
Network flow

Definition: A flow network is a directed graph G = (V,E) with
two nodes s and t, and a function c(u,v) ≥ 0 on each directed
edge (u,v)

● s is called the source
● t is called the sink
● c: E→R+ is called the capacity function

● Example

20

40 40

40

30s t

● A flow f : V x V → R satisfies:

Skew symmetry: f(u,v) = - f(v,u) for every pair (u,v)

Capacity constraint f(u,v) ≤ c(u,v) for each (u,v) E∈

Conservation of flows: f(u,V) = 0 for every u {s,t},∉
Where we define f(X,Y) := ∑ f(x,y) over x X and y Y∈ ∈

●The value of flow f is | f | = f(s,V)

It represents the amount of flow passing from the source to
the sink.

● Example

20/20

0/40 20/40

0/40

20/30s t

| f | = 20

Maximum flow problem

Input: A flow network G with s and t, a capacity function c
Output: A flow f so that | f | is maximum.

Applications: railway traffic, food supply, airline scheduling,
image segmentation, baseball elimination...

Residual network

● A flow f induces a residual network G
f
, consisting of the

original graph G, and residual capacity function c
f
 :

For every (u,v) such that (u,v) or (v,u) E we set∈
c

f
(u,v) := c(u,v) – f(u,v) ≥ 0.

Note: the residual network may put non-zero capacity on
edges which were non-existing or had zero capacity.

● An augmenting path is a path from s to t in the residual
network

● Example

s t

40 20

40

20

20

20
s t

20/20

0/40 20/40

0/40

20/30 100

f G
f

● Example

s t

40 20

40

20

20

20
s t

20/20

0/40 20/40

0/40

20/30 100

f G
f

An augmenting path

Ford—Fulkerson Algorithm

Given G, s, t, c(·,·). Start with f ≡ 0

Repeat while there is an augmenting path P in G
f

Let m = min
(u,v) P∈ c

f
(u,v).

 Define f'(u,v) = m if (u,v) in P, f'(u,v) = 0 otherwise.

Augment the flow by setting f = f + f'

● Demo

s t

40
40

40

0

0

0
s t

0/20

0/40 0/40

0/40

0/30 3020

G
f

0

0

| f | = 0

● Demo

s t

40
40

40

0

0

0
s t

0/20

0/40 0/40

0/40

0/30 3020

G
f

0

0

| f | = 0

min
(u,v) P∈ c

f
(u,v) = 20

● Demo

s t

40
20

40

20

20

20
s t

20/20

0/40 20/40

0/40

20/30 100

| f | = 20 G
f

0

0

● Demo

s t

40
20

40

20

20

20
s t

20/20

0/40 20/40

0/40

20/30 100

| f | = 20 G
f

0

0

min
(u,v) P∈ c

f
(u,v) = 20

● Demo

s t

20
20

20

0

20

20
s t

20/20

20/40 20/40

20/40

0/30 300

| f | = 40 G
f

20

20

● Demo

s t

20
20

20

0

20

20
s t

20/20

20/40 20/40

20/40

0/30 300

| f | = 40 G
f

20

20

min
(u,v) P∈ c

f
(u,v) = 20

● Demo

s t

0
0

20

0

20

40
s t

20/20

40/40 40/40

20/40

30/30 300

| f | = 60 G
f

20

40

● Demo

max | f | = 60

s t

0
0

20

0

20

40
s t

20/20

40/40 40/40

20/40

30/30 300

| f | = 60 G
f

20

40

No augmenting path

Definition: An s-t cut (S,T) is a partition S, T = V – S such that
s in S and t in T.

Meaning: removing the edges between S and T disconnects
s and t

Example:

S

T

t

20

40 40

40

30s

Definition: An s-t cut (S,T) is a partition S, T = V – S such that
s in S and t in T.

Meaning: removing the edges between S and T disconnects
s and t

Example:

S

T

t

20

40 40

40

30s

Definition: An s-t cut (S,T) is a partition S, T = V – S such that
s in S and t in T.

Meaning: removing the edges between S and T disconnects
s and t

The capacity of an s-t cut (S,T) is c(S,T) := ∑
u S, v T∈ ∈ c(u,v)

Example:

S

T

T

20

40 40

40

30S

c(S,T) := 40 + 30 + 40 = 110

Analysis of Ford—Fulkerson algorithm:

Lemma: Let f be a flow. For any cut (S,T), f(S,T) = | f |

Proof:

Let's move x from S to T.

