Approximation algorithms

An algorithm has approximation ratio r if it outputs solutions with cost such that
$\mathrm{c} / \mathrm{c}^{*} \leq \mathrm{r}$ and $\mathrm{c}^{*} / \mathrm{c} \leq \mathrm{r}$
where c^{*} is the optimal cost.

We focus on ratio (as opposed to difference) because that appears to be more natural for problems of interest

- Problem: Cover edges by vertexes

Input: Graph
Output: A minimal set of nodes that touches every edge
Algorithm:
While there is an edge (u, v)
Add both u and v to your cover.
Erase all edges adjacent to either u or v.

- Claim: This is a 2 approximation
- Proof:

Consider the set A of edges picked by the algorithm. Note any cover must have at least one node for each edge, and so size at least $|\mathrm{A}|$.

- Problem: Cover edges by weighted vertexes

Input: Graph, weights for vertexes
Output: A minimal-cost set of nodes that touches every edge
Formulate problem as integer program: $\min \sum x(v) w(v):$
$x(u)+x(v) \geq 1 \quad \forall(u, v) \in E$,
$x(u) \in\{0,1\} \forall u \in V$

Integer programs should not be solvable efficiently

- Problem: Cover edges by weighted vertexes

Input: Graph, weights for vertexes
Output: A minimal-cost set of nodes that touches every edge
Relax to linear programming $\min \sum x(v) w(v):$
$x(u)+x(v) \geq 1 \quad \forall(u, v) \in E$,
$\mathrm{x}(\mathrm{u}) \in[0,1] \forall \mathrm{u} \in \mathrm{V}$

- Algorithm:

Solve relaxation
Round: Take nodes with $x(u) \geq 1 / 2$.

Claim: This is a cover.
Proof: Because $x(u)+x(v) \geq 1 / 2$ for every edge (u,v) \square
Claim: This is a 2 approximation
Proof: Let C* be an optimal solution.
z be cost of relaxed linear program
C be cost of output of algorithm
Obviously, $z \leq C^{*}$ since solution space is bigger
Now note $z=\sum x(v) w(v) \geq \sum_{v}: x(v) \geq 1 / 2 w(v) / 2=C / 2$.
So $\mathrm{C} / 2 \leq \mathrm{z} \leq \mathrm{C}^{*}$

Paradigm:

Believed infeasible

Relaxation

Integer program
Quadratic program

linear program
vector program
Feasible

Rounding
Integral solution

Max Cut: given a graph want cut that separates as many edges as possible.

2-approximation:
How?

Max Cut: given a graph want cut that separates as many edges as possible.

2-approximation:
Pick the cut at random. You expect to cut $1 / 2$ of the edges
Possible to do deterministically
We now improve 2 to $1 / 0.87 \ldots<2$

Max Cut: given a graph want cut that separates as many edges as possible.

Maximize $1 / 2 \sum_{(i, j) \in E} 1-y_{i} y_{j}: y_{i} \in\{-1,1\}$
Relax to vector program:
$y_{i} \quad \rightarrow$ vector $v_{i} \in R^{d} \quad($ where $d=$ polynomial in $|V|)$
$y_{i} y_{j} \quad \rightarrow$ inner product $<v_{i}, v_{j}>$
$y_{i} \in\{-1,1\} \rightarrow\left|v_{i}\right|=1$
Algorithm:
Solve vector program
Round: Take random vector r of length 1.
One side of the cut is $\left\{i:\left\langle v_{i}, r\right\rangle \geq 0\right\}$

Max Cut: given a graph want cut that separates as many edges as possible.

Analysis:
Expected size of cut is $\sum_{(i, j)} \operatorname{Pr}\left[v_{i}\right.$ and v_{j} are separated $]$
$=\sum \theta_{i, j} / \pi$
(lemma)
$\geq \alpha \sum\left(1-\cos \theta_{i, j}\right) / 2 \quad(\exists \alpha=0.87 \ldots:$ this is true $\forall \theta)$
$\geq \alpha \sum\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) / 2 \quad\left(\left\langle v_{i}, v_{j}\right\rangle=\cos \theta_{i, j}\right)$
$=\alpha$ cost of vector program
$\geq \alpha$ optimal cost

Problem: Cover points by sets

Input: A family of sets over n points.
Output: A minimal number of sets that covers every point.
Algorithm:
Greedily pick a set that covers as much as possible of what's left.

