NP-Hardness reductions

- Definition: P is the class of problems that can be solved in polynomial time, that is n^{c} for a constant c
- Roughly, if a problem is in P then it's easy, and if it's not in P then it's hard.
- We'd like to show that many natural problems are not in P . We do not know how to do that.

However, we can link the hardness of the problems.

- Next: Define several problems: SAT, CLIQUE, SUBSET-SUM, ...
-Prove polynomial-time reductions:

$$
\begin{aligned}
& \text { CLIQUE } \in P \quad \Rightarrow S A T \in P \\
& \text { SUBSET-SUM } \in P \Rightarrow S A T \in P
\end{aligned}
$$

- Definition: "A reduces to B in polynomial time" means:

$$
B \in P \Rightarrow A \in P
$$

- If you encounter problem X, instead of trying to show that X is hard, try to find a problem Y that people think is hard, and reduce Y to X , and move on.
- Map of the reductions
- $A \longrightarrow B$ means $A \in P$ implies $B \in P$

- Definition of boolean formulas
(boolean) variable take either true or false (1 or 0)
literal = variable or its negation $x, \neg x$ clause $=$ OR of literals

CNF = AND of clauses $(x \vee \neg y \vee z) \wedge(z) \wedge(\neg x \vee y)$ 3CNF = CNF where each clause has 3 literals

$$
(x \vee \neg y \vee z) \wedge(z \vee y \vee w) \wedge(\neg x \vee y \vee \neg u)
$$

A 3CNF is satisfiable if \exists assignment of 1 or 0 to variables that make the formula true

Satisfying assignment for above 3CNF?

- Definition of boolean formulas
(boolean) variable take either true or false (1 or 0)
literal = variable or its negation $\mathrm{x}, ~ \neg \mathrm{X}$ clause $=$ OR of literals

CNF = AND of clauses $(x \vee \neg y \vee z) \wedge(z) \wedge(\neg x \vee y)$ 3CNF = CNF where each clause has 3 literals

$$
(x \vee \neg y \vee z) \wedge(z \vee y \vee w) \wedge(\neg x \vee y \vee \neg u)
$$

A 3CNF is satisfiable if \exists assignment of 1 or 0 to variables that make the formula true

$$
x=1, y=1 \text { satisfies above }
$$

Equivalently, assignment makes each clause true

- Definition 3SAT $:=\{\varphi \mid \varphi$ is a satisfiable 3CNF $\}$
- Example: $(x \vee y \vee z) \wedge(z \vee \neg y \vee \neg x)$?? 3SAT:
- Definition 3SAT $:=\{\varphi \mid \varphi$ is a satisfiable 3CNF $\}$
- Example: $(x \vee y \vee z) \wedge(z \vee \neg y \vee \neg x) \in 3$ SAT:

Assignment $x=1, y=0, z=0$ gives
$(1 \vee 0 \vee 0) \wedge(0 \vee 1 \vee 0)=1 \wedge 1=1$
$(x \vee x \vee x) \wedge(\neg x \vee \neg x \vee \neg x)$?? 3SAT

- Definition 3SAT $:=\{\varphi \mid \varphi$ is a satisfiable 3CNF $\}$
- Example: $(x \vee y \vee z) \wedge(z \vee \neg y \vee \neg x) \in 3 S A T:$

$$
\text { Assignment } x=1, y=0, z=0 \text { gives }
$$

$$
(1 \vee 0 \vee 0) \wedge(0 \vee 1 \vee 0)=1 \wedge 1=1
$$

$$
\begin{aligned}
& (x \vee x \vee x) \wedge(\neg x \vee \neg x \vee \neg x) \notin 3 S A T \\
& x=0 \text { gives } 0 \wedge 1=0, x=1 \text { gives } 1 \wedge 0=0
\end{aligned}
$$

- Conjecture: 3SAT $\notin \mathrm{P}$
- Best known algorithm takes time exponential in $|\varphi|$
- Definition: a graph $G=(V, E)$ consists of a set of nodes V (also called "vertices") a set of edges E that connect pairs of nodes
- Example:

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(2,3),(2,4)\}
\end{aligned}
$$

- Definition: a t-clique is a set of t nodes all connected
- Example:

is a 5 -clique

- Definition:

CLIQUE $=\{(\mathrm{G}, \mathrm{t}): \mathrm{G}$ is a graph containing a t-clique $\}$

- Example:
$(G, 3) ?$ CLIQUE

- Definition:

CLIQUE $=\{(\mathrm{G}, \mathrm{t}): \mathrm{G}$ is a graph containing a t-clique $\}$

- Example:

- Definition:

CLIQUE $=\{(\mathrm{G}, \mathrm{t}): \mathrm{G}$ is a graph containing a t-clique $\}$

- Example:

