
  

NP-Hardness reductions



  

● Definition: P is the class of problems that can be solved in 

polynomial time, that is nc for a constant c

● Roughly, if a problem is in P then it's easy,

and if it's not in P then it's hard.

● We'd like to show that many natural problems are not in P.  

We do not know how to do that.

However, we can link the hardness of the problems.



  

● Next: Define several problems:

SAT, CLIQUE, SUBSET-SUM, ...

● Prove polynomial-time reductions:

                                CLIQUE  P            SAT  P∈ ⇨ ∈
                                SUBSET-SUM  P  SAT  P∈ ⇨ ∈

● Definition: “A reduces to B in polynomial time” means:

                                                      B  P  A  P∈ ⇨ ∈



  

● If you encounter problem X,

instead of trying to show that X is hard,

try to find a problem Y that people think is hard,

and reduce Y to X,

and move on.



  

● Map of the reductions
●   A               B means A  P implies B  P∈ ∈

CLIQUE

3SAT

SUBSET-SUM 3COLOR

COVER BY VERTEXES



  

● Definition of boolean formulas

(boolean) variable take either true or false (1 or 0)

literal   = variable or its negation              x, ¬x

clause = OR of literals                           (x V ¬ y V z)

CNF    = AND of clauses (x V ¬y V z) Λ (z) Λ (¬ x V y) 

3CNF  = CNF where each clause has 3 literals

                 (x V ¬y V z) Λ (z V y V w) Λ (¬ x V y V ¬ u)

A 3CNF is satisfiable if  assignment of 1 or 0 to ∃
variables that make the formula true

                      Satisfying assignment for above 3CNF?



  

● Definition of boolean formulas

(boolean) variable take either true or false (1 or 0)

literal   = variable or its negation               x, ¬x

clause = OR of literals                            (x V ¬ y V z)

CNF    = AND of clauses (x V ¬y V z) Λ (z) Λ (¬ x V y) 

3CNF  = CNF where each clause has 3 literals

                 (x V ¬y V z) Λ (z V y V w) Λ (¬ x V y V ¬ u)

A 3CNF is satisfiable if  assignment of 1 or 0 to ∃
variables that make the formula true

                                         x = 1, y = 1 satisfies above

Equivalently, assignment makes each clause true



  

● Definition 3SAT := { φ | φ is a satisfiable 3CNF}

● Example:  (x V y V z)  Λ  (z V ¬y V ¬x) ?? 3SAT:



  

● Definition 3SAT := { φ | φ is a satisfiable 3CNF}

● Example:  (x V y V z)  Λ  (z V ¬y V ¬x)  3SAT:∈
             Assignment x = 1, y = 0, z = 0 gives

             (1 V 0 V 0)  Λ  ( 0 V 1 V 0) =  1  Λ  1   =  1

              (x V x V x)  Λ  (¬x V ¬x V ¬x)  ?? 3SAT



  

● Definition 3SAT := { φ | φ is a satisfiable 3CNF}

● Example:  (x V y V z)  Λ  (z V ¬y V ¬x)  3SAT:∈
             Assignment x = 1, y = 0, z = 0 gives

             (1 V 0 V 0)  Λ  ( 0 V 1 V 0) =  1  Λ  1   =  1

              (x V x V x)  Λ  (¬x V ¬x V ¬x)   3SAT∉
              x = 0 gives 0 Λ 1 = 0, x = 1 gives 1 Λ 0 = 0

● Conjecture: 3SAT  P∉
● Best known algorithm takes time exponential in | φ |



  

●  Definition:  a graph G = (V, E) consists of 

a set of nodes V (also called “vertices”)

a set of edges E that connect pairs of nodes
●  Example:

●  Definition: a t-clique is a set of t nodes all connected
●  Example:                                 

                                             is a 5-clique

1
2

3 4

V = {1, 2, 3, 4}

E = {(1,2), (2,3), (2,4)}



  

●  Definition:

CLIQUE = {(G,t) : G is a graph containing a t-clique}

●  Example:

