Algorithms Slides

Emanuele Viola

2009 - present

Released under Creative Commons License
"Attribution-Noncommercial-No Derivative Works 3.0 United States" http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Also, let me know if you use them.

Index

The slides are under construction.
The latest version is at http://www.ccs.neu.edu/home/viola/

Success stories of algorithms:

Shortest path (Google maps)

Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)

- http://cstheory.stackexchange.com/questions/19759/core-algorithms-deployed

This class:

- General techniques:
- Divide-and-conquer,
- dynamic programming,
- data structures
- amortized analysis
- Various topics:
- Sorting
- Matrixes
- Graphs
- Polynomials

What is an algorithm?

- Informally, an algorithm for a function $f: A \rightarrow B$ (the problem) is a simple, step-by-step, procedure that computes $f(x)$ on every input x

What operations are simple?

- If, for, while, etc. Conthal flow
- Direct addressing: $A[n]$, the n-entry of array A
- Basic arithmetic and logic on variables
- $x^{*} y, x+y, x$ AND y, etc.
- Simple in practice only if the variables are "small".

For example, 64 bits on current PC

- Sometimes we get cleaner analysis if we consider them simple regardless of size of variables.

Measuring performance

- We bound the running time, or the memory (space) used.
- These are measured as a function of the input length.
- Makes sense: need to at least read the input!
- The input length is usually denoted n
- We are interested in which functions of n grow faster

Asymptotic analysis

- The exact time depends on the actual machine
- We ignore constant factors, to have more robust theory that applies to most computer
- Example:
on my computer it takes $67 n+15$ perations, on yours $58 \mathrm{n}-15$, but that's about the same
- We now give definitions that make this precise

Big-Oh

Definition:
$f(\mathrm{n})=\mathrm{O}(\underline{\mathrm{g}(\mathrm{n})})$ if there are (\exists) constants $\mathrm{c}, \mathrm{n}_{0}$ such that
$f(n) \leq c \cdot g(n)$, for every $(\forall) n \geq n_{0}$.

Meaning: f grows no faster than g, up to constant factors

Big-Oh

Definition:

$f(n)=O(g(n))$ if there are (\exists) constants c, n_{0} such that
$f(n) \leq c \cdot g(n)$, for every $(\forall) n \geq n_{0}$.

Example 1:

$5 n+2 n^{2}+\log (n)=O\left(n^{2}\right) ?$

Big-Oh

Definition:

$f(n)=O(g(n))$ if there are (\exists) constants c, n_{0} such that
$f(n) \leq c \cdot g(n)$, for every $(\forall) n \geq n_{0}$.

Example 1:

$5 n+2 n^{2}+\log (n)=O\left(n^{2}\right)$ True

Pick $\mathrm{c}=$?

Big-Oh

Definition:

$f(n)=O(g(n))$ if there are (\exists) constants c, n_{0} such that
$f(n) \leq c \cdot g(n)$, for every $(\forall) n \geq n_{0}$.

Example 1:
$5 n+2 n^{2}+\log (n)=O\left(n^{2}\right)$ True

Pick $\mathrm{c}=3$. For large enough $\mathrm{n}, 5 \mathrm{n}+\log (\mathrm{n}) \leq \mathrm{n}^{2}$.
Any c > 2 would work.

Example 2:

$100 \mathrm{n}^{2}=\mathrm{O}\left(2^{\mathrm{n}}\right)$?

Example 2:
 $100 n^{2}=O\left(2^{n}\right)$ True

Pick $\mathrm{c}=$?

Example 2:

$100 n^{2}=O\left(2^{n}\right)$ True

Pick $\mathrm{c}=1$.

Any c > 0 would work, for large enough n.

Example 3:

$\mathrm{n}^{2} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$?

Example 3:

$$
n^{2} \log n \neq O\left(n^{2}\right)
$$

$\forall c, n_{0} \exists n \geq n_{0}$ such that $n^{2} \log n>c n^{2}$.

$$
n>2^{c} \Rightarrow n^{2} \log n>n^{2} c
$$

Example 4:

$2^{n}=O\left(2^{n / 2}\right)$?

Example 4:

$2^{n} \neq O\left(2^{n / 2}\right)$.
$\forall \mathrm{c}, \mathrm{n}_{0} \exists \mathrm{n} \geq \mathrm{n}_{0}$ such that $2^{\mathrm{n}}>\mathrm{c} \cdot 2^{\mathrm{n} / 2}$.

Pick any $n>2 \log c$

$$
2^{n}=2^{n / 2} 2^{n / 2}>c \cdot 2^{n / 2} .
$$

$\rightarrow \cdot \mathrm{n} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$?