- Conjecture: CLIQUE $\notin \mathrm{P}$
- 3SAT and CLIQUE both believed $\notin \mathrm{P}$
- They seem different problems. And yet:
-Theorem: CLIQUE $\in P \Rightarrow 3 S A T \in P$
- If you think 3SAT $\notin P$, you also think CLIQUE $\notin P$
- Above theorem gives what reduction?
-3SAT and CLIQUE both believed $\notin \mathrm{P}$
-They seem different problems. And yet:
-Theorem: CLIQUE $\in \mathrm{P} \Rightarrow 3$ SAT $\in \mathrm{P}$
- If you think 3 SAT $\notin \mathrm{P}$, you also think CLIQUE $\notin \mathrm{P}$
- Above theorem gives polynomial-time reduction of 3SAT to CLIQUE
-Theorem: CLIQUE $\in P \Rightarrow 3 S A T \in P$
- Proof outline:

We give algorithm R that on input φ :
(1) Computes graph G_{φ} and integer t_{φ} such that

$$
\varphi \in 3 \mathrm{SAT} \Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in \mathrm{CLIQUE}
$$

(2) R runs in polynomial time

Enough to prove the theorem?
-Theorem: CLIQUE $\in P \Rightarrow 3 S A T \in P$

- Proof outline:

We give algorithm R that on input φ :
(1) Computes graph G_{φ} and integer t_{φ} such that

$$
\varphi \in 3 \mathrm{SAT} \Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in \mathrm{CLIQUE}
$$

(2) R runs in polynomial time

Enough to prove the theorem because:
If algorithm C that solves CLIQUE in polynomial time
Then $C(R(\varphi))$ solves 3SAT in polynomial time
-Definition of R :
"On input

$$
\varphi=\left(\mathrm{a}_{1} \mathrm{Vb}_{1} \mathrm{Vc}_{1}\right) \wedge\left(\mathrm{a}_{2} \mathrm{Vb}_{2} \mathrm{Vc}_{2}\right) \wedge \ldots \wedge\left(\mathrm{a}_{\mathrm{k}} \mathrm{Vb}_{\mathrm{k}} \mathrm{Vc}_{\mathrm{k}}\right)
$$

Note $a_{i} b_{i} c_{i}$ are literals, φ has k clauses

- Compute G_{φ} and t_{φ} as follows:
- Nodes of G_{φ} : one for each a_{i}, b_{i}, c_{i}
- Edges of G_{φ} : Connect all nodes except
(A) Nodes in same clause
(B) Contradictory nodes, such as x and $\neg \mathrm{x}$
- $\mathrm{t}_{\varphi}:=\mathrm{k} "$

Example:

$$
\varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
$$

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
-High-level view of proof of \Rightarrow

We suppose φ has a satisfying assignment,
and we show a clique of size t_{φ} in G_{φ}

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
-Proof: \Rightarrow
Suppose φ has satisfying assignment
- So each clause must have at least one true literal
- Pick corresponding nodes in G
- There are ??? nodes
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
-Proof: \Rightarrow
Suppose φ has satisfying assignment
- So each clause must have at least one true literal
- Pick corresponding nodes in G
- There are $\mathrm{k}=\mathrm{t}_{\varphi}$ nodes
- They are a clique because in G_{φ} we connect all but
(A) Nodes in same clause ???
(B) Contradictory nodes.
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in \mathrm{CLIQUE}$
- Proof: \Rightarrow

Suppose φ has satisfying assignment

- So each clause must have at least one true literal
- Pick corresponding nodes in G
- There are $\mathrm{k}=\mathrm{t}_{\varphi}$ nodes
- They are a clique because in G_{φ} we connect all but (A) Nodes in same clause

Our nodes are picked from different clauses
(B) Contradictory nodes. ???

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
- Proof: \Rightarrow

Suppose φ has satisfying assignment

- So each clause must have at least one true literal
- Pick corresponding nodes in G
- There are $\mathrm{k}=\mathrm{t}_{\varphi}$ nodes
- They are a clique because in G_{φ} we connect all but (A) Nodes in same clause

Our nodes are picked from different clauses
(B) Contradictory nodes. Our nodes correspond to true literals in assignment: if x true then $\neg x$ can't be

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
- High-level view of proof of \prec
- We suppose G_{φ} has a clique of size t_{φ},
- then we show a satisfying assignment for φ
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
- Proof: ↔
- Suppose G_{φ} has a clique of size t_{φ}
- Note you have exactly one node per clause because ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
- Proof: ↔
- Suppose G_{φ} has a clique of size t_{φ}
- Note you have exactly one node per clause because by (A) there are no edges within clauses
- Define assignment that makes those literals true Possible ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
-Proof: ↔
- Suppose G_{φ} has a clique of size t_{φ}
- Note you have exactly one node per clause because by (A) there are no edges within clauses
- Define assignment that makes those literals true Possible by (B): contradictory literals not connected
-Assignment satisfies φ because ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in$ CLIQUE
-Proof: ↔
- Suppose G_{φ} has a clique of size t_{φ}
- Note you have exactly one node per clause because by (A) there are no edges within clauses
- Define assignment that makes those literals true Possible by (B): contradictory literals not connected
- Assignment satisfies φ because every clause is true