G =                                      

(G, 3) ? CLIQUE                          



  

●  Definition:

CLIQUE = {(G,t) : G is a graph containing a t-clique}

●  Example:

G =                                      H =  

(G, 3)  C∈ LIQUE                          (H, 4) ? CLIQUE



  

●  Definition:

CLIQUE = {(G,t) : G is a graph containing a t-clique}

●  Example:

G =                                      H =  

(G, 3)  C∈ LIQUE                          (H, 4)  CLIQUE∉

● Conjecture: CLIQUE  P∉



  

● 3SAT and CLIQUE both believed  P∉

● They seem different problems. And yet:

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● If you think 3SAT  P, you also think CLIQUE  P∉ ∉

● Above theorem gives what reduction?



  

● 3SAT and CLIQUE both believed  P∉

● They seem different problems. And yet:

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● If you think 3SAT  P, you also think CLIQUE  P∉ ∉

● Above theorem gives

polynomial-time reduction of 3SAT to CLIQUE



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give algorithm R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time

Enough to prove the theorem?



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give algorithm R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time

Enough to prove the theorem because:

If algorithm C that solves CLIQUE in polynomial time

Then C( R( φ ) ) solves 3SAT in polynomial time



  

● Definition of R:

“On input
           φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

          Note ai bi ci are literals, φ has k clauses

● Compute Gφ and t φ  as follows:

● Nodes of Gφ : one for each ai , bi , ci

● Edges of Gφ : Connect all nodes except

                (A) Nodes in same clause

                (B) Contradictory nodes, such as x and ¬ x
● t φ := k”



  

Example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

x

y

z

¬x ¬y z

x

y

¬z

G
φ 
= t φ = 3



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈

● High-level view of proof of ⇨

We suppose φ has a satisfying assignment,

and we show a clique of size tφ in G φ



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are ??? nodes



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are k = t φ nodes

● They are a clique because in Gφ we connect all but

(A) Nodes in same clause

    ???

(B) Contradictory nodes.



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are k = t φ nodes

● They are a clique because in Gφ we connect all but

(A) Nodes in same clause

    Our nodes are picked from different clauses

(B) Contradictory nodes. ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are k = t φ nodes

● They are a clique because in Gφ we connect all but

(A) Nodes in same clause

    Our nodes are picked from different clauses

(B) Contradictory nodes. Our nodes correspond to 

true literals in assignment: if x true then ¬ x can't be



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈

● High-level view of proof of ⇦

● We suppose Gφ has a clique of size tφ,

● then we show a satisfying assignment for φ



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because by (A) there are no edges within clauses

● Define assignment that makes those literals true

Possible ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because by (A) there are no edges within clauses

● Define assignment that makes those literals true

Possible by (B): contradictory literals not connected

● Assignment satisfies φ because ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because by (A) there are no edges within clauses

● Define assignment that makes those literals true

Possible by (B): contradictory literals not connected

● Assignment satisfies φ because every clause is true



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

x

z

¬y z

x

yy

¬x

¬z



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)
               0    1    0          1     0     0         0    1     1

x

z

¬y z

x

y

Assignment
    x = 0 
    y = 1
    z = 0

y

¬x

¬z



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)
               1    0    1          0     1     1         1    0     0

x

z

y

Assignment
    x = 1 
    y = 0
    z = 1

y

¬x

¬zz

¬y

x



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give algorithm R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time

● So far: defined R, proved (1). It remains to see (2)

● (2) is less interesting.



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● We do not directly count the steps of R

Too low-level, complicated, uninformative.

● We give a more high-level argument



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● To compute nodes: examine all literals.

Number of literals ≤ | φ |

● This is polynomial in the input length | φ |



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● To compute edges: examine all pairs of nodes.

         Number of pairs is ≤ (number of nodes)2 ≤ | φ |2

● Which is polynomial in the input length | φ |



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● Overall, we examine ≤ | φ | + | φ |2

● Which is polynomial in the input length | φ |
● This concludes the proof.



