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Divide and conquer

1) Divide your problem into subproblems

2) Solve the subproblems recursively, that is,  

run the same algorithm on the subproblems

(when the subproblems are very small, solve them from  

scratch)

3) Combine the solutions to the subproblems into a solution  

of the original problem



Divide and conquer

Recursion is “top-down” start from big problem, and make it  

smaller

Every divide and conquer algorithm can be written without  

recursion, in an iterative “bottom-up” fashion:

solve smallest subproblems, combine them, and continue

Sometimes recursion is a bit more elegant



Merge sort



Mergesort (low, high) {

if (high – low < 1) return; //Smallest subproblems

//Divide into subproblems low..split and split..high  

split = (low+high) / 2;

MergeSort(low, split); //Solve subproblem recursively  

MergeSort(split+1, high); //Solve subproblem recursively

//Combine solutions

merge sorted sequences low..split and split+1..high  into 

the single sorted sequence low..high

}



Merge example

Merge sorted sequences A1 and A2 into B

A1 = [ 3  8  10  21  57 ]

A2 = [ 7  13  14  17 ]

B =   [



Mergesort (low, high) {

if (high-low < 1) return;  

split = (low+high) / 2;  

MergeSort(low, split);  

MergeSort(split+1, high);

Merge

}

Merge A1[1..s1],A2[1..s2]

into B[1..(s1+s2)]

i1=i2=j=1;

while i1 < s1 and i2 < s2  

if (A1[i1] < A2[i2])

B[j++] = A1[i1++])

else

B[j++] = A2[i2++])

end while;

Put what left in A1 or A2 inB



Analysis of running time  

Merging A1[1..s1], A2[1..s2]  

into B[1..(s1+s2)] takes time ?

MergeSort(low, high) {

if (high-low < 1) return;

split = (low+high) / 2;  

MergeSort(low, split);  

MergeSort(split+1, high);

Merge low..split and

split+1 ..high

}



Analysis of running time  

Merging A1[1..s1], A2[1..s2]  

into B[1..(s1+s2)] takes time

c•(s1+s2) for some constant c

Let T(n) be time for merge sort on A[1..n]

Recurrence relation T(n) = ?

MergeSort(low, high) {

if (high-low < 1) return;

split = (low+high) / 2;  

MergeSort(low, split);  

MergeSort(split+1, high);

Merge low..split and

split+1 ..high

}



MergeSort(low, high) {

if (high-low < 1) return;

split = (low+high) / 2;  

MergeSort(low, split);  

MergeSort(split+1, high);

Merge low..split and

split+1 ..high

}

Analysis of running time  

Merging A1[1..s1], A2[1..s2]  

into B[1..(s1+s2)] takes time

c•(s1+s2) for some constant c

Let T(n) be time for merge sort on A[1..n]

Recurrence relation T(n) = 2 T(n/2) + c•n



Solving recurrence T(n) = 2 T(n/2) + c n  

Expand recurrence to obtain recursion tree

Sum of costs at level i is ?

...



Solving recurrence T(n) = 2 T(n/2) + c n  

Expand recurrence to obtain recursion tree

Sum of costs at level i is  2i cn/2i = cn

Numbers of levels is ?

...



Analysis of space

How many extra array elements we need?

At least n to merge

It can be implemented to use O(n) space.



Quick sort



QuickSort(lo, hi) { // Sorts array A  

if (hi-lo < 1) return; 

partition(lo, hi) and return split;  

QuickSort(lo, split-1);  

QuickSort(split+1, hi);

}

Partition permutes A[lo..hi] so that

each element in A[lo.. split] is ≤ A[split],

each element in A[split+1.. hi] is > A[split].



Partition(A[lo.. hi]) For simplicity, assume distinct elements  

Pick pivot index p. // We will explain later how

Swap A[p] and A[hi]; i = lo-1; j = hi;

Repeat { //Invariant: A[lo.. i] < A[hi], A[j.. hi-1] >A[hi]  

Do i++ while A[i] <A[hi];

Do j-- while A[j] > A[hi] and i < j;

If i < j then swap A[i] andA[j]  

Else {

swap A[i] and A[hi]; return i

}

}

Running time: O(hi – lo)



Analysis of running time

T(n) = number of comparisons on an array of length n.  