Back to example:

$$
\varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
$$

Back to example:

$$
\begin{array}{ccccccccc}
\varphi=(x \vee y \vee z) & \wedge & (\neg x \vee \neg y \vee z) & \wedge(x \vee y \vee \neg z) \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}
$$

Assignment

$$
\begin{aligned}
& x=0 \\
& y=1 \\
& z=0
\end{aligned}
$$

Back to example:

$$
\begin{aligned}
& \varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z) \\
& \begin{array}{lllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}
\end{aligned}
$$

Assignment

$$
\begin{aligned}
& x=1 \\
& y=0 \\
& z=1
\end{aligned}
$$

-Theorem: CLIQUE $\in P \Rightarrow 3 S A T \in P$

- Proof outline:

We give algorithm R that on input φ :
(1) Computes graph G_{φ} and integer t_{φ} such that

$$
\varphi \in 3 \mathrm{SAT} \Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in \mathrm{CLIQUE}
$$

(2) R runs in polynomial time

- So far: defined R, proved (1). It remains to see (2)
-(2) is less interesting.
- R : "On input $\varphi=\left(\mathrm{a}_{1} \mathrm{Vb}_{1} \mathrm{Vc}_{1}\right) \wedge\left(\mathrm{a}_{2} \mathrm{Vb}_{2} \mathrm{Vc}_{2}\right) \wedge \ldots \wedge\left(\mathrm{a}_{\mathrm{k}} \mathrm{Vb}_{\mathrm{k}} \mathrm{Vc}_{\mathrm{k}}\right)$

Nodes of G_{φ} : one for each $a_{i} b_{i} c_{i}$
Edges of G_{φ} : Connect all nodes except
(A) Nodes in same clause
(B) Contradictory nodes, such as x and $\neg x$

$$
\mathrm{t}_{\varphi}:=\mathrm{k}^{\prime \prime}
$$

- We do not directly count the steps of R

Too low-level, complicated, uninformative.

- We give a more high-level argument
- R : "On input $\varphi=\left(\mathrm{a}_{1} \mathrm{Vb}_{1} \mathrm{Vc}_{1}\right) \wedge\left(\mathrm{a}_{2} \mathrm{Vb}_{2} \mathrm{Vc}_{2}\right) \wedge \ldots \wedge\left(\mathrm{a}_{\mathrm{k}} \mathrm{Vb}_{\mathrm{k}} \mathrm{Vc}_{\mathrm{k}}\right)$

Nodes of G_{φ} : one for each $a_{i} b_{i} c_{i}$
Edges of G_{φ} : Connect all nodes except
(A) Nodes in same clause
(B) Contradictory nodes, such as x and $\neg x$
$\mathrm{t}_{\varphi}:=\mathrm{k}^{\prime \prime}$

- To compute nodes: examine all literals.

Number of literals $\leq|\varphi|$

- This is polynomial in the input length $|\varphi|$
- R : "On input $\varphi=\left(\mathrm{a}_{1} \mathrm{Vb}_{1} \mathrm{Vc}_{1}\right) \wedge\left(\mathrm{a}_{2} \mathrm{Vb}_{2} \mathrm{Vc}_{2}\right) \wedge \ldots \wedge\left(\mathrm{a}_{\mathrm{k}} \mathrm{Vb}_{\mathrm{k}} \mathrm{Vc}_{\mathrm{k}}\right)$ Nodes of G_{φ} : one for each $a_{i} b_{i} c_{i}$
Edges of G_{φ} : Connect all nodes except
(A) Nodes in same clause
(B) Contradictory nodes, such as x and $\neg x$

$$
\mathrm{t}_{\varphi}:=\mathrm{k} "
$$

- To compute edges: examine all pairs of nodes.

Number of pairs is $\leq\left(\right.$ number of nodes) ${ }^{2} \leq|\varphi|^{2}$

- Which is polynomial in the input length $|\varphi|$
- R : "On input $\varphi=\left(\mathrm{a}_{1} \mathrm{Vb}_{1} \mathrm{Vc}_{1}\right) \wedge\left(\mathrm{a}_{2} \mathrm{Vb}_{2} \mathrm{Vc}_{2}\right) \wedge \ldots \wedge\left(\mathrm{a}_{\mathrm{k}} \mathrm{Vb}_{\mathrm{k}} \mathrm{Vc}_{\mathrm{k}}\right)$