We lose f(x,T), and we gain f(S,x).

But f(x,T) = - f(x,S) because f(x,V) = 0. qed

Theorem (Max flow-min cut): The following are equivalent:
1. |f| is maximum
2. the residual network has no augmenting paths
3. | f | = c(S,T) for some cut (S,T)

Proof:
1 → 2: otherwise could increment the flow as said before.

2 → 3: define S := vertices reachable from s on residual
network. Note t S. By previous lemma, | f | = f(S,T).∉

Now note for each edge (u,v) in S×T, f(u,v) = c(u,v), otherwise
v would be in S.

3 → 1: if f is not maximum, could have a better flow. But by
lemma it would augment the flow on this cut, thus violate
capacity constraints. □

Analysis of running time

Fact: Let f be a flow in G. Let f' be a flow on residual network
G

f
. Then f + f' is a flow on G

f
 with |f + f'| = |f| + |f'| > |f|.

Analysis of running time

Fact: Let f be a flow in G. Let f' be a flow on residual network
G

f
. Then f + f' is a flow on G

f
 with |f + f'| = |f| + |f'| > |f|.

Assume the capacities are all integers.

In each iteration,
finding an augmentation path takes time ???

Analysis of running time

Fact: Let f be a flow in G. Let f' be a flow on residual network
G

f
. Then f + f' is a flow on G

f
 with |f + f'| = |f| + |f'| > |f|.

Assume the capacities are all integers.

In each iteration,
finding an augmentation path takes time O(|E|)
| f | increments by at least 1

Running time ???

Analysis of running time

Fact: Let f be a flow in G. Let f' be a flow on residual network
G

f
. Then f + f' is a flow on G

f
 with |f + f'| = |f| + |f'| > |f|.

Assume the capacities are all integers.

In each iteration,
finding an augmentation path takes time O(|E|)
| f | increments by at least 1

Running time O(|E| max |f|)

Question: Is O(|E| max |f|) tight?

Analysis of running time

Question: Is O(|E| max |f|) tight? Yes.

s t

9999

9999 9999

9999

1

Analysis of running time

Question: Is O(|E| max |f|) tight? Yes.

s t

9998

9999 9998

9999

1
10

0
1

Analysis of running time

Question: Is O(|E| max |f|) tight? Yes.

s t

9998

9998 9998

9998

1
11

1

1

Analysis of running time

Question: Is O(|E| max |f|) tight? Yes.

s t

9997

9998 9997

9998

2
21

1
1

Analysis of running time

Question: Is O(|E| max |f|) tight? Yes.

s t

9997

9997 9997

9997

1
2

22

2

Edmonds—Karp algorithm

● Same as Ford-Fulkerson, but each time use a shortest path
in residual network

Let's run it on the previous example.

Edmonds—Karp algorithm

Edmonds—Karp on previous example:

s t

0/9999

0/9999 0/9999

0/9999

0/1

Edmonds—Karp algorithm

Edmonds—Karp on previous example:

s t

0

9999 9999

0

9999
00

9999
1

Edmonds—Karp algorithm

Edmonds—Karp on previous example:

s t

0

0 0

0

9999
99999999

9999
1

Analysis of Edmonds—Karp algorithm

Correctness: ???

Analysis of Edmonds—Karp algorithm

Correctness: Follows from previous analysis.

Running time:

Analysis of Edmonds—Karp algorithm

Correctness: Follows from previous analysis.

Running time:

Let δ
f
(s,v) be the distance from s to v in G

f

Lemma: Each time we update the flow, δ
f
(s,v) does not

decrease

i.e. δ
f'
(s,v) ≥ δ

f
(s,v) for every v, for every f' after f

Meaning: shortest path distances increase after each
iteration.

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

.

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

.

We claim that (u,v) G∉
f
.

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

.

We claim that (u,v) G∉
f
. Otherwise,

δ
f
(s,v) ≤ δ

f
(s,u) + 1

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

.

We claim that (u,v) G∉
f
. Otherwise,

δ
f
(s,v) ≤ δ

f
(s,u) + 1 (Triangle inequality)

≤ δ
f'
(s,u) + 1

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

.