T(n) depends on the choice of the pivot index p

●

●

Choosing pivot deterministically  

Choosing pivot randomly
QuickSort(lo, hi) {

if (hi-lo <= 1) return;  

partition(lo, hi) and  return split, 

QuickSort(lo, split-1);  

QuickSort(split+1, hi);

}



Analysis of running time

T(n) = number of comparisons on an array of length n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty  
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

= ?



Analysis of running time

T(n) = number of comparisons on an array of length n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty  
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

= Θ(n2).

● Choosing pivot randomly we can guarantee  

T(n) = O(n log n) with high probability



Randomized-Quick sort:

R-QuickSort(low, high) {  

if (high-low < 1) return;

R-partition(low, high) and return split,  

R-QuickSort(low, split-1);

R-QuickSort(split+1, high);

}

R-partition(low, high)

Pick pivot index p uniformly in {low, low+1, … high}

Then partition as before
We bound the total time spent by

Partition



● Definition: X is the number of comparisons

● Next we bound the expectation of X, E[X]



● Rename array A as z1, z2, …, zn, with zi being the i-th smallest

● Note: each pair of elements zi, zj is compared at most once.  

Why?



● Rename array A as z1, z2, …, zn, with zi being the i-th smallest

● Note: each pair of elements zi, zj is compared at most once.  

Elements are compared with the pivot.

An element is a pivot at most once.

● Define indicator random variables 

Xij:= 1 if { zi is compared to zj }

Xij:= 0 otherwise

● Note: X = ?



● Rename array A as z1, z2, …, zn, with zi being the i-th smallest

● Note: each pair of elements zi, zj is compared at most once.  

Elements are compared with the pivot.

An element is a pivot at most once.

● Define indicator random variables 

Xij:= 1 if { zi is compared to zj }

Xij:= 0 otherwise

n-1 n

● Note: X = ∑ ∑ Xij .

i=1 j=i+1



X = ∑ ∑ Xij .

i=1 j=i+1

Taking expectation, and using linearity:

n-1 n

E[X]= E ∑ ∑ Xij

i=1 j=i+1

n-1 n

n-1 n

= ∑ ∑ E [Xij ]

i=1 j=i+1

= ∑ ∑ Pr {zi is compared to zj}

i=1 j=i+1

n-1 n



● Pr {zi is compared to zj}=?

● If some element y, zi < y < zj chosen as pivot, 

zi and zj can not be compared.

Why?



● Pr {zi is compared to zj}=?

● If some element y, zi < y < zj chosen as pivot, 

zi and zj can not be compared.

Because after partition zi and zj will be in two different parts.

● Definition: Zij is = { zi , zi+1 , …, zj }

● zi and zj are compared if

first element chosen as pivot from Zij is either zi or zj.



Pr {zi is compared to zj} = Pr [zi or zj is first pivot chosen fromZij]



Pr {zi is compared to zj} = Pr [zi or zj is first pivot chosen fromZij]

= Pr [zj is first pivot chosen from Zij]

+ Pr [zi is first pivot chosen from Zij]



Pr {zi is compared to zj} = Pr [zi or zj is first pivot chosen fromZij]

= Pr [zi is first pivot chosen from Zij]

+ Pr [zj is first pivot chosen from Zij]

=1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .



Pr {zi is compared to zj} = Pr [zi or zj is first pivot chosen fromZij]

= Pr [zi is first pivot chosen from Zij]

+ Pr [zj is first pivot chosen from Zij]

=1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .
n-1 n

E[X]= ∑ ∑ Pr {zi is compared to zj}

i=1 j=i+1

n-1 n

= ∑ ∑ 2/(j-i+1) .

i=1 j=i+1



Pr {zi is compared to zj} = Pr [zi or zj is first pivot chosen fromZij]

= Pr [zi is first pivot chosen from Zij]

+ Pr [zj is first pivot chosen from Zij]

=1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑ ∑ Pr {zi is compared to zj}

i=1 j=i+1

n-1 n

n-1 n

= ∑ ∑ 2/(j-i+1)

i=1 j=i+1

n-1 n-i

= ∑ ∑ 2/(k+1)
i=1 k=1

n-1 n

< ∑ ∑ 2/k

i=1 k=1



Pr {zi is compared to zj} = Pr [zi or zj is first pivot chosen fromZij]

= Pr [zi is first pivot chosen from Zij]

+ Pr [zj is first pivot chosen from Zij]

=1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

Expected running time of Randomized-QuickSort is O(n log n).