Nodes of G_{φ} : one for each $a_{i} b_{i} c_{i}$
Edges of G_{φ} : Connect all nodes except
(A) Nodes in same clause
(B) Contradictory nodes, such as x and $\neg x$

$$
\mathrm{t}_{\varphi}:=\mathrm{k}^{\prime \prime}
$$

- Overall, we examine $\leq|\varphi|+|\varphi|^{2}$
- Which is polynomial in the input length $|\varphi|$
- This concludes the proof.
-Theorem: CLIQUE $\in P \Rightarrow 3 S A T \in P$
- We have concluded the proof of above theorem
- Recall outline:

We give algorithm R that on input φ :
(1) Computes graph G_{φ} and integer t_{φ} such that

$$
\varphi \in 3 \mathrm{SAT} \Leftrightarrow\left(\mathrm{G}_{\varphi}, \mathrm{t}_{\varphi}\right) \in \mathrm{CLIQUE}
$$

(2) R runs in polynomial time

- Map of the reductions
- $A \longrightarrow B$ means $A \in P$ implies $B \in P$

- Definition: In a graph $G=(V, E)$, a t-cover is a set of t nodes that touch all edges
- Example:

has the 1 -cover $\{2\}$
(1)-3 (2) has the 2-cover $\{2,3\}$
- Definition: COVER BY VERTEXES
$\operatorname{CBV}=\{(\mathrm{G}, \mathrm{t}): \mathrm{G}$ is a graph containing a t -cover $\}$
- Example:
$\mathrm{G}=$
$(G, 2)$? CBV
- Definition: COVER BY VERTEXES
$\operatorname{CBV}=\{(\mathrm{G}, \mathrm{t}): \mathrm{G}$ is a graph containing a t -cover $\}$
- Example:

$(G, 2) \notin \mathrm{CBV}$

$(\mathrm{H}, 3)$? CBV
- Definition: COVER BY VERTEXES
$\operatorname{CBV}=\{(\mathrm{G}, \mathrm{t}): \mathrm{G}$ is a graph containing a t -cover $\}$
- Example:

$(G, 2) \notin \mathrm{CBV}$

$(H, 3) \in C B V$
- Conjecture: CBV $\notin \mathrm{P}$
- Theorem: $\mathrm{CBV} \in \mathrm{P} \Rightarrow$ CLIQUE $\in \mathrm{P}$
- Proof outline:

We give algorithm R that on input (G, t) :
(1) Computes graph G^{\prime} and integer t ' such that
G has a t-clique $\Leftrightarrow G^{\prime}$ has a t'-cover
(2) R runs in polynomial time

- Definition of R:
"On input graph $G=(V, E)$ and integer t

Compute $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ and t^{\prime} as follows:
E^{\prime} is the complement of E
That is, $\{u, v\} \in E^{\prime}$ if and only if $\{u, v\} \notin E$
$\mathrm{t}^{\prime}=|\mathrm{V}|-\mathrm{t} .{ }^{\prime}$

- Example

$$
\mathrm{G}=
$$

$$
\mathrm{G}^{\prime}=
$$

- Claim: G has a t-clique $\Leftrightarrow G^{\prime}$ has a t'-cover
- Proof:
(\rightarrow) Suppose $G=(V, E)$ has a t-clique C.
We claim that $\mathrm{V}-\mathrm{C}$ is a cover of G^{\prime}.
Let (u, v) be in E^{\prime}. Then ?
- Claim: G has a t-clique \Leftrightarrow G' has a t'-cover
- Proof:
(\rightarrow) Suppose $G=(V, E)$ has a t-clique C. We claim that $\mathrm{V}-\mathrm{C}$ is a cover of G^{\prime}.

Let (u, v) be in E^{\prime}. Then (u, v) $\notin E$. So either u or v does not belong to C. So either u or v belongs to $V-C$.
(\leftarrow) Suppose $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ has a t-cover C.
We claim that $\mathrm{V}-\mathrm{C}$ is a clique of G .
Let u and v be two nodes in V-C. Then?

- Claim: G has a t-clique \Leftrightarrow G' has a t'-cover
- Proof:
(\rightarrow) Suppose $G=(V, E)$ has a t-clique C.
We claim that $\mathrm{V}-\mathrm{C}$ is a cover of G^{\prime}.
Let (u, v) be in E^{\prime}. Then (u, v) $\notin E$. So either u or v does not belong to C. So either u or v belongs to $V-C$.
(\leftarrow) Suppose $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ has a t-cover C. We claim that $\mathrm{V}-\mathrm{C}$ is a clique of G .
Let u and v be two nodes in $V-C$. Then $\{u, v\}$ is not in E^{\prime}. Hence $\{u, v\}$ is in E.
- Example
$G=$

at = 3 clique
$G^{\prime}=$

$a t^{\prime}=|V|-t=1$ cover
- It remains to argue that R runs in polynomial time
- To compute $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ we go through each pair of nodes $\{u, v\}$ and make it an edge if and only if $\{u, v\} \notin E$.
- This takes time $|\mathrm{V}|^{2}$ which is polynomial in the input length
- To compute t^{\prime} is simple arithmetic.
- End of proof that $C B V \in P \Rightarrow C L I Q U E \in P$
- Map of the reductions
- $A \longrightarrow B$ means $A \in P$ implies $B \in P$

