗
k .

Definition 3.1 (The model Π∗
k). We say that a function g j : Dk → {−1,1} is cylindrical in dimension

j if it does not depend on the jth coordinate. The class Π∗
k consists of the functions f : Dk → {−1,1}

that are products of cylindrical functions over all dimensions. Equivalently, Π∗
k is the class of functions

f : Dk →{−1,1} such that f (x1, . . . ,xk) = ∏ j≤k g j(x1, . . . ,xk) for some functions g1, . . . ,gk such that g j

does not depend on the input x j.

This definition is motivated by the concept of “cylinder intersections” introduced by Babai, Nisan,
and Szegedy.

Definition 3.2 (Cylinder intersection [5]). A subset of Dk is called a cylinder in dimension j if its
characteristic function is cylindrical in dimension j. A subset of Dk is a cylinder intersection if it is the
intersection of cylinders in all dimensions.

It is not hard to see that the model Π∗
k above is a linear code. We now define the k-party norm (recall

Notation 2.1). This norm is implicit in [5] and explicit in [9, 35]. As we will see (cf. Remark 3.12),
this quantity is closely related to the discrepancy over the family of cylinder intersections, the central
concept studied in [5] (cf. [26]). The discrepancy of a function f : Dk →{−1,1} is

max
S
|Ex[ f (x)|x ∈ S]| ·Pr[x ∈ S] ,

where the maximum is over all cylinder intersections S.

Definition 3.3 (k-party norm). Let f : Dk → C be a function. The k-party norm of f is defined as

Rk ( f ) := E
x0

1,x
0
2,...,x

0
k∈D

x1
1,x

1
2,...,x

1
k∈D

[
∏

ε1,...,εk∈{0,1}
f
(
xε1

1 ,xε2
2 , . . . ,xεk

k

)
∑ j≤k ε j

]
.

Similarly to Section 2, the norm Rk ( f ) can be seen as computing random short “parity checks” of
the linear code Π∗

k . For a Boolean function, the above expectation equals the probability that a random
parity check succeeds, minus the probability that it fails. It can be shown that a function f belongs to
the class (which is a linear code) Π∗

k if and only if every parity check is 1, in which case the norm is 1 as
well. So the norm being 1 captures membership in the class. Now we turn to study how smaller values
of the norm capture proximity to (or correlation with) the class.

First, we have the following lemma that shows that the norm bounds the correlation with Π∗
k from

above. The same lemma (for real-valued functions) is implicit in [9, 35].

THEORY OF COMPUTING, Volume 4 (2008), pp. 137–168 155



EMANUELE VIOLA AND AVI WIGDERSON

Lemma 3.4 ([9, 35]). For every function f : Dk → C, Cor( f ,Π∗
k)≤ Rk ( f )1/2k

.

The proof of Lemma 3.4 is very similar to that of Lemma 2.3, and makes use of the following lemma.

Lemma 3.5 ([9, 35]). For any function f : Dk → C, |Ex∈Dk [ f (x)] | ≤ R( f )1/2k
.

Proof of Lemma 3.5. We have:

Rk ( f ) = E
x0

1,...,x
0
k−1∈D

x1
1,...,x

1
k−1∈D

E
x0

k
x1

k

[
∏

ε1,...,εk−1∈{0,1}
f
(
xε1

1 , . . . ,xεk−1
k−1 ,x0

k
)∑`<k ε` · f

(
xε1

1 , . . . ,xεk−1
k−1 ,x1

k
)1+∑`<k ε`

]
= E x0

1,...,x
0
k−1∈D

x1
1,...,x

1
k−1∈D

[
E

xk∈D

[
∏

ε1,...,εk−1∈{0,1}
f
(
xε1

1 , . . . ,xεk−1
k−1 ,xk

)∑`<k ε`

]