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● We have concluded the proof of above theorem

● Recall outline:

We give algorithm R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time



  

● Map of the reductions
●   A               B means A  P implies B  P∈ ∈

CLIQUE

3SAT

SUBSET-SUM 3COLOR

COVER BY VERTEXES



  

●  Definition:  In a graph G = (V,E), 

a t-cover is a set of t nodes that touch all edges

●  Example:                                 

                                             has the 1-cover {2}

                                              has the 2-cover {2,3}

1
2

3 4

1 2 43



  

●  Definition: COVER BY VERTEXES

CBV = {(G,t) : G is a graph containing a t-cover}

●  Example:

G =                                        

(G, 2) ? CBV



  

●  Definition: COVER BY VERTEXES

CBV = {(G,t) : G is a graph containing a t-cover}

●  Example:

G =                                      H =  

(G, 2) ∉ CBV                             (H, 3) ?  CBV



  

●  Definition: COVER BY VERTEXES

CBV = {(G,t) : G is a graph containing a t-cover}

●  Example:

G =                                      H =  

(G, 2) ∉ CBV                             (H, 3)   CBV∈

● Conjecture: CBV   P∉



  

● Theorem: CBV  P  CLIQUE  P∈ ⇨ ∈

● Proof outline:

We give algorithm R that on input (G,t) :

(1) Computes graph G' and integer t' such that

                    G has a t-clique  G' has a t'-cover

(2) R runs in polynomial time



  

● Definition of R:

“On input graph G = (V,E) and integer t

Compute G' = (V',E') and t' as follows:

E' is the complement of E

That is, {u,v}   E' if and only if {u,v}  E∈ ∉

t' = |V| - t.”



  

● Example

G =                                      G' =  



  

● Claim: G has a t-clique  G' has a t'-cover

● Proof:

( ) Suppose G = (V,E) has a t-clique C.

We claim that V - C is a cover of G'.

Let (u,v) be in E'.  Then ?



  

● Claim: G has a t-clique  G' has a t'-cover

● Proof:

( ) Suppose G = (V,E) has a t-clique C.

We claim that V - C is a cover of G'.

Let (u,v) be in E'.  Then (u,v)  E.  So either u or v does ∉
not belong to C.  So either u or v belongs to V - C.

(←) Suppose G' = (V',E') has a t-cover C.

We claim that V - C is a clique of G.

Let u and v be two nodes in V - C.  Then ?



  

● Claim: G has a t-clique  G' has a t'-cover

● Proof:

( ) Suppose G = (V,E) has a t-clique C.

We claim that V - C is a cover of G'.

Let (u,v) be in E'.  Then (u,v)  E.  So either u or v does ∉
not belong to C.  So either u or v belongs to V - C.

(←) Suppose G' = (V',E') has a t-cover C.

We claim that V - C is a clique of G.

Let u and v be two nodes in V - C.  Then {u,v} is not in E'. 
Hence {u,v} is in E. 

                                                                                  



  

● Example

G =                                      G' =  

a t = 3 clique                      a t' = |V| - t = 1 cover



  

● It remains to argue that R runs in polynomial time

● To compute G' = (V',E') we go through each pair of nodes 

{u,v} and make it an edge if and only if {u,v}  E.∉

● This takes time |V|2 which is polynomial in the input length

● To compute t' is simple arithmetic.

● End of proof that CBV  P  CLIQUE  P∈ ⇨ ∈



  

● Map of the reductions
●   A               B means A  P implies B  P∈ ∈

CLIQUE

3SAT

SUBSET-SUM 3COLOR

COVER BY VERTEXES



  

●  Definition: 
SUBSET-SUM = {(a1, a2, ..., an,t) :  i1,i2,...,ik  n

                               such that ai1+ai2+....+aik = t }

●  Example:
● (5, 2, 14, 3, 9, 25) ? SUBSET-SUM



  