- Definition: SUBSET-SUM $=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, t\right): \exists i 1, i 2, \ldots, i k \leq n\right.$ such that $\left.\mathrm{a}_{\mathrm{i} 1}+\mathrm{a}_{\mathrm{i} 2}+\ldots+\mathrm{a}_{\mathrm{ik}}=\mathrm{t}\right\}$
- Example:
$\cdot(5,2,14,3,9,25)$? SUBSET-SUM
- Definition:

SUBSET-SUM $=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, t\right): \exists i 1, i 2, \ldots, i k \leq n\right.$ such that $\left.\mathrm{a}_{\mathrm{i} 1}+\mathrm{a}_{\mathrm{i} 2}+\ldots .+\mathrm{a}_{\mathrm{ik}}=\mathrm{t}\right\}$

- Example:
$\cdot(5,2,14,3,9,25) \in$ SUBSET-SUM because $2+14+9=25$
$\cdot(1,3,4,9,15)$? SUBSET-SUM
- Definition: SUBSET-SUM $=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, t\right): \exists i 1, i 2, \ldots, i k \leq n\right.$ such that $\left.\mathrm{a}_{\mathrm{i} 1}+\mathrm{a}_{\mathrm{i} 2}+\ldots .+\mathrm{a}_{\mathrm{ik}}=\mathrm{t}\right\}$
- Example:
$\cdot(5,2,14,3,9,25) \in$ SUBSET-SUM because $2+14+9=25$
$\cdot(1,3,4,9,15) \notin$ SUBSET-SUM because no subset of $\{1,3,4,9\}$ sums to 15
- Conjecture: SUBSET-SUM $\notin \mathrm{P}$
- Theorem: SUBSET-SUM $\in P \Rightarrow 3 S A T \in P$
- Proof outline:

We give algorithm R that on input φ :
(1) Computes numbers $a_{1}, a_{2}, \ldots, a_{n}, t$ such that

$$
\varphi \in 3 S A T \Leftrightarrow\left(a_{1}, a_{2}, \ldots, a_{n}, t\right) \in \text { SUBSET-SUM }
$$

(2) R runs in polynomial time
-Theorem: SUBSET-SUM $\in P \Rightarrow 3 S A T \in P$

- Warm-up for definition of R:
- On input φ with v variables and k clauses:
- R will produce a list of numbers.
- Numbers will have many digits, $\mathrm{v}+\mathrm{k}$ and look like this: 1000010011010011

First v (most significant) digits correspond to variables

- Other k (least significant) correspond to clauses
-Theorem: SUBSET-SUM $\in P \Rightarrow 3 S A T \in P$
-Definition of R:
- "On input φ with v variables and k clauses :
- For each variable x include
$a_{x}^{\top}=1$ in x 's digit, and 1 in every digit of a clause
where x appears without negation

$$
\begin{gathered}
\mathrm{a}_{\mathrm{x}}{ }^{\mathrm{F}}=1 \text { in } \mathrm{x} \text { 's digit, and } 1 \text { in every digit of a clause } \\
\text { where } \mathrm{x} \text { appears negated }
\end{gathered}
$$

- For each clause C, include twice

$$
a_{C}=1 \text { in C's digit, and } 0 \text { in others }
$$

- Set $t=1$ in first v digits, and 3 in rest k digits"

Example:

$$
\varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
$$

3 variables +3 clauses $\Rightarrow 6$ digits for each number

var					var	var clause clause clause
x	y	z	1	2	3	
$\mathrm{a}_{\mathrm{x}}^{\top}=$	1	0	0	1	0	1
$\mathrm{a}_{\mathrm{x}}^{\mathrm{F}}=$	1	0	0	0	1	0
$\mathrm{a}_{\mathrm{y}}^{\top}=$	0	1	0	1	0	1
$\mathrm{a}_{\mathrm{y}}^{\mathrm{F}}=$	0	1	0	0	1	0
$\mathrm{a}_{\mathrm{z}}^{\top}=$	0	0	1	1	1	0
$\mathrm{a}_{\mathrm{z}}^{\mathrm{F}}=$	0	0	1	0	0	1
$\mathrm{a}_{\mathrm{c} 1}=$	0	0	0	1	0	0
$\mathrm{a}_{\mathrm{c} 2}=$	0	0	0	0	1	0
$\mathrm{a}_{\mathrm{c} 3}=$	0	0	0	0	0	1