We claim that (u,v) G∉
f
. Otherwise,

δ
f
(s,v) ≤ δ

f
(s,u) + 1 (Triangle inequality)

≤ δ
f'
(s,u) + 1 (u B because δ∉

f'
(s,u) < δ

f'
(s,v))

= δ
f'
(s,v)

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

.

We claim that (u,v) G∉
f
. Otherwise,

δ
f
(s,v) ≤ δ

f
(s,u) + 1 (Triangle inequality)

≤ δ
f'
(s,u) + 1 (u B because δ∉

f'
(s,u) < δ

f'
(s,v))

= δ
f'
(s,v)

Contradicting our assumption. So we have (u,v) in G
f'
 but (u,v)

 G∉
f

That means ???

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

.

We claim that (u,v) G∉
f
. Otherwise,

δ
f
(s,v) ≤ δ

f
(s,u) + 1 (Triangle inequality)

≤ δ
f'
(s,u) + 1 (u B because δ∉

f'
(s,u) < δ

f'
(s,v))

= δ
f'
(s,v)

Contradicting our assumption. So we have (u,v) in G
f'
 but (u,v)

 G∉
f

That means the augmentation from f to f' must have (v, u) on
the augmented path.

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

. We have (u,v) in G
f'

but (u,v) G∉
f

That means the augmentation from f to f' must have (v, u) on
the augmented path.

But augmentations are along shortest paths, so
δ

f
(s,v) = δ

f
(s,u) – 1

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

. We have (u,v) in G
f'

but (u,v) G∉
f

That means the augmentation from f to f' must have (v, u) on
the augmented path.

But augmentations are along shortest paths, so
δ

f
(s,v) = δ

f
(s,u) – 1

≤ δ
f'
(s,u) – 1

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

. We have (u,v) in G
f'

but (u,v) G∉
f

That means the augmentation from f to f' must have (v, u) on
the augmented path.

But augmentations are along shortest paths, so
δ

f
(s,v) = δ

f
(s,u) – 1

≤ δ
f'
(s,u) – 1 (because u B)∉

= δ
f'
(s,v) – 1 – 1

Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.

Suppose not. Let v be the vertex v among B:={v: δ
f'
(s,v) <

δ
f
(s,v)} such that δ

f'
(s,v) is minimal.

Take shortest path s ~~~> u ~> v in G
f '

. We have (u,v) in G
f'

but (u,v) G∉
f

That means the augmentation from f to f' must have (v, u) on
the augmented path.

But augmentations are along shortest paths, so
δ

f
(s,v) = δ

f
(s,u) – 1

≤ δ
f'
(s,u) – 1 (because u B)∉

= δ
f'
(s,v) – 1 – 1 (because δ

f'
(s,u) < δ

f'
(s,v))

which contradicts our assumption. □

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof:

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

(i.e. (u,v) is the bottleneck edge of the augmenting path).

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be ???

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be saturated and thus will
disappear from the network.

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be saturated and thus will
disappear from the network.

It can only come back to the critical edge if ???

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be saturated and thus will
disappear from the network.

It can only come back to the critical edge if edge (v,u) is used
on a flow augmentation of a new residual network G

f'
.

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be saturated and thus will
disappear from the network.

It can only come back to the critical edge if edge (v,u) is used
on a flow augmentation of a new residual network G

f'
.

But then δ
f'
(s,u) = δ

f'
(s,v) + 1

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be saturated and thus will
disappear from the network.

It can only come back to the critical edge if edge (v,u) is used
on a flow augmentation of a new residual network G

f'
.

But then δ
f'
(s,u) = δ

f'
(s,v) + 1

(since always use shortest augmentation path)
≥ δ

f
(s,v) + 1

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be saturated and thus will
disappear from the network.

It can only come back to the critical edge if edge (v,u) is used
on a flow augmentation of a new residual network G

f'
.

But then δ
f'
(s,u) = δ

f'
(s,v) + 1

(since always use shortest augmentation path)
≥ δ

f
(s,v) + 1 (by previous lemma)

= δ
f
(s,u) + 1 + 1

Theorem: Total # of flow augmentations in Edmond—Karp is
O(|V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow
augmentation, the edge will be saturated and thus will
disappear from the network.

It can only come back to the critical edge if edge (v,u) is used
on a flow augmentation of a new residual network G

f'
.

But then δ
f'
(s,u) = δ

f'
(s,v) + 1

(since always use shortest augmentation path)
≥ δ

f
(s,v) + 1 (by previous lemma)

= δ
f
(s,u) + 1 + 1

(again because you augment along shortest path).