●  Definition: 
SUBSET-SUM = {(a1, a2, ..., an,t) :  i1,i2,...,ik  n

                               such that ai1+ai2+....+aik = t }

●  Example:
● (5, 2, 14, 3, 9, 25)  SUBSET-SUM∈

          because 2 + 14 + 9 = 25
● (1, 3, 4, 9, 15) ? SUBSET-SUM



  

●  Definition: 
SUBSET-SUM = {(a1, a2, ..., an,t) :  i1,i2,...,ik  n

                               such that ai1+ai2+....+aik = t }

●  Example:
● (5, 2, 14, 3, 9, 25)  SUBSET-SUM∈

          because 2 + 14 + 9 = 25
● (1, 3, 4, 9, 15)  ∉SUBSET-SUM

          because no subset of {1,3,4,9} sums to 15

●  Conjecture: SUBSET-SUM  P∉



  

● Theorem: SUBSET-SUM  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give algorithm R that on input φ :
(1) Computes numbers a1, a2, ..., an,t  such that

            φ  3SAT ∈   (a1, a2, ..., an,t)  SUBSET-SUM∈
(2) R runs in polynomial time



  

● Theorem: SUBSET-SUM  P  3SAT  P∈ ⇨ ∈

● Warm-up for definition of R:
● On input φ with v variables and k clauses:

● R will produce a list of numbers.
● Numbers will have many digits, v + k

    and look like this:  1000010011010011

First v (most significant) digits correspond to 

variables
● Other k (least significant) correspond to clauses



  

● Theorem: SUBSET-SUM  P  3SAT  P∈ ⇨ ∈
● Definition of R:
● “On input φ with v variables and k clauses :
● For each variable x include
    ax

T = 1 in x's digit, and 1 in every digit of a clause
                              where x appears without negation

    ax
F = 1 in x's digit, and 1 in every digit of a clause

                              where x appears negated

● For each clause C, include twice
    aC = 1 in C's digit, and 0 in others

● Set t = 1 in first v digits, and 3 in rest k digits”



  

Example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

3 variables + 3 clauses    6 digits for each number
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0
ac2 =    0       0       0        0          1           0
ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

two copies of
each of these



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield 1 in first v digits

because ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield 1 in first v digits
because ax

T , ax
F have 1 in x's digit, 0 in others

                                    and 1, 2, or 3 in last k digits

because ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield 1 in first v digits
because ax

T , ax
F have 1 in x's digit, 0 in others

                                         and 1, 2, or 3 in last k digits

because each clause has true literal, and
ax

T has 1 in clauses where x appears not negated

ax
F has 1 in clauses where x appears negated

● By picking ????   ?????  ???????  ?? sum reaches t



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield 1 in first v digits
because ax

T , ax
F have 1 in x's digit, 0 in others

                                         and 1, 2, or 3 in last k digits

because each clause has true literal, and
ax

T has 1 in clauses where x appears not negated

ax
F has 1 in clauses where x appears negated

● By picking appropriate subset of aC sum reaches t



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because only 3 literals per clause
● So digits behave “independently”
● For each pair ax

T  ax
F exactly one is included

otherwise ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because only 3 literals per clause
● So digits behave “independently”
● For each pair ax

T  ax
F exactly one is included

otherwise would not get 1 in that digit
● Define x true if ax

T included, false otherwise

● For any clause C, the aC contribute ≤ 2 in C's digit

● So each clause must have a true literal

otherwise ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because only 3 literals per clause
● So digits behave “independently”
● For each pair ax

T  ax
F exactly one is included

otherwise would not get 1 in that digit
● Define x true if ax

T included, false otherwise

● For any clause C, the aC contribute ≤ 2 in C's digit

● So each clause must have a true literal

otherwise sum would not get 3 in that digit



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

 
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0
ac2 =    0       0       0        0          1           0
ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

(2x)

(2x)

(2x)



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

               0    1    0          1     0     0         0    1     1
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0  (choose twice)

ac2 =    0       0       0        0          1           0  (choose twice)

ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

(2x)

(2x)

(2x)

Assignment
    x = 0 
    y = 1
    z = 0



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

               1    1    1          0     0     1         1    1     0
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0

ac2 =    0       0       0        0          1           0  (choose twice)

ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

(2x)

(2x)

(2x)

Assignment
    x = 1 
    y = 1
    z = 1



  

● It remains to argue that ???