· E
xk∈D

[
∏

ε1,...,εk−1∈{0,1}
f
(
xε1

1 , . . . ,xεk−1
k−1 ,xk

)∑`<k ε`

]
= E

x0
1,...,x

0
k−1∈D

x1
1,...,x

1
k−1∈D

∣∣∣∣∣ E
xk∈D

[
∏

ε1,...,εk−1∈{0,1}
f
(
xε1

1 , . . . ,xεk−1
k−1 ,xk

)∑`<k ε`

]∣∣∣∣∣
2


≥

∣∣∣∣∣∣∣∣ E
x0

1,...,x
0
k−1∈D

x1
1,...,x

1
k−1∈D

,xk∈D

[
∏

ε1,...,εk−1∈{0,1}
f
(
xε1

1 , . . . ,xεk−1
k−1 ,xk

)∑`<k ε`

]∣∣∣∣∣∣∣∣
2

.
(

Because E
[
|Z|2
]
≥ |E [Z]|2 .

)
Repeating the above argument k times one obtains the lemma.

Proof of Lemma 3.4. We have

Cor( f ,Π∗
k) = max

g∈Π∗
k , g:Dk→{−1,1}

∣∣∣∣ E
x∈Dk

[( f ·g)(x)]
∣∣∣∣ ≤ Rk ( f ·g)1/2k

(3.1)

= Rk ( f )1/2k
, (3.2)

where Inequality (3.1) holds by Lemma 3.5, and Equation (3.2) is justified as follows. Recall from
Definition 3.1 that g = g1 ·g2 · · ·gk, where each g j is a cylindrical function in dimension j, i. e., does not
depend on the jth coordinate. It is enough to prove Equation (3.2) for every such g j (since f is arbitrary).
We prove it for gk without loss of generality. Note that for every fixed x0

1,x
0
2, . . . ,x

0
k ,x

1
1,x

1
2, . . . ,x

1
k , we have

∏
ε1,...,εk∈{0,1}

( f ·gk)
(
xε1

1 ,xε2
2 , . . . ,xεk

k

)
∑ j≤k ε j

= ∏
ε1,...,εk−1

(
gk
(
xε1

1 ,xε2
2 , . . . ,xεk−1

k−1 ,0
)2 ·∏

εk

f
(
xε1

1 ,xε2
2 , . . . ,xεk

k

)
∑ j≤k ε j

)
= ∏

ε1,...,εk

f
(
xε1

1 ,xε2
2 , . . . ,xεk

k

)
∑ j≤k ε j ,
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using g2
k ≡ 1 because gk takes values in {−1,1}.

We now state and prove a new lemma that shows that the k-party norm also bounds from below
the correlation. We note that in this model we have a much tighter connection between norm and
correlation than for polynomials over GF(2): here we have positive correlation as soon as the norm is
positive, whereas for polynomials over GF(2) we needed the norm to be very close to 1 to infer positive
correlation (a notable exception is the result in Lemma 2.6 which gives a tighter connection for the
special case of quadratic polynomials).

Lemma 3.6. For every function f : Dk →{−1,1}, Cor( f ,Π∗
k)≥ Rk ( f ) .

Proof. For x1
1,x

1
2, . . . ,x

1
k ∈ D, consider the function gx1

1,...,x
1
k

: Dk →{−1,1} defined as

gx1
1,...,x

1
k
(x0

1, . . . ,x
0
k) := ∏

(ε1,...,εk)∈{0,1}k\0k

f
(
xε1

1 , . . . ,xεk
k

)
.

Now observe that

E
x1

1,...,x
1
k

[
E

x0
1,...,x

0
k

[
f (x0

1, . . . ,x
0
k) ·gx1

1,...,x
1
k
(x0

1, . . . ,x
0
k)
]]

= Rk ( f ) .

Therefore we can fix a particular function g = gx1
1,...,x

1
k

such that Ex∈Dk [ f (x) ·g(x)]≥ Rk ( f ).
To conclude the proof, note that g is in Π∗

k because g(x0
1, . . . ,x

0
k) is the product of factors none of

which depends on all the variables x0
j .