E[X]= ∑ ∑ Pr {zi is compared to zj}

i=1 j=i+1

n-1 n

n-1 n

= ∑ ∑ 2/(j-i+1)

i=1 j=i+1

n-1 n-i

= ∑ ∑ 2/(k+1)
i=1 k=1

n-1

=∑ O(log n) = O(n log n).

i=1

n-1 n

< ∑ ∑ 2/k

i=1 k=1



An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n, for some constant c.  

Hence, Pr[ T > 100 c n log n] < ?



An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n, for some constant c.  

Hence, Pr[ T > 100 c n log n] < 1/100

Markov's inequality useful to translate bounds on the expectation in  

bounds of the form: “It is unlikely the algorithm will take too long.”



Oblivious Sorting

Want an algorithm that only accesses the input via  

Compare-exchange(x,y)

Compares A[x] and A[y] and swaps them if necessary

We call such algorithms oblivious. Useful if you want to  
sort with a (non-programmable) piece of hardware

Did we see any oblivious algorithms?



Oblivious Mergesort

This is just like Merge sort except that the merge  
subroutine is replaced with a subroutine whose  
comparisons do not depend on the input.

Assumption:

Size of the input sequence, n, is a power of 2.

Convenient to index from 0 to n-1



Oblivious-Mergesort (A[0..n-1]) 

{  if n > 1 then

Oblivious-Mergesort(A[0.. n/2-1]);

Oblivious-Mergesort(A [n/2 .. n-1]);  

odd-even-Merge(A[0..n-1]);

}

Same structure as Mergesort

But Odd-even-merge is more complicated, recursive



odd-even-merge(A[0..n-1]); {

if n = 2 then compare-exchange(0,1);  

else {

odd-even-merge(A[0,2 .. n-2]); //even subsequence

odd-even-merge(A[1,3,5 .. n-1]); //odd subsequence  

for i ∈ {1,3,5, … n-1} do

compare-exchange(i, i +1);

}

Compare-exchange(x,y) compares A[x] and A[y] and 

swaps them if necessary

Merges correctly if A[0.. n/2-1] and A[n/2 .. n-1] are sorted



odd-even-merge(A[0..n-1]);

if n = 2 then compare-exchange(0,1);  

else

odd-even-merge(A[0,2 .. n-2]);

odd-even-merge(A[1,3,5 .. n-1]);  

for i ∈ {1,3,5, … n-1} do  

compare-exchange(i, i +1);

0-1 principle: If algorithm works correctly on sequences  

of 0 and 1, then it works correctly on all sequences

True when input only accessed through compare-exchange



odd-even-merge(A[0..n-1]);

if n = 2 then compare-exchange(0,1);  

else

odd-even-merge(A[0,2 .. n-2]);

odd-even-merge(A[1,3,5 .. n-1]);  

for i ∈ {1,3,5, … n-1} do  

compare-exchange(i, i +1);



Analysis of running time

T(n) = number of comparisons.

= 2T(n/2)+ T'(n) . T'(n) = number of operations in  
odd-even-merge

= 2T'(n/2)+c n = ?

odd-even-merge(A[0..n-1]);  

if n = 2 then

compare-exchange(0,1);  

else

odd-even-merge(A[0,2 .. n-2]);

odd-even-merge(A[1,3,5 .. n-1]);  

for i ∈ {1,3,5, … n-1} do  

compare-exchange(i, i +1);

Oblivious-Mergesort(A[0..n-1])  

if n > 1 then

Oblivious-Mergesort(A[0.. n/2-1]);  

Oblivious-Mergesort(A [n/2 .. n-1]);  

Odd-even-merge(A[0..n-1]);



Analysis of running time

T(n) = number of comparisons.

= 2T(n/2)+ T'(n)

= 2T(n/2)+ O(n log n).

= ?

T'(n) = number of operations in  
odd-even-merge

= 2T'(n/2)+c n = O(n logn).

odd-even-merge(A[0..n-1]);  

if n = 2 then

compare-exchange(0,1);  

else

odd-even-merge(A[0,2 .. n-2]);

odd-even-merge(A[1,3,5 .. n-1]);  

for i ∈ {1,3,5, … n-1} do  

compare-exchange(i, i +1);

Oblivious-Mergesort(A[0..n-1])  

if n > 1 then

Oblivious-Mergesort(A[0.. n/2-1]);  

Oblivious-Mergesort(A [n/2 .. n-1]);  

Odd-even-merge(A[0..n-1]);



Analysis of running time

T(n) = number of comparisons.