  

● It remains to argue that R runs in polynomial time

● To compute numbers ax
T ax

F  :

For each variable x, examine k ≤ | φ | clauses

Overall, examine v k ≤ | φ |
2
 clauses

● To compute numbers aC examine k ≤ | φ | clauses

● In total | φ |
2 

+ | φ |, which is polynomial in input 

length 
● End of proof that SUBSET-SUM  P  3SAT  P∈ ⇨ ∈



  

● Map of the reductions
●   A               B means A  P implies B  P∈ ∈

CLIQUE

3SAT

SUBSET-SUM 3COLOR

COVER BY VERTEXES



  

●  Definition: A 3-coloring of a graph is a coloring of   

each node, using at most 3 colors,

such that no adjacent nodes have the same color.

●  Example:

a 3-coloring not a 3-coloring



  

●  Definition:

3COLOR = {G | G is a graph with a 3-coloring}

●  Example:

G =                                      

      G  ??  3COLOR                     



  

●  Definition:

3COLOR = {G | G is a graph with a 3-coloring}

●  Example:

G =                                      H =  

      G  ∈  3COLOR                     H  ?  3COLOR
                                            



  

●  Definition:

3COLOR = {G | G is a graph with a 3-coloring}

●  Example:

G =                                      H =  

      G  ∈  3COLOR                     H    3COLOR∉
                                            (> 3 nodes, all connected)

● Conjecture: 3COLOR  P∉



  

● Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈

● Proof outline:

Give algorithm R that on input φ :

(1) Computes a graph G
φ
 such that

               φ  3SAT ∈    G
φ
  3COLOR.∈

(2) R runs in polynomial time

Enough to prove the theorem ?



  

● Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈

● Proof outline:

Give algorithm R that on input φ :

(1) Computes a graph G
φ
 such that

               φ  3SAT ∈    G
φ
  3COLOR.∈

(2) R runs in polynomial time

Enough to prove the theorem because:

If algorithm C that solves 3COLOR in polynomial-time

Then C( R( φ ) ) solves 3SAT in polynomial-time



  

●  Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈
● Definition of R:

● “On input φ, construct Gφ as follows:

● Add 3 special nodes
called the “palette”.

● For each variable,
add 2 literal nodes.

● For each clause,
add 6 clause nodes.

T = “true”
F = “false”
B = “base”

x ¬x

T

F

B



  

●  Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈
● Definition of R (continued):

● For each variable x, connect:

● For each clause (a V b V c),
connect:

● End of definition of R.

x ¬x

T

F

B

T

F

B

a b c



  

Example:   φ = (x V y V z)  Λ  (¬x V ¬y V z)  

T

F

B

x ¬x y ¬y z ¬z

Gφ=



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈

● Before proving the claim, we make some remarks,

and prove a fact that will be useful



  

Remark

● Idea: T's color represents TRUE
         F's color represents FALSE

● In a 3-coloring, all variable nodes
must be colored T or F because?

x ¬x

T

F

B



  

Remark

● Idea: T's color represents TRUE
         F's color represents FALSE

● In a 3-coloring, all variable nodes
must be colored T or F because
connected to B.

Also, x and ¬x must have different colors
because?

x ¬x

T

F

B



  

Remark

● Idea: T's color represents TRUE
         F's color represents FALSE

● In a 3-coloring, all variable nodes
must be colored T or F because
connected to B.

Also, x and ¬x must have different colors
because they are connected. 

So we can “translate” a 3-coloring of Gφ

into a true/false assignment to variables of φ

x ¬x

T

F

B



  a b c

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

The idea is simply that each triangle computes “Or”



  

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of :⇨ Suppose by contradiction that

a, b, and c are all colored F then P colored how?