Next, we state the important observation that the norm is multiplicative for functions over disjoint
sets of input variables (cf., [9]).

Fact 3.7. For functions f : Dk → C and f ′ : (D′)k → C, define the function ( f · f ′) : (D×D′)k → C by(
f · f ′

)
((x1,x′1),(x2,x′2), . . . ,(xk,x′k)) := f (x1,x2, . . . ,xk) · f ′(x′1,x

′
2, . . . ,x

′
k) .

Then Rk ( f · f ′) = Rk ( f ) ·Rk ( f ′) .

Using the above results and arguing as for Theorem 1.2 one can prove the following XOR lemma
for Π∗

k .

Theorem 3.8 (XOR lemma for Π∗
k). Let f : Dk →{−1,1} be a function such that Cor

(
f ,Π∗

k

)
≤ ε . Then

Cor
(

f×m,Π∗
k

)
≤ εm/2k

.

3.2 Back to multiparty protocols

In this section we use the results from Section 3.1 to obtain an XOR lemma for multiparty protocols.
Let us first recall the model of multiparty protocols. In the multiparty communication model there are
k parties, each having unlimited computational power, who wish to collaboratively compute a certain
function. The input bits to the function are partitioned into k blocks, and the ith party knows all the
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input bits except those corresponding to the ith block in the partition. The communication between the
parties is by “writing on a blackboard” (broadcast): any bit sent by any party is seen by all the others.
The parties exchange messages according to a fixed protocol. For each possible sequence of bits that is
written on the board so far, the protocol specifies whether the run is over (as a function of the bits on the
board), or else which party writes next (as a function of the bits on the board) and what the party writes
(as a function of the bits on the board and the partial input seen by that party). The last bit written on
the board is the output of the protocol, a value in {−1,1}. The cost measure of interest is the number of
bits c exchanged by the parties. (For background, see the monograph by Kushilevitz and Nisan [26].)

A c-bit k-party protocol is a protocol between k parties that prescribes the exchange of at most c bits
on any input. For a domain D, we denote by Πk,c the class of functions π : Dk → {−1,1} computable
by c-bit k-party protocols.

We observe that the model Π∗
k can be seen as a special case of k-party k-bit protocols. Specifically,

any function in Π∗
k can be computed by a simultaneous protocol (see, e. g., [3, 26]) where each party

sends one bit independently from the others, and the output of the protocols is the XOR of these k bits
(which, in our {−1,1} domain, is the product); the bit sent by the ith party is the value of the function
gi in Definition 3.1. The next lemma shows that in fact the general c-bit model is only stronger than Π∗

k
by a factor of 2c. The same result (for real-valued functions) is implicit in [9, 35] where it is proved by
bounding the discrepancy over cylinder intersections. We give a direct proof of the lemma.

Lemma 3.9 ([9, 35]). For every function f : Dk → C, Cor( f ,Πk,c)≤ 2c ·Cor( f ,Π∗
k).

The proof of Lemma 3.9 makes use of the following lemma.

Lemma 3.10 ([5], see also Lemma 6.10 in [26]). Let π : Dk →{−1,1} be a function computable by a c-
bit k-party protocol. There exists a partition of Dk into 2c cylinder intersections (see Def. 3.2) Γ1, . . . ,Γ2c

such that π is constant over each Γ`.

Proof of Lemma 3.9. Let π be a function computed by a c-bit k-party protocol, and let Γ1, . . . ,Γ2c be
the cylinder intersections given in Lemma 3.10. The idea in what follows is to define appropriate −1/1
random functions that, via averaging, will help us convert a 0/1 (characteristic) function into a −1/1
function. This is beneficial to us because π is naturally written in terms of 0/1 functions, but our
norms require −1/1 functions. For any `, j, consider the random function g`, j : Dk → {−1,1} defined
as g`, j(x) := 1 with probability 1 if x ∈ C`, j, and g`, j(x) := 1 with probability 1/2 if x 6∈ C`, j (and
consequently g`, j(x) :=−1 also with probability 1/2 if x 6∈C`, j). Now observe that for every `≤ 2c and
every x ∈ ({0,1}n)k, the expectation