Claim: This is a $\log (\mathrm{n})$ approximation
Proof:
Fix an execution of the algorithm: $\left(S_{1}, S_{2}, \ldots,\right)$
S_{i} is the i-th set picked by algorithm.
Given this, for each element x, define cost
$c_{x}:=1 / \#$ of new elements covered by set that covers x first $=\left(\right.$ if S_{i} covers x first) $1 /\left|S_{i}-U_{j<i} S_{j}\right|$

Note cost of algorithm $|C|=\sum_{x} c_{x}$
Also, let C* be optimal.
Have $|C| \leq \sum_{S \in C^{*}} \Sigma_{x \in S} C_{x}$, since every point is covered
We wil show $\forall S, \sum_{x \in S} c_{x} \leq O(\log n)$,
yielding $|\mathrm{C}| \leq \mathrm{O}\left(\left|\mathrm{C}^{*}\right| \log \mathrm{n}\right)$.

Claim: $\forall \mathrm{S}, \Sigma_{\mathrm{x} \in \mathrm{S}} \mathrm{C}_{\mathrm{x}} \leq \mathrm{O}(\log \mathrm{n})$,
Proof: Fix S. $u_{i}:=$ \# elements in S uncovered after i-th iteration of algorithm $=\left|S-U_{j \leq i} S_{j}\right|$ $u_{0}=|S|$
Let k be the first such that $\mathrm{u}_{\mathrm{k}}=0$.
Note u is decreasing, $u_{i-1}-u_{i}$ is \# elements in S covered first time by S_{i}.

$$
\begin{aligned}
\sum_{x \in S} & c_{x}=\sum_{1 \leq i \leq k}\left(u_{i-1}-u_{i}\right) /\left|S_{i}-U_{j<i} S_{j}\right| \\
& \leq \sum_{1 \leq i \leq k}\left(u_{i-1}-u_{i}\right) /\left|S-U_{j<i} S_{j}\right| \quad \text { (greedy choice) } \\
& =\sum_{1 \leq i \leq k}\left(u_{i-1}-u_{i}\right) / u_{i-1} \\
& =\sum_{1 \leq i \leq k, 1+u i \leq j \leq u(i-1)} 1 / u_{j} \\
& =\sum_{1+u k \leq i \leq u 0} 1 / i=O\left(H\left(u_{0}\right)\right)=O(H(|S|))=O(\log |S|)
\end{aligned}
$$

Problem: Given n numbers $x_{1}, x_{2}, \ldots, x_{n}$ integer t, compute maximum size of subset of numbers not exceeding t

This problem has fully polynomial-time approximation algorithm: in time poly(n,1/ ε) finds a sum that does not exceed t and is within $1+\varepsilon$ of largest not exceeding t.

Naive approach:
$\mathrm{L}_{0}=\varnothing$
For every i : $L_{i+1}=L_{i}+x_{i}$; Remove elements bigger than t Return Max in L_{n}

Problem?

Problem: Given n numbers $x_{1}, x_{2}, \ldots, x_{n}$ integer t, compute maximum size of subset of numbers not exceeding t

This problem has fully polynomial-time approximation algorithm: in time poly(n,1/ ε) finds a sum that does not exceed t and is within $1+\varepsilon$ of largest not exceeding t.

Naive approach:
$\mathrm{L}_{0}=\varnothing$
For every i : $L_{i+1}=L_{i}+x_{i}$; Remove elements bigger than t Return Max in L_{n}

Problem, list gets too big.
For approximation, don't keep elements close to each other.

Trim (L, δ) : Go through elements in L in sorted order. Add element y in $L \longleftrightarrow$ bigger than $1+\delta$ of what you have already

Approximation algorithm $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{t}, \varepsilon\right)$
$L_{0}=\varnothing$
For every $\mathrm{i}: \mathrm{L}_{\mathrm{i}+1}=\mathrm{L}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}}$
$\operatorname{Trim}\left(\mathrm{L}_{\mathrm{i}+1}, \varepsilon / 2 \mathrm{n}\right)$
Remove elements bigger than t
Return Max in L_{n}

- Correctness:

Claim:
Let P_{i} be set of possible sums of first i elements
$\forall y \in P_{i} \quad \exists z \in L_{i}: y /(1+\varepsilon / 2 n)^{i} \leq z \leq y$
i.e., $\forall y \exists$ a close lower bound z

Proof by induction. Won't see
Given claim, easy to see algorithm gives an ε approximation.

- Running time:

We bound length of lists. Let $\delta=\varepsilon / 2 n$
By construction $\left|\mathrm{L}_{\mathrm{i}}\right| \leq \log _{1+\delta} \mathrm{t}$

$$
\begin{aligned}
& =O(\log t / \delta) \\
& =O(n / \varepsilon) \log t
\end{aligned}
$$