P

a b c



  a b c

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of :⇨ Suppose by contradiction that

a, b, and c are all colored F then P colored F.
Then Q colored how?

P

Q



  

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of :⇨ Suppose by contradiction that

a, b, and c are all colored F then  P colored F.
Then Q colored F. But this is not a valid 3-coloring
                                                                               Done 
                       

P

Q

a b c



  

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of  :⇦  We show a 3-coloring for each way in 

which a, b, and c may be colored 

a b c



  

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of  :⇦  We show a 3-coloring for each way in 

which a, b, and c may be colored                        

Done 



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇨
● Color palette nodes green, red, blue: T, F, B.
● Suppose φ has satisfying assignment.

● Color literal nodes T or F accordingly                        
Ok because ?

x ¬x

T

F

B



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇨
● Color palette nodes green, red, blue: T, F, B.
● Suppose φ has satisfying assignment.

● Color literal nodes T or F accordingly

Ok because they don't touch

T or F in palette, and x and ¬ x

are given different colors

● Color clause nodes using previous Fact.
Ok because?

x ¬x

T

F

B



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇨
● Color palette nodes green, red, blue: T, F, B.
● Suppose φ has satisfying assignment.

● Color literal nodes T or F accordingly

Ok because they don't touch

T or F in palette, and x and ¬ x

are given different colors

● Color clause nodes using previous Fact.
Ok because each clause has some true literal

x ¬x

T

F

B



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇦
● Suppose Gφ has a 3-coloring

● Assign all variables to true or false accordingly.
This is a valid assignment because?



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇦
● Suppose Gφ has a 3-coloring

● Assign all variables to true or false accordingly.
This is a valid assignment because by Remark,
x and ¬x are colored T or F and don't conflict.

● This gives some true literal per clause because?



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇦
● Suppose Gφ has a 3-coloring

● Assign all variables to true or false accordingly.
This is a valid assignment because by Remark,
x and ¬x are colored T or F and don't conflict.

● This gives some true literal per clause because

clause is colored correctly, and by previous Fact

● All clauses are satisfied, so φ is satisfied.



  

B

z ¬z

Example:   φ = (x V y V z)  Λ  (¬x V ¬y V z)  

x ¬x y ¬y

Gφ=
Satisfying assignment: x = 0, y = 0, z = 1

T

F

BB

B



  

● It remains to argue that ???



  

● It remains to argue that R runs in polynomial time

● To add variable nodes and edges, 

cycle over v ≤ | φ | variables

● To add clause nodes and edges,
cycle over c ≤ | φ | clauses

● Overall, ≤ | φ | + | φ |,
which is polynomial in input length | φ |

● End of proof that 3COLOR  P  3SAT  P∈ ⇨ ∈



  

COLORING NUGGET

● Definition: PLANAR-k-COLOR =

{G : G is a planar graph that can be colored with k colors.}

● PLANAR-2-COLOR is 



  

COLORING NUGGET

● Definition: PLANAR-k-COLOR =

{G : G is a planar graph that can be colored with k colors.}

● PLANAR-2-COLOR is easy

● PLANAR-3-COLOR is 



  

COLORING NUGGET

● Definition: PLANAR-k-COLOR =

{G : G is a planar graph that can be colored with k colors.}

● PLANAR-2-COLOR is easy

● PLANAR-3-COLOR is hard (variant of proof we saw)

● PLANAR-4-COLOR is 



  

COLORING NUGGET

● Definition: PLANAR-k-COLOR =

{G : G is a planar graph that can be colored with k colors.}

● PLANAR-2-COLOR is easy

● PLANAR-3-COLOR is hard (variant of proof we saw)

● PLANAR-4-COLOR is easy (answer is always “YES”)



  

● We saw polynomial-time reductions

  from 3SAT      to CLIQUE

                             SUBSET-SUM

                             3COLOR

  from CLIQUE to COVER BY VERTEXES

● There are many other polynomial-time reductions

● They form a fascinating web

● Coming up with reductions is “art”