E
g`,1,...,g`,k

[g`,1(x) ·g`,2(x) · · ·g`,k(x)] = ∏
j≤k

E
g`, j

[
g`, j(x)

]
equals 1 if x ∈ Γ` = C`,1∩ . . .∩C`,k, and 0 otherwise. Therefore, denoting by v(`) ∈ {−1,1} the value
of π on inputs in (the cylinder intersection) Γ`, we can write

π(x) = ∑
`≤2c

v(`) · E
g`,1,...,g`,k

[
∏
j≤k

g`, j(x)

]
.
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We now have, by linearity of expectation,

E
x
[ f (x) ·π(x)] = E

g`,1,...,g`,k

[
∑

`≤2c

E
x

[
f (x) · v(`) ·∏

j≤k
g`, j(x)

]]
.

By fixing the random functions g`, j so as to maximize the outermost expectation, we have

Cor( f ,π) =
∣∣∣E

x
[ f (x) ·π(x)]

∣∣∣ ≤ 2c · max
`

∣∣∣∣∣Ex
[

f (x) · v(`) ·∏
j≤k

g`, j(x)

]∣∣∣∣∣ ≤ 2c · Cor( f ,Π∗
k).

In particular, combining Lemmas 3.9 and 3.4 we obtain the following corollary.

Corollary 3.11 ([9, 35]). For every function f : Dk → C, Cor( f ,Πk,c)≤ 2c ·Rk ( f )1/2k
.

We are now in the position to obtain the following XOR lemma for multiparty communication com-
plexity.

Theorem 1.3 (XOR lemma for multiparty protocols, restated). Let f : Dk →{−1,1} be a function such
that Cor( f ,Πk,k)≤ ε . Then Cor( f×m,Πk,c)≤ 2c · εm/2k

.

Proof. We have

Cor( f×m,Πk,c)≤ 2c ·Rk
(

f×m)1/2k

= 2c ·Rk ( f )m/2k
≤ 2c · εm/2k

,

where the first inequality holds by Corollary 3.11, the next equality by Fact 3.7, and the last inequality
by Lemma 3.6.

Combining the above XOR lemma with Proposition 1.4 we immediately obtain our direct prod-
uct lemma for multiparty communication complexity (Corollary 1.7). We repeat the statement for the
reader’s convenience.

Corollary 1.7 (Direct product lemma for multiparty protocols, restated). Let f : D → {−1,1} be a
function such that Cor( f ,Πk,k)≤ ε ≤ 2−(c+1)·2k

. Then Suc
(

f (m),Πk,c
)
≤ 2−Ω(m).

Proof. Proposition 1.4 implies that Suc
(

f (m),Πk,c
)

can bounded from above by Cor
(

f×m′
,C′
)

+

2−Ω(m), where m′ = m/3 and C′ consists of products of m′ {−1,1}-functions from Πk,c. Functions
in C′ can be computed using m′ · c communication, simply by computing the m′ corresponding func-
tions in Πk,c one at the time. Therefore, we obtain Suc

(
f (m),Πk,c

)
≤ Cor

(
f×m′

,Πk,m′·c

)
+2−Ω(m). By

Theorem 1.3, we have that Cor
(

f×m′
,Πk,m′·c

)
≤ 2m′·c · εm′/2k ≤ 2−m′

, which gives the result.
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We conclude this section with a remark on the relative power of the models discussed so far. The
observation of Håstad and Goldmann [21, Proof of Lemma 4] shows that Π∗

k is more powerful than
degree-(k− 1) polynomials over GF(2), while obviously Π∗

k is computable by k-bit k-party protocols.
Together with Lemma 3.9 we have the following informal picture:

Pk−1 ⊆Π
∗
k ⊆Πk,k ⊆Πk,c ⊆ 2c ·Π∗

k .