= 2T(n/2)+ T'(n)

= 2T(n/2)+ O(n log n)

= O(n log2 n).

odd-even-merge(A[0..n-1]);  

if n = 2 then

compare-exchange(0,1);  

else

odd-even-merge(A[0,2 .. n-2]);

odd-even-merge(A[1,3,5 .. n-1]);  

for i ∈ {1,3,5, … n-1} do  

compare-exchange(i, i +1);

Oblivious-Mergesort(A[0..n-1])  

if n > 1 then

Oblivious-Mergesort(A[0.. n/2-1]);  

Oblivious-Mergesort(A [n/2 .. n-1]);  

Odd-even-merge(A[0..n-1]);



Sorting  
algorithm

Time Space Assumption/  
Advantage

Bubble sort Θ(n2) O(1) Easy to code

Counting sort Θ(n+k) O(n+k) Input range is [0..k]

Radix sort Θ(d(n+k)) O(n+k) Inputs are d-digit  
integers in base k

Quick sort
(deterministic)

O(n2) O(1)

Quick sort
(Randomized)

O(n log n) O(1)

Merge sort

Oblivious  
merge sort

O (n log n) O(n)

O (n log2 n) O(1) Comparisons are  
independent of input



● Input: n integers in {0, 1, …, 2w - 1}

● Model: Usual operations (+, *, AND, … )  

on w-bit integers in constant time

● Open question: Can you sort in time O(n)?

● Best known time: O(n log log n)

Sorting is still open!



● View other divide-and-conquer algorithms

● Some related to sorting

Next



● Definition: For array A[1..n] and index h,  

S(A,h) := h-th smallest element in A,

= B[h] for B = sorted version ofA

● S(A,(n+1)/2) is the median of A, when n is odd

● We show how to compute S(A,h) with O(n) comparisons

Selecting h-th smallest element



●

● Find median of each

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

● Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)

● Partition A according to x. Let x be in position k

● If h = k return x, if h < k return S(A[1..k-1],h),

if h > k return S(A[k+1..n],h-k-1)

Computing S(A,h)
Divide array in consecutive blocks of 5:  

A[1..5], A[6..10], A[11..15] , ...



●

●

Divide array in consecutive blocks of 5  

Find median of each

●

●

●

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)  

Partition A according to x. Let x be in position k

If h = k return x, if h < k return S(A[1..k-1],h),

if h > k return S(A[k+1..n],h-k-1)

● Running time:

When partition, half the medians mi  will be ≥ x.

Each contributes ≥ ? elements from their 5.



●

●

Divide array in consecutive blocks of 5  

Find median of each

●

●

●

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)  

Partition A according to x. Let x be in position k

If h = k return x, if h < k return S(A[1..k-1],h),

if h > k return S(A[k+1..n],h-k-1)

● Running time:

When partition, half the medians mi  will be ≥ x.

Each contributes ≥ 3 elements from their 5.

So we recurse on ≤ ?? 



●

●

Divide array in consecutive blocks of 5  

Find median of each

●

●

●

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)  

Partition A according to x. Let x be in position k

If h = k return x, if h < k return S(A[1..k-1],h),

if h > k return S(A[k+1..n],h-k-1)

● Running time:

When partition, half the medians mi  will be ≥ x.

Each contributes ≥ 3 elements from their 5.

So we recurse on ≤ 7n/10 elements

T(n) ≤ T(n/5) + T(7n/10) + O(n)

This implies T(n) = O(n)



How to solve recurrence T(n) ≤ T(n/5) + T(7n/10) + cn

Guess T(n) ≤ an, for some constant a

Does guess hold for recurrence?

an ≥ an/5 + a7n/10 + cn

⇔ (divide by an)

1≥ 1/5 + 7/10 + c/a

⇔
1/10 ≥ c/a

This is true for a ≥ 10c.    □



Closest pair of points  

Input:

Set P of n points in the plane

Output:

Two points x1 and x2 with the shortest (Euclidean)  

distance from each other.