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
-Proof: \Rightarrow
Suppose φ has satisfying assignment
- Pick a_{x}^{\top} if x is true, $a_{x}{ }^{F}$ if x is false
- The sum of these numbers yield 1 in first v digits because ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
-Proof: \Rightarrow
Suppose φ has satisfying assignment
- Pick a_{x}^{\top} if x is true, $a_{x}{ }^{F}$ if x is false
- The sum of these numbers yield 1 in first v digits because $\mathrm{a}_{\mathrm{x}}{ }^{\top}, \mathrm{a}_{\mathrm{x}}{ }^{\mathrm{F}}$ have 1 in x 's digit, 0 in others and 1, 2, or 3 in last k digits
because ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
- Proof: \Rightarrow

Suppose φ has satisfying assignment

- Pick a_{x}^{\top} if x is true, $a_{x}{ }^{F}$ if x is false
- The sum of these numbers yield 1 in first v digits because $a_{x}{ }^{\top}, a_{x}{ }^{F}$ have 1 in $x^{\prime} s$ digit, 0 in others and 1,2 , or 3 in last k digits because each clause has true literal, and $a_{x}{ }^{\top}$ has 1 in clauses where x appears not negated $a_{x}{ }^{F}$ has 1 in clauses where x appears negated
-By picking ???? ????? ??????? ?? sum reaches t
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
- Proof: \Rightarrow

Suppose φ has satisfying assignment

- Pick $a_{x}{ }^{\top}$ if x is true, $a_{x}{ }^{F}$ if x is false
- The sum of these numbers yield 1 in first v digits because $\mathrm{a}_{\mathrm{x}}{ }^{\top}, \mathrm{a}_{\mathrm{x}}{ }^{\mathrm{F}}$ have 1 in x 's digit, 0 in others and 1,2 , or 3 in last k digits because each clause has true literal, and $a_{x}{ }^{\top}$ has 1 in clauses where x appears not negated $a_{x}{ }^{F}$ has 1 in clauses where x appears negated
- By picking appropriate subset of a_{C} sum reaches t
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
- Proof: ↔
- Suppose a subset sums to $t=1111111111333333333$
- No carry in sum, because ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
- Proof: ↔
- Suppose a subset sums to $t=1111111111333333333$
- No carry in sum, because only 3 literals per clause
- So digits behave "independently"
- For each pair $a_{x}^{\top} a_{x}{ }^{F}$ exactly one is included otherwise ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
- Proof: ↔
- Suppose a subset sums to $t=1111111111333333333$
- No carry in sum, because only 3 literals per clause
- So digits behave "independently"
- For each pair $a_{x}^{\top} a_{x}{ }^{F}$ exactly one is included otherwise would not get 1 in that digit
- Define x true if a_{x}^{\top} included, false otherwise
- For any clause C , the a_{C} contribute ≤ 2 in C's digit
- So each clause must have a true literal otherwise ???
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow R(\varphi) \in$ SUBSET-SUM
- Proof: ↔
- Suppose a subset sums to $t=1111111111333333333$
- No carry in sum, because only 3 literals per clause
- So digits behave "independently"
- For each pair $a_{x}{ }^{\top} a_{x}{ }^{F}$ exactly one is included otherwise would not get 1 in that digit
- Define x true if a_{x}^{\top} included, false otherwise
- For any clause C , the a_{C} contribute ≤ 2 in C's digit
- So each clause must have a true literal otherwise sum would not get 3 in that digit

Back to example:

$$
\varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
$$

var var var clause clause clause

x	y	z	1	2	3	
$a_{x}^{\top}=$	1	0	0	1	0	1
$a_{x}{ }^{F}=$	1	0	0	0	1	0
$a_{y}^{\top}=$	0	1	0	1	0	1
$a_{y}{ }^{F}=$	0	1	0	0	1	0
$a_{z}^{\top}=$	0	0	1	1	1	0
$a_{z}{ }^{F}=$	0	0	1	0	0	1
$a_{c 1}=$	0	0	0	1	0	0
$a_{c}=$	0	0	0	0	1	0
$a_{c 3}=$	0	0	0	0	0	1
$t=1$	1	1	3	3	3	

Back to example:
var var var clause clause clause
x
$a_{x}^{\top}=1$
$a_{x}{ }^{\mathrm{F}}=1$
$a_{y}{ }^{\top}=0$
1
0
1
z
0
0
0
0
1
-

$$
a_{y}^{F}=0
$$

$$
\mathrm{a}_{\mathrm{z}}^{\top}=0
$$

0
$a_{z}^{F}=0$
0

$(2 x)$			
$a_{c 1}=$	0	0	0
$(2 x)$	$a_{c 2}=0$	0	0
$(2 x)$	$a_{c 3}=0$	0	0

1
1
3
3

$$
\begin{gathered}
\text { Assignn } \\
\hline x=0 \\
y=1 \\
z=0
\end{gathered}
$$