(The first two inclusions above are formally true, as is the next for c ≥ k, while the last is meant to
informally capture Lemma 3.9.) It would be interesting to have a further upper bound in the above
sequence in terms of Pd , but it is currently unclear to us if a meaningful bound of this sort exists.

3.2.1 The case of two parties

In this section we further discuss XOR lemmas for the interesting special case of k = 2 parties. We start
by comparing our results with an XOR lemma by Shaltiel [39], and then we present a counterexample
to the “ideal” setting of parameters of the XOR lemma, i. e., going from correlation ε to correlation εm.

For k = 2, the notion of “cylinder intersections” (Definition 3.2) simplifies to “rectangles,” i. e., sets
of the form R = A×B for some A,B⊆ {0,1}n.

Remark 3.12 (Comparison with the XOR lemma by Shaltiel [39]). For k = 2 parties, Shaltiel proves an
XOR lemma which (up to different constants) has the same conclusion as ours (Theorem 1.3) but starts
from the assumption that the original function f has bounded discrepancy over rectangles (as opposed
to bounded correlation with 2-bit protocols in our result). Recall that the discrepancy of a function
f : D×D→{−1,1} is defined as the maximum, over all rectangles R, of∣∣∣E

x,y
[ f (x,y)|(x,y) ∈ R]

∣∣∣ ·Pr[(x,y) ∈ R] .

Shaltiel suggests that the requirement that the discrepancy of f is small is stronger than the requirement
that the correlation of f with low-communication protocols is small. However, the discrepancy of f
in fact equals the maximum correlation of f with 2-bit protocols (up to a constant factor). To see this,
first note that there is always a 2-bit protocol that achieves correlation which is the discrepancy of f .
Specifically, let R be the rectangle that maximizes the discrepancy, and consider the protocol where
Alice and Bob send two bits to the referee to identify whether (x,y) ∈ R, and then the referee decides
according to the bias of f if (x,y) ∈ R, and chooses a random bit otherwise. The correlation of this
protocol is exactly the discrepancy of f . (Although the protocol we just defined is randomized, one can
obtain a deterministic protocol at least as good by fixing a choice of the random bits that maximizes
the correlation.) The converse, i. e., that the discrepancy is an upper bound on the correlation with 2-bit
protocols, is standard and can be found, e. g., in the proof of Lemma 2.2 in [5]. Thus, for k = 2, our
XOR lemma (Theorem 1.3) can be seen as an alternative proof of the XOR lemma by Shaltiel.

It is natural to ask whether the parameters of our XOR lemma (Theorem 1.3) are the best possible.
In particular, we would like to know whether the 2c factor can be eliminated. Although we do not
know the answer to this question, we can show a counterexample to the “ideal” setting of parameters,
i. e., going from correlation ε to correlation εm, for k = 2 parties communicating c = 2 bits. In the rest
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of this section we describe this counterexample. First we exhibit a counterexample over the domain
D := {0,1,2}, which was found via brute-force search, then we observe that one can extend it to a
counterexample over D := {0,1}n.

Claim 3.13. Let D := {0,1,2}, and consider the function f : D2 → {−1,1} defined as f (x,y) := 1 if
and only if x = y.

1. Cor( f ,Π2,2)≤ 5/9. |Ex,y [ f (x,y) ·π(x,y)] | ≤ 5/9.

2. Cor( f×2,Π2,2)≥ 33/81 > (5/9)2.

Remark 3.14 (Comparison with the counterexample by Shaltiel [39]). Shaltiel shows that the XOR
lemma for 2-party protocols is false in a strong sense if one allows for communication c′ = m · c to
compute m copies of the function. Our result (Claim 3.13) shows that even for the “minimal choice”
c′ = c some loss occurs (with respect to the “ideal” correlation bound of εm).

We now present the proof of Claim 3.13. Although the proof involves a certain amount of calculation,
it is perhaps instructive to observe how a 2-bit protocol can correlate with f×2 in the various cases.