Trivial algorithm: Compute every distance: Ω(𝑛2) time

Next: Clever algorithm with 𝑂 𝑛 log 𝑛 time



Closest pair of points  

Input:

Set P of n points in the plane

Output:

Two points x1 and x2 with the shortest (Euclidean)  

distance from each other.

●

●

●

For the following algorithm we assume that we have  
two arrays X and Y, each containing all the points of P.

X is sorted so that the x-coordinates are increasing 

Y is sorted so that y-coordinates are increasing.



Closest pair of points

Divide:



Closest pair of points

Divide: find a vertical line L that bisects P into two sets  

PL:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |PL|= n/2 and |PR|= n/2 (plus or minus 1)

Conquer:

PL                                PR

L



Closest pair of points

Divide: find a vertical line L that bisects P into two sets  

PL:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |PL|= n/2 and |PR|= n/2 (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair  
of point in PL and PR.

Let the closest distances in P
L 
and P

R 
be δ

L 
and δ

R 
,and  

let δ = min(δL , δR).

Combine: PL                                PR

L

δR

δL



Closest pair of points

Divide: find a vertical line L that bisects P into two sets  

PL:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |PL|= n/2 and |PR|= n/2 (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair  
of point in PL and PR.

Let the closest distances in P
L 
and P

R 
be δ

L 
and δ

R 
,and  

let δ = min(δL , δR).

Combine: The closest pair is either the one with distance δ  

or it is a pair with one point in P
L 
and the other in P

R 
with  

distance less than δ,    NO SAVING?

PL                                PR

L

δR

δL



Closest pair of points

Divide: find a vertical line L that bisects P into two sets  

PL:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |PL|= n/2 and |PR|= n/2 (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair  
of point in PL and PR.

Let the closest distances in P
L 
and P

R 
be δ

L 
and δ

R 
,and  

let δ = min(δL , δR).

Combine: The closest pair is either the one with distance δ  

or it is a pair with one point in P
L 
and the other in P

R 
with  

distance less than δ, in a δ x 2δ box straddling L.

PL                                PR

L

δR

δL

δ

δ

δ



● Create Y' by removing from Y points that are not in 2δ-
wide vertical strip.

PL                                PR

L

δR

δL

δ

δ

δ

How to find points in the box



● Create Y' by removing from Y points that are not in 2δ-
wide vertical strip.

PL                                PR

L

δR

δL

δ

δ

δ

How to find points in the box



● Create Y' by removing from Y points that are not in 2δ-
wide vertical strip.

L

δL

δ

δ

δ

How to find points in the box



●

●

Create Y' by removing from Y points that are not in 2δ-
wide vertical strip.

For each consecutive 8 points in Y'

p1 , p2 , … , p8

compute all their distances.

● If any of them are closer than δ,  

update the closest pair

and the shortest distance δ.

● Return δ and the closest pair.

How to find points in the box

L

δL

δ

δ

δ



Why 8?

Fact: If there are 9 points in a δ x 2δ box straddling L.  

⇒ there are 5 points in a δ x δ box on one side of L.  

⇒ there are 2 points on one side of L with   

distance less than δ.

This violates the definition of δ. L

δL

δ

δ

δ



Analysis of running time

Same as Merge sort:

T(n) = number of operations  

T(n) = 2 T(n/2) + c n

= O(n log n).



Is multiplication harder than addition?

Alan Cobham, < 1964



Is multiplication harder than addition?

Alan Cobham, < 1964

We still do not know!



Addition

Input: two n-digit integers a, b in base w

(think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits  

The simple way to add takes ?



Addition

Input: two n-digit integers a, b in base w

(think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

optimal?



Addition

Input: two n-digit integers a, b in base w

(think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits  

The simple way to add takes O(n)

This is optimal, since we need at least to write c



Multiplication

Input: two n-digit integers a, b in base w

(think w = 2, 10)

Output: One integer c=a∙b.

Operations allowed: only on digits

Simple way takes ?

23958233

5830 ×

------------

00000000 ( = 23,958,233 × 0)

71874699 ( = 23,958,233 × 30)

191665864 ( = 23,958,233 × 800)

119791165 ( = 23,958,233 × 5,000)

------------

139676498390 ( = 139,676,498,390 )



Multiplication

Input: two n-digit integers a, b in base w

(think w = 2, 10)

Output: One integer c=a∙b.