● Note that between two times that (u,v) becomes critical, the
distance of u increases by ???

● Note that between two times that (u,v) becomes critical, the
distance of u increases by 2.

Thus (u,v) becomes critical O(|V|) times.

● Note that between two times that (u,v) becomes critical, the
distance of u increases by 2.

Thus (u,v) becomes critical O(|V|) times.

Thus, the total # of augmentation is ???

● Note that between two times that (u,v) becomes critical, the
distance of u increases by 2.

Thus (u,v) becomes critical O(|V|) times.

Thus, the total # of augmentation is O(|V| |E|). □

● Note that between two times that (u,v) becomes critical, the
distance of u increases by 2.

Thus (u,v) becomes critical O(|V|) times.

Thus, the total # of augmentation is O(|V| |E|). □

Remark

This is NOT saying every augmentation increases the
distance of some node

This is saying every 2 augmentations of same edge increase
distance of starting point.

Application: Maximum matching

Definition: Given a bipartite graph (L R,E)∪ . M E is a ⊂
matching if no edges in M share a vertex.

Application: Maximum matching

Definition: Given a bipartite graph (L R,E). M E is a ∪ ⊂
matching if no edges in M share a vertex.

Input: a bipartite graph (L R,E)∪

Output: max |M|

Application: Maximum matching

Definition: Given a bipartite graph (L R,E). M E is a ∪ ⊂
matching if no edges in M share a vertex.

Input: a bipartite graph (L R,E)∪

Output: max |M|

Example:

 |M| = ???

Application: Maximum matching

Definition: Given a bipartite graph (L R,E)∪ . M E is a ⊂
matching if no edges in M share a vertex.

Input: a bipartite graph (L R,E)∪

Output: max |M|

Example:

 |M| = 2 |M| = 3

Application: Maximum matching

We turn it into a maximum flow problem

Application: Maximum matching

We turn it into a maximum flow problem

● Direct every edge from L to R

Application: Maximum matching

We turn it into a maximum flow problem

● Direct every edge from L to R
● Add a source and a sink

s t

Application: Maximum matching

We turn it into a maximum flow problem

● Direct every edge from L to R
● Add a source and a sink
● Add edges between s and vertices in L, and between t and
the vertices in R

s t

Application: Maximum matching

We turn it into a maximum flow problem

● Direct every edge from L to R
● Add a source and a sink
● Add edges between s and vertices in L, and between t and
the vertices in R
● Set capacities of all edges to 1

s t
1

1

1

1

1

1
1

1

1

1

1

1

Application: Maximum matching

We turn it into a maximum flow problem

Claim: Matching of size M flow of value M∃ ⇔∃

Proof:

⇒:

Application: Maximum matching

We turn it into a maximum flow problem

Claim: Matching of size M flow of value M∃ ⇔∃

Proof:

⇒: Clear
⇐: Let f be a flow. There are |f| units.

The |f| units form |f| edge-disjoint paths from s to t
because ???

Application: Maximum matching

We turn it into a maximum flow problem

Claim: Matching of size M flow of value M∃ ⇔∃

Proof:

⇒: Clear
⇐: Let f be a flow. There are |f| units.

The |f| units form |f| edge-disjoint paths from s to t
because all edges have capacity 1.

So there are exactly |f| edges (u,v) in (L∪R,E) with f(u,v)
= 1.

Application: Maximum matching

We turn it into a maximum flow problem

Claim: Matching of size M flow of value M∃ ⇔∃

Proof:

⇒: Clear
⇐: Let f be a flow. There are |f| units.

The |f| units form |f| edge-disjoint paths from s to t
because all edges have capacity 1.

So there are exactly |f| edges (u,v) in (L∪R,E) with f(u,v)
= 1.

No two vertices in L and R shares these edges because
???

Application: Maximum matching

We turn it into a maximum flow problem

Claim: Matching of size M flow of value M∃ ⇔∃

Proof:

⇒: Clear
⇐: Let f be a flow. There are |f| units.

The |f| units form |f| edge-disjoint paths from s to t
because all edges have capacity 1.

So there are exactly |f| edges (u,v) in (L∪R,E) with f(u,v)
= 1.

No two vertices in L and R shares these edges because
each edge touching s or t has capacity 1. So the |f| edges
form a matching.□