Proof. It is easy to check that 5/9 is the best correlation of 2-bit protocols with f .
For the second claim, consider the protocol π(x,x′,y,y′) := f (x,x′) · f (y,y′). Note that this is indeed

a 2-bit protocol. Let us compute the probability, over the choice of x,x′,y,y′, of the event

E := π(x,x′,y,y′) = f (x,y) · f (x′,y′) .

Note that, by definition, E holds exactly when f (x,x′) · f (y,y′) · f (x,y) · f (x′,y′) = 1.
Let us condition on the event that x = x′ and y = y′, which happens with probability (1/3) · (1/3).

We have f (x,x′) · f (y,y′) · f (x,y) · f (x′,y′) = 1 ·1 · f (x,y) · f (x,y) = 1. Thus, Pr[E|x = x′∧ y = y′] = 1.
Let us condition on the event that x 6= x′ and y 6= y′, which happens with probability (2/3) · (2/3). In

this case we have

f (x,x′) · f (y,y′) · f (x,y) · f (x′,y′) =−1 ·−1 · f (x,y) · f (x+b,y+b′) = f (x,y) · f (x+b,y+b′) ,

where b and b′ are uniform and independent in {1,2}, and the sum is modulo 3. Thus we are interested
in the probability that f (x,y) = f (x + b,y + b′) over random x,y,b,b′. Let us now further condition on
x = y. Then f (x,y) = 1 and f (x+b,y+b′) = 1 if and only if b = b′ which happens with probability 1/2
over the choice of the b′s. Let us now condition on x 6= y, and let us assume in particular that y = x +1
(the case y = x + 2 is analogous). Then f (x,x + 1) = −1 and f (x + b,x + 1 + b′) = −1 if and only if
b 6= 1+b′ which happens with probability 3/4 over the choice of the b′s. Thus,

Pr[E | x 6= x′∧ y 6= y′] = (1/3)(1/2)+(2/3)(3/4) = 1/6+1/2 = 2/3 .

Let us condition on the event that x = x′ and y 6= y′, which happens with probability (1/3) · (2/3). In
this case we have f (x,x′) · f (y,y′) · f (x,y) · f (x′,y′) = 1 ·−1 · f (x,y) · f (x,y + b), where b is uniform in
{1,2}. Thus we are interested in the probability that− f (x,y) = f (x,y+b), which equals the probability
that x equals either y or y+b, which is 2/3. Thus,

Pr[E|x = x′∧ y 6= y′] = 2/3 and, by symmetry, Pr[E|x 6= x′∧ y = y′] = 2/3 .
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Thus

Pr[E] = (1/3)(1/3) ·1+(2/3)(2/3) ·2/3+2 · (1/3)(2/3) ·2/3 = 1/9+8/27+8/27 = 19/27 .

Therefore |Ex,x′,y,y′
[

f×2(x,x′,y,y′) ·π(x,x′,y,y′)
]
|= 2 ·Pr[E]−1 = (38−27)/27 = 11/27 = 33/81.

We now briefly explain how to extend the counterexample in Claim 3.13 to a counterexample
in the domain D := {0,1}n (for sufficiently large n). First, consider any domain of the form D =
{0,1,2, . . . ,3a− 1} for some integer a ≥ 1. It is not hard to see that one can prove the analogous of
Claim 3.13 for the function f : D2 →{−1,1} defined as f (x,y) := 1 if and only if x≡ y (mod 3). Now,
consider a domain of the form {0,1}n, and let a be the biggest integer such that 3 ·a < 2n. Conditioned
on the event that the inputs fall in the set {0, . . . ,3a− 1}, the above counterexample works. Since this
event happens with probability approaching 1 (when n grows), the result over the domain D := {0,1}n

follows.