1
0
0
0 (choose twice)
0 (choose twice)
1

$$
t=1
$$

3

$$
\begin{aligned}
& \varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z) \\
& 010 \\
& 011
\end{aligned}
$$

Back to example:

$$
\begin{aligned}
& \varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z) \\
& \begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}
\end{aligned}
$$

var var var clause clause clause

$a_{x}{ }^{F}=1$
$a_{y}{ }^{\top}=0$
$a_{y}{ }^{F}=0$
$a_{z}^{\top}=0$
$a_{z}^{F}=0$
(2x) $a_{c 1}=0$
$(2 x) a_{c 2}=0$
$(2 x) a_{c 3}=0$
$t=1$
1
1
3
3
Assignment
$x=1$
$y=1$
$z=1$
0
0
1
100

- It remains to argue that ???
- It remains to argue that R runs in polynomial time
- To compute numbers $\mathrm{a}_{\mathrm{x}}{ }^{\top} \mathrm{a}_{\mathrm{x}}{ }^{\mathrm{F}}$:

For each variable x, examine $k \leq|\varphi|$ clauses Overall, examine $v \mathrm{k} \leq|\varphi|^{2}$ clauses

- To compute numbers a_{C} examine $\mathrm{k} \leq|\varphi|$ clauses
- In total $|\varphi|^{2}+|\varphi|$, which is polynomial in input length
-End of proof that SUBSET-SUM $\in P \Rightarrow 3 S A T \in P$
- Map of the reductions
- $A \longrightarrow B$ means $A \in P$ implies $B \in P$

- Definition: A 3-coloring of a graph is a coloring of each node, using at most 3 colors, such that no adjacent nodes have the same color.
- Example:

a 3-coloring

not a 3-coloring
- Definition:

$3 C O L O R=\{G \mid G$ is a graph with a 3 -coloring $\}$

- Example:

G ?? 3COLOR

- Definition:

$3 C O L O R=\{G \mid G$ is a graph with a 3-coloring $\}$

- Example:

$\mathrm{G} \in 3 \mathrm{COLOR}$

H ? 3COLOR

- Definition:

$3 C O L O R=\{G \mid G$ is a graph with a 3-coloring $\}$

- Example:

$G \in 3 C O L O R$

H $\notin 3$ COLOR
(> 3 nodes, all connected)

- Conjecture: 3COLOR $\notin \mathrm{P}$
- Theorem: 3 COLOR $\in P \Rightarrow 3 S A T \in P$
- Proof outline:

Give algorithm R that on input φ :
(1) Computes a graph G_{φ} such that

$$
\varphi \in 3 \mathrm{SAT} \Leftrightarrow \mathrm{G}_{\varphi} \in 3 \text { COLOR. }
$$

(2) R runs in polynomial time

Enough to prove the theorem?

- Theorem: 3 COLOR $\in P \Rightarrow 3 S A T \in P$
- Proof outline:

Give algorithm R that on input φ :
(1) Computes a graph G_{φ} such that

$$
\varphi \in 3 S A T \Leftrightarrow G_{\varphi} \in 3 \text { COLOR. }
$$

(2) R runs in polynomial time

Enough to prove the theorem because:
If algorithm C that solves 3COLOR in polynomial-time Then $C(R(\varphi))$ solves 3SAT in polynomial-time

- Theorem: 3COLOR $\in P \Rightarrow 3 S A T \in P$
- Definition of R :
- "On input φ, construct G_{φ} as follows:
- Add 3 special nodes called the "palette".

- For each variable, add 2 literal nodes.
- For each clause, add 6 clause nodes.

- Theorem: 3COLOR $\in P \Rightarrow 3 S A T \in P$
- Definition of R (continued):
- For each variable x, connect:

- For each clause (a V b V c), connect:
- End of definition of R.

Example: $\varphi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z)$

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow G_{\varphi} \in 3$ COLOR
- Before proving the claim, we make some remarks,
and prove a fact that will be useful

Remark

- Idea: T's color represents TRUE F's color represents FALSE
- In a 3-coloring, all variable nodes must be colored T or F because?

Remark

- Idea: T's color represents TRUE F's color represents FALSE
- In a 3-coloring, all variable nodes must be colored T or F because connected to B.

Also, x and $\urcorner \mathrm{x}$ must have different colors because?

Remark

- Idea: T's color represents TRUE F's color represents FALSE
- In a 3-coloring, all variable nodes must be colored T or F because connected to B.

Also, x and $\neg x$ must have different colors because they are connected.

So we can "translate" a 3-coloring of G_{φ} into a true/false assignment to variables of φ

Fact: Graph below 3-colorable $\Leftrightarrow a, b$, or c colored T

The idea is simply that each triangle computes "Or"

Fact: Graph below 3-colorable $\Leftrightarrow \mathrm{a}, \mathrm{b}$, or c colored T
Proof of E : Suppose by contradiction that a, b, and c are all colored F then P colored how?