Operations allowed: only on digits

The simple way to multiply takes Ω(n2)  

Can we do this any faster?



Can we multiply faster than n2 ?

Feeling: “As regards number systems and calculation techniques,

it seems that the final and best solutions were found in science long ago”

In 1950’s, Kolmogorov conjectured Ω(𝑛2)

One week later, O(n1.59) time by Karatsuba

See “The complexity of Computations”



Can we multiply faster than n2 ?

Feeling: “As regards number systems and calculation techniques,

it seems that the final and best solutions were found in science long ago”

In 1950’s, Kolmogorov conjectured Ω(𝑛2)

One week later, O(n1.59) time by Karatsuba

See “The complexity of Computations”



Multiplication

Example:

2-digit numbers N1 and N2 in base w.

N
1 
= a

0
+a

1
w.  

N2 = b0+b1w.

For this example, think w very large, like w = 232



Multiplication

Example:

2-digit numbers N1 and N2 in base w.

N
1 
= a

0
+a

1
w.

N2 = b0+b1w.  

P = N1N2

= a0b0+(a0b1+a1b0)w+a1b1w
2

= p0 + p1w + p2w
2.

This can be done with ? multiplications



Multiplication

Example:

2-digit numbers N1 and N2 in base w.

N
1 
= a

0
+a

1
w.

N2 = b0+b1w.  

P = N1N2

= a0b0+(a0b1+a1b0)w+a1b1w
2

= p0 + p1w + p2w
2.

This can be done with 4 multiplications

Can we save multiplications, possibly increasing additions?



Compute  

q
0
=a

0
b

0.

q1=(a0+a1)(b1+b0).

q2=a1b1.

Note:

⇨
p0=q0.  

p1=q1-q0-q2.  

p
2
=q

2
.

So the three digits of P are evaluated using 3  

multiplications rather than 4.

What to do for larger numbers?

q0=p0.  

q1=p1+p0+p2.  

q
2
=p

2
.

P = a0b0+(a0b1+a1b0)w+a1b1w
2

= p0 + p1w + p2w
2.



The Karatsuba algorithm

Input: two n-digit integers a, b in base w.  

Output: One integer c = a∙b.

Divide:

How?



The Karatsuba algorithm

Input: two n-digit integers a, b in base w.  

Output: One integer c = a∙b.

Divide:

m = n/2.

a = a
0
+ a

1
wm.

b = b0+ b1w
m.

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m

= p
0

+ p
1

wm + p
2

w2m



The Karatsuba algorithm

Input: two n-digit integers a, b in base w.  

Output: One integer c = a∙b.

Divide:

m = n/2.

a = a
0
+ a

1
wm.

b = b0+ b1w
m.

Conquer:

q
0
=a Xb .

0 0

q1=(a0+a1)X(b1+b0).

q2=a1Xb1

Each X is a  

recursive call

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m

= p
0

+ p
1

wm + p
2

w2m



The Karatsuba algorithm

Input: two n-digit integers a, b in base w.  

Output: One integer c = a∙b.

Divide:

m = n/2.

a = a
0
+ a

1
wm.

b = b0+ b1w
m.

Conquer:

q
0
=a Xb .

0 0

q1=(a0+a1)X(b1+b0).

q2=a1Xb1

Combine:

p0=q0.

p1=q1-q0-q2.  

p
2
=q

2
.

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m

= p
0

+ p
1

wm + p
2

w2m

Each X is a  

recursive call



Analysis of running time  

T(n) = number of operations.  

T(n) = 3 T(n/2) + O(n)

= ?



Analysis of running time  

T(n) = number of operations.  

T(n) = 3 T(n/2) + O(n)

= ? 𝑐𝑛

𝑐𝑛

2

𝑐𝑛

2

𝑐𝑛

2
→ 𝑐𝑛(

3

2
)

𝑐𝑛

22
𝑐𝑛

22
…………

𝑐𝑛

22
→ 𝑐𝑛

3

2

2

…………………………………………………………..

Recursion tree

Cost at level  𝑖 = 𝑐𝑛
3

2

𝑖

Number of levels = log2(𝑛)

Total cost = σ𝑖=0
log2 𝑛 𝑐𝑛

3

2

𝑖
= 𝑂 𝑛

3

2

log2 𝑛
= 𝑂(𝑛log2 3)



Analysis of running time  

T(n) = number of operations.  