3.2.2 The XOR lemma for games is false

In this section we argue that the XOR lemma for games is false. In a single-prover game, a verifier
chooses a question x according to a publicly known distribution, and sends it to the prover. The prover
then responds by a(x), and wins if a publicly known predicate V (x,a) accepts. We are interested in the
value of a game, which is the maximum, over all provers, of the probability that the prover wins. For
our result it is enough to consider single-prover games, but it will be clear that similar examples exist
for any number of provers.

For a game G with acceptance predicate V (x,a) we define the game G×m as follows: the verifier asks
m independent questions x1, . . . ,xm and expects m answers a1, . . . ,am, where each answer is allowed to
depend on all questions x1, . . . ,xm. The prover wins if and only if the number of indices i such that
V (xi,ai) accepts is odd.

Claim 3.15 (The XOR lemma for games is false). There is a single-prover game G that has value at
most 3/4, but such that the value of G×m approaches 1 as m→ ∞.

Proof. Consider the following game G between a verifier and prover A. The verifier sends two uniform
and independent bits (p, t) to A. Prover A then sends one bit a = a(p, t) back to the verifier. If p = 0, the
verifier accepts iff a = 1. If p = 1, it accepts iff t = 1.

The idea is that A has complete control over the game when p = 0, and when p = 1, A knows if the
game is won or lost (since A knows t). Thus, whenever there is at least one game with p = 0, A can win
the XOR of the games.

We claim that any prover A wins G with probability at most 3/4. This is because when p = 1 and
t = 0 the game is lost, no matter what A says.

Now consider the game G×m and the following prover A: Upon receiving m questions

(p1, t1),(p2, t2), . . . ,(pm, tm) ,

A sends back the bits a1, . . . ,am that are all 0 except possibly ai where i is the least i such that pi = 0,
which is set to ai := 1⊕

⊕
i:pi=1 ti. It is easy to see that the prover wins G×m whenever there is an i such

that pi = 0, which happens with probability 1−2−m.
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3.3 Lower bounds

Using the k-party norm Rk (·), one can give a simple proof of the fact that the generalized inner product
function is hard to compute with little communication. Babai, Nisan, and Szegedy [5] introduced this
function and proved an Ω

(
n/4k

)
lower bound for its k-party communication complexity. Chung and

Tetali [9] and Raz [35] refined and modularized the technique of [5] and obtained an alternative proof of
the same bound for the generalized inner product function.8 This section can be seen as presenting this
alternative proof in a different language. In what follows we denote by

∧
k : {0,1}k → {0,1} the AND

function that outputs 1 if all its inputs bits are 1, and 0 otherwise. Let GIP : ({0,1}n)k →{−1,1} be the
function ((−1)∧k)×n, i. e., GIP(x1, . . . ,xk) := ∏i≤n(−1)∧ j≤k(x j)i .

Theorem 3.16 ([5]). Cor(GIP,Πk,c)≤ 2c−Ω(n/4k).

Proof.

E
x∈({0,1}n)k

[GIP(x) ·π(x)]≤ 2c ·Rk (GIP)1/2k
= 2c ·Rk

(
(−1)∧k

)n/2k

= 2c(1−2−k+1)n/2k
,

where the first inequality is Corollary 3.11, the next inequality is Fact 3.7, and Rk ((−1)∧k) = 1−2−k+1

by straightforward calculation.

Using the k-party norm, we can prove correlation bounds for variants GIPm of the above GIP func-
tion where the sum is modulo m, as opposed to modulo 2. We note that Grolmusz [18] obtained the
corresponding BNS-strength communication complexity lower bound by extending the methods of [5]
to the discrepancy of complex-valued functions (namely, the values are m-th roots of unity).

Let GIPm : ({0,1}n)k → {−1,1} be the function that equals 1 iff ∑i≤n ∏ j≤k(x j)i is divisible by m.
Similarly to Section 2.3, in the rest of this section we work with correlation with respect to the following
non-uniform distribution Q: with probability 1/2, Q is uniform on the inputs x such that GIPm(x) = 1;
with probability 1/2, Q is uniform on the inputs x such that GIPm(x) =−1.