- $\mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{1.5} \log 10 \mathrm{n}\right)$?
- $2^{n}=O\left(n^{1000000}\right)$?
- $(\sqrt{ } 2)^{\log } n^{n}=O\left(n^{1 / 3}\right) ?$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- n ! $=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
$\rightarrow \cdot n^{2}=O\left(n^{1.5} \log 10 n\right)$?
- $2^{n}=O\left(n^{1000000}\right)$?
- $(\sqrt{ } 2)^{\log } n^{n}=O\left(n^{1 / 3}\right)$?
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- n ! $=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n}=O\left(n^{1000000}\right)$?
- $(\sqrt{ } 2)^{\log } n^{n}=O\left(n^{1 / 3}\right) ?$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- n ! $=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right)$?
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$
$\longrightarrow \cdot(\sqrt{ } 2)^{\log n}=O\left(n^{1 / 3}\right) ?$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- n ! $=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
$\cdot n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n}=O\left(n^{1 / 3}\right) ?(\sqrt{ } 2)^{\log } n_{n}=n^{1 / 2} \neq O\left(n^{1 / 3}\right)$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- n ! $=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
$\cdot n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right) ?$
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
$n^{\log \log n}=$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
(2) $\log n \log n=$
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- n ! $=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=O\left(\mathrm{n}^{\mathrm{n}}\right)$?
$\cdot n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n}=O\left(4^{\log n}\right) ? 4^{\log n}=2^{2} \log n \quad 2^{n}=2^{(\log n} \cdot$
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $\mathrm{n} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$.

$$
n!=n \cdot(n-1) \cdot(n-2) \cdots 1
$$

- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!=O\left(2^{n}\right) ?$
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.

$$
e=2.781 \text {. }
$$

- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{2})^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $\mathrm{n}!\neq \mathrm{O}\left(2^{n}\right) . \quad 2.5 \sqrt{ } \mathrm{n}(\mathrm{n} / \mathrm{e})^{\mathrm{n}} \leq \underline{\mathrm{n}!} \leq 2.8 \sqrt{n}(\mathrm{n} / \mathrm{e})^{\mathrm{n}}$
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!\neq O\left(2^{n}\right)$.
- $n!=O\left(n^{n}\right)$.
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!\neq O\left(2^{n}\right)$.
- $n!=O\left(n^{n}\right)$.
- $n 2^{n}=O\left(2^{n \log n}\right) ? n 2^{n}=2^{\log n+n}$.
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!\neq O\left(2^{n}\right)$.
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$.
- $n 2^{n}=O\left(2^{n \log n}\right)$.

Big-omega

Definition:
$\mathrm{f}(\mathrm{n})=\underline{\Omega}(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{c}, \mathrm{n}_{0}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}, \quad \mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$.

Meaning: f grows no slower than g , up to constant factors

Big-omega

Definition:

$\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{c}, \mathrm{n}_{0}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}, \quad \mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$.

Example 1:

$0.01 n=\Omega(\log n)$?

Big-omega

Definition:

$\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{c}, \mathrm{n}_{0}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}, \quad \mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$.

Example 1:

$0.01 n=\Omega(\log n)$ True

Pick $\mathrm{c}=1$. Any $\mathrm{c}>0$ would work

Example 2:

$n^{2} / 100=\Omega(n \log n)$?

Example 2:

$n^{2} / 100=\Omega(n \log n)$.
$c=1 / 100$ Again, any c would work.

Example 2:

$n^{2} / 100=\Omega(n \log n)$.
$c=1 / 100$ Again, any c would work.

Example 3:
 $$
\sqrt{ } n=\Omega(n / 100) ?
$$

Example 2:

$n^{2} / 100=\Omega(n \log n)$.
$c=1 / 100$ Again, any c would work.

Example 3:
$\checkmark n \neq \Omega(n / 100)$
$\forall c, n_{0} \exists n \geq n_{0}$ such that , $\sqrt{ } \mathrm{n}<\mathrm{c} \cdot \mathrm{n} / 100$.

Example 4:

$2^{n / 2}=\Omega\left(2^{n}\right)$?

Example 4:

$2^{n / 2} \neq \Omega\left(2^{n}\right)$
$\forall \mathrm{c}, \mathrm{n}_{0} \exists \mathrm{n} \geq \mathrm{n}_{0}$ such that $2^{\mathrm{n} / 2}<\mathrm{c} \cdot 2^{\mathrm{n}}$.

Big-omega, Big-Oh

Note: $f(n)=\Omega(g(n)) \Leftrightarrow g(n)=O(f(n))$

$$
f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n)) .
$$

Example:
$10 \log n=O(n)$, and $n=\Omega(10 \log n)$.
$5 n=O(n)$, and $n=\Omega(5 n)$

Theta

Definition:

$f(n)=\Theta(g(n))$ means
$\exists \mathrm{n}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.

Meaning: f grows like g, up to constant factors

Theta

Definition:

$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{n}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.
Example:

$$
n=\Theta(n+\log n) ?