T(n) = 3 T(n/2) + O(n)

= Θ(n log 3) (log in base 2)

= O(n 1.59).

Karatsuba may be used in your computers to reduce, say,  
multiplication of 128-bit integers to 64-bit integers.

Are there faster algorithms for multiplication?



Algorithms taking essentially O(n log n) are known.

1971: Scho”nage-Strassen O(n log n log log n)

2007: Fu”rer O(n log n exp(log* n) )

log*n = times you need to apply log to n to make it 1

They are all based on Fast Fourier Transform



0 1 1 0

0 1 0 0

0 0 0 1

1 1 1 1

1 0 0 1

1 0 1 1

0 1 1 1

0 1 0 0

1

Matrix Multiplication

n x n matrixes. Note input length is n2

A B

n=4

Just to write down output need time Ω(n2)

The simple way to do matrix multiplication takes ?



0 1 1 0

0 1 0 0

0 0 0 1

1 1 1 1

1 0 0 1

1 0 1 1

0 1 1 1

0 1 0 0

1

Matrix Multiplication

n x n matrixes. Note input length is n2

A B

n=4

Just to write down output need time Ω(n2)

The simple way to do matrix multiplication takes O(n3).



Strassen's Matrix Multiplication  

Input: two nXn matrices A, B.  

Output: One nXn matix C=A∙B.



Strassen's Matrix Multiplication  

Divide:

Divide each of the input matrices A and B into 4 matrices  
of size n/2Xn/2, a follow:

A11 A12

A= B=

A21 A22

A11 A12

A.B=

A21 A22

B11 B12

B21 B22  

B11 B12

B21 B22

C11 C12

=

C21 C22



Strassen's Matrix Multiplication  

Conquer:

Compute the following 7 products:

1 11 22 11 22
M =( A + A )( B + B ).

M
2
=( A

21
+ A

22
) B

11
.  

M3= A11( B12 – B22 ) .  

M4= A22( B21 – B11 ) .  

M
5
=( A

11
+ A

12
) B

22
.

M
6
=( A

21 
– A

11
)( B

11
– B

12
) .

M7=( A12 – A22)( B21– B22) .

A11 A12

A=

21
A A

22

B11 B12

B=

B21 B22



Strassen's Matrix Multiplication  

Combine:

C
11

= M
1
+ M

4 
– M

5 
+ M

7
.

C
12

= M
3
+ M

5
.  

C
21

= M
2
+ M

4
.

C
22

= M
1
– M

2
+ M

3 
+ M

6
.

C11 C12

C=

C21 C22



Analysis of running time

T(n) = number of operations

T(n) = 7 T(n/2) + 18 {Time to do matrix addition}

= 7 T(n/2) + Θ(n2)

= ?



Analysis of running time

T(n) = number of operations

T(n) = 7 T(n/2) + 18 {Time to do matrix addition}

= 7 T(n/2) + Θ(n2)

= Θ(n log 7)

= O(n 2.81).



Definition: ω is the smallest number such that  

multiplication of n x n matrices can be computed in  

time nω+ε for every ε > 0

Meaning: time nω up to lower-order factors

ω ≥ 2 because you need to write the output  

ω < 2.81 Strassen, just seen

ω < 2.38 state of the art

Determining ω is a prominent problem



Fast Fourier Transform (FFT)

We start with the most basic case



Walsh-Hadamard transform

Hadamard 2i x 2i matrix Hi :

H0 = [1]

Hi Hi

Hi+1 =

Hi - Hi

Problem: Given vector x of length n = 2k , compute Hk x  

Trivial: O(n2 )

Next: O(n log n)



Walsh-Hadamard transform

Write x = [y z]T , and note that Hk+1 x =  

Hk y + Hk z

Hk y - Hk z

This gives T(n) = ?



Walsh-Hadamard transform

Write x = [y z]T , and note that Hk+1 x =  

Hk y + Hk z

Hk y - Hk z

This gives T(n) = 2 T(n/2) + O(n) = O(n log n)



Polynomials and Fast Fourier Transform (FFT)



Polynomials

A(x) = ∑ i=0
n-1 ai xi a polynomial of degree n-1  

Evaluate at a point x = b with how many multiplications?