Theorem 3.17. CorQ(GIPm,Πk,c)≤ 2c−α·n/4k
, where α > 0 depends on m only.

Proof. Following the proof of Theorem 2.9, we consider the function f : ({0,1}n)k → C defined as
f (x) := em

(
∑`≤n∧ j≤k(x j)`

)
, where em (y) := e2π·i·y/m and i is the imaginary unit. By Lemma 2.10,

to obtain the claimed bound on the correlation it is enough to bound from above the maximum over
a ∈ {1, . . . ,m−1} of ∣∣∣∣∣ E

x∈({0,1}n)k
[ f (x)a ·π(x)]

∣∣∣∣∣ ,
where π ∈Πk,c.

To bound the above quantity, we use Corollary 3.11 to relate it to the k-party norm of f , and then we
use the fact that the norm of the product of functions on disjoint input bits multiplies (Fact 3.7). Thus

8While in [9, Theorem 5] the authors claim an Ω
(
n/2k) lower bound, their proof only reproduces the original Ω

(
n/4k)

bound, which we also obtain here. No better bound is known.
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we obtain
∣∣∣Ex∈({0,1}n)k [ f (x)a ·π(x)]

∣∣∣≤ Rk (em (a ·∧k))
n/2k

and we are left with the task of bounding

Rk (em (a ·∧k)) = E
x0

1,x
0
2,...,x

0
k∈{0,1}

x1
1,x

1
2,...,x

1
k∈{0,1}

[
em

(
a · ∑

ε1,...,εk∈{0,1}
(−1)∑` ε` ∧k (xε1

1 ,xε2
2 , . . . ,xεk

k )

)]
.

Consider now the event V := “x0
` 6= x1

` for every `.” When V happens, there is exactly one choice for
the exponents ε` that gives

∧
k(x

ε1
1 ,xε2

2 , . . . ,xεk
k ) = 1, and that choice is ε` := x1

` (since the only input that
makes ∧k equal to 1 is the all 1’s input). Therefore, conditioned on V , the above expectation becomes

E x0
1,x

0
2,...,x

0
k∈{0,1}

x1
1,x

1
2,...,x

1
k∈{0,1}

[
em

(
a · (−1)∑` x1

`

)∣∣∣V]=
em (a)+ em (−a)

2
= ℜ(em (a)) < 1 ,

where ℜ(·) denotes the real part. Above, the first equality uses the fact that ∑` x1
` is odd with probability

1/2 (also conditioned on V ), while the last inequality uses the fact that 0 < a < m.
Since V happens with probability 2−k, and when V does not happen the expectation is seen to be 1,

we obtain
Rk (em (a ·∧k)) = 2−k ·ℜ(em (a))+1−2−k ,

from which the result follows.
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[4] * LÁSZLÓ BABAI, THOMAS P. HAYES, AND PETER G. KIMMEL: The cost of the
missing bit: communication complexity with help. Combinatorica, 21(4):455–488, 2001.
[doi:10.1007/s004930100009]. 1.2.2

THEORY OF COMPUTING, Volume 4 (2008), pp. 137–168 164

http://theoryofcomputing.org/articles/main/v004/a007/bibliography.html#AGHP92
http://dx.doi.org/10.1002/rsa.3240030308
http://theoryofcomputing.org/articles/main/v004/a007/bibliography.html#AKKLR03
http://springerlink.metapress.com/link.asp?id=5pcg1j8cfl39tmpy
http://theoryofcomputing.org/articles/main/v004/a007/bibliography.html#BGKL03
http://dx.doi.org/10.1137/S0097539700375944
http://theoryofcomputing.org/articles/main/v004/a007/bibliography.html#BabaiHayesKimmel01
http://dx.doi.org/10.1007/s004930100009


NORMS, XOR LEMMAS, AND LOWER BOUNDS FOR POLYNOMIALS AND PROTOCOLS
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