Fact: Graph below 3-colorable $\Leftrightarrow \mathrm{a}, \mathrm{b}$, or c colored T
Proof of E : Suppose by contradiction that a, b, and c are all colored F then P colored F. Then Q colored how?

Fact: Graph below 3-colorable $\Leftrightarrow a, b$, or c colored T
Proof of E : Suppose by contradiction that a, b, and c are all colored F then P colored F . Then Q colored F. But this is not a valid 3 -coloring

Done

Fact: Graph below 3-colorable $\Leftrightarrow \mathrm{a}, \mathrm{b}$, or c colored T
Proof of \rightsquigarrow : We show a 3-coloring for each way in which a, b, and c may be colored

Fact: Graph below 3-colorable $\Leftrightarrow \mathrm{a}, \mathrm{b}$, or c colored T
Proof of \hookleftarrow : We show a 3-coloring for each way in which a, b, and c may be colored

Done

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow G_{\varphi} \in 3$ COLOR
- Proof: \Rightarrow
- Color palette nodes green, red, blue: T, F, B.
- Suppose φ has satisfying assignment.
- Color literal nodes T or F accordingly Ok because?

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow G_{\varphi} \in 3$ COLOR
-Proof: \Rightarrow
- Color palette nodes green, red, blue: T, F, B.
- Suppose φ has satisfying assignment.
- Color literal nodes T or F accordingly Ok because they don't touch T or F in palette, and x and $\neg x$ are given different colors

- Color clause nodes using previous Fact.

Ok because?

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow G_{\varphi} \in 3$ COLOR
-Proof: \Rightarrow
- Color palette nodes green, red, blue: T, F, B.
- Suppose φ has satisfying assignment.
- Color literal nodes T or F accordingly Ok because they don't touch T or F in palette, and x and $\neg x$ are given different colors

- Color clause nodes using previous Fact.

Ok because each clause has some true literal

- Claim: $\varphi \in 3$ SAT $\Leftrightarrow G_{\varphi} \in 3$ COLOR
-Proof: ↔
- Suppose G_{φ} has a 3-coloring
- Assign all variables to true or false accordingly. This is a valid assignment because?
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow G_{\varphi} \in 3$ COLOR
-Proof: ↔
- Suppose G_{φ} has a 3-coloring
- Assign all variables to true or false accordingly. This is a valid assignment because by Remark, x and $\neg x$ are colored T or F and don't conflict.
-This gives some true literal per clause because?
- Claim: $\varphi \in 3$ SAT $\Leftrightarrow G_{\varphi} \in 3$ COLOR
- Proof: ↔
- Suppose G_{φ} has a 3-coloring
- Assign all variables to true or false accordingly. This is a valid assignment because by Remark, x and $\neg x$ are colored T or F and don't conflict.
- This gives some true literal per clause because clause is colored correctly, and by previous Fact
- All clauses are satisfied, so φ is satisfied.

- It remains to argue that ???
- It remains to argue that R runs in polynomial time
- To add variable nodes and edges, cycle over $\mathrm{v} \leq|\varphi|$ variables
- To add clause nodes and edges, cycle over c $\leq|\varphi|$ clauses
- Overall, $\leq|\varphi|+|\varphi|$, which is polynomial in input length $|\varphi|$
- End of proof that 3 COLOR $\in P \Rightarrow 3 S A T \in P$

COLORING NUGGET

- Definition: PLANAR-k-COLOR =
\{ $\mathrm{G}: \mathrm{G}$ is a planar graph that can be colored with k colors.\}
- PLANAR-2-COLOR is

COLORING NUGGET

- Definition: PLANAR-k-COLOR =
\{ $\mathrm{G}: \mathrm{G}$ is a planar graph that can be colored with k colors.\}
- PLANAR-2-COLOR is easy
- PLANAR-3-COLOR is

COLORING NUGGET

- Definition: PLANAR-k-COLOR =
\{ $\mathrm{G}: \mathrm{G}$ is a planar graph that can be colored with k colors.\}
- PLANAR-2-COLOR is easy
- PLANAR-3-COLOR is hard (variant of proof we saw)
- PLANAR-4-COLOR is

COLORING NUGGET

- Definition: PLANAR-k-COLOR =
\{ $\mathrm{G}: \mathrm{G}$ is a planar graph that can be colored with k colors.\}
- PLANAR-2-COLOR is easy
- PLANAR-3-COLOR is hard (variant of proof we saw)
- PLANAR-4-COLOR is easy (answer is always "YES")
- We saw polynomial-time reductions from 3SAT to CLIQUE SUBSET-SUM 3COLOR from CLIQUE to COVER BY VERTEXES
- There are many other polynomial-time reductions
- They form a fascinating web
- Coming up with reductions is "art"