2n trivial



Polynomials

A(x) = ∑ i=0
n-1 ai xi a polynomial of degree n-1

Evaluate at a point x = b with Horner's rule:  

Compute an-1 ,

an-2 + an-1x ,

an-3 + an-2 x + an-1 x2

…

Each step: multiply by x, and add a coefficient  

There are ≤ n steps n multiplications



Summing Polynomials

∑ i=0
n-1 ai xi a polynomial of degree n-1

∑ i=0
n-1 bi xi a polynomial of degree n-1

∑ i=0
n-1 ci xi the sum polynomial of degree n-1

ci = ai + bi

Time O(n)



How to multiply polynomials?

∑ i=0
n-1 ai xi a polynomial of degree n-1

∑ i=0
n-1 bi xi a polynomial of degree n-1

∑ i=0
2n-2 ci xi the product polynomial of degree n-1

ci = ∑ j ≤ i aj bi-j

Trivial algorithm: time O(n2 )  

FFT gives time O(n log n)



Polynomial representations

Coefficient: (a0 ,a1 , a2 ,... an-1)

Point-value: have points x0 , x1 , … xn-1 in mind  

Represent polynomials A(X) by pairs

{ (x0 , y0 ), (x1 , y1 ), … } A(xi ) = yi

To multiply in point-value, just need O(n) operations.



Approach to polynomial multiplication:

A, B given as coefficient representation

1) Convert A, B to point-value representation

2) Multiply C = AB in point-value representation

3) Convert C back to coefficient representation

2) done esily in time O(n)

FFT allows to do 1) and 3) in time O(n log n).

Note: For C we need 2n-1 points; we'll just think “n”



From coefficient to point-value:

From point-value representation, note above matrix is  

invertible (if points distinct)

Alternatively, Lagrange's formula

y0  

y1

…

…

…

yn-1

a0  

a1

…

…

…

an-1

=



We need to evaluate A at points x1 … xn in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x2) + x A1 (x2)

where A0 has the even-degree terms, A1 the odd

Example: A = a0 + a1 x + a2 x2 + a3 x
3 + a4 x

4 + a5 x5

A0 (x2) = a0  

A1 (x2) = a1

+ a2 x
2 + a4 x4

+ a3 x
2 + a5 x4

How is this useful?



We need to evaluate A at points x1 … xn in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x2) + x A1 (x2)

where A0 has the even-degree terms, A1 the odd

If my points are x1 , x2 , xn/2 , -x1 , -x2 , -xn/2

I just need the evaluations of A0 , A1 2 2
at x1

2 , x2 , ... xn/2

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n). Are we done?



We need to evaluate A at points x1 … xn in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x2) + x A1 (x2)

where A0 has the even-degree terms, A1 the odd

If my points are x1 , x2 , xn/2 , -x1 , -x2 , -xn/2

I just need the evaluations of A0 , A1 2 2
at x1

2 , x2 , ... xn/2

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n). Are we done?  

Need points which can be iteratively decomposed in + and -



Complex numbers:

Real numbers “with a twist”



ωn = n-th primitive root of unity

ωn
0 , … ,ωn

n-1

n-th roots of unity

We evaluate polynomial A  

of degree n-1

at roots of unity

ωn
0 , … ,ωn

n-1

Fact: The n squares of the n-th roots of unity are:  

first the n/2 n/2-th roots of unity,

then again the n/2 n/2-th roots of unity.

from coefficient to point-value in O(n log n) (complex) steps



Summary: Evaluate A at n-th roots of unity ωn
0 , … ,ωn

n-1

Divide: A(x) = A0 (x2 ) + x A1 (x2)

where A0 has the even-degree terms, A1 the odd

Conquer: Evaluate A0 , A1 at n/2-th roots ωn/2
0 ,… ,ωn/2

n/2-1  

This yields evaluation vectors y0 , y1

Combine: z := 1 = ωn
0  

for (k = 0, k < n, k++) {

y[k] = y0[k modulo n/2] + z y1[k modulo n/2]; z = z • ωn }

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n).



It only remains to go from point-value to coefficient represent.

F

We need to invert F



It only remains to go from point-value to coefficient represent.

Fact: (F-1)j,k = ωn
-jk / n Note j,k ∈ {0,1,..., n-1}

To compute inverse, use FFT with ω-1 instead of ω,  

then divide by n.

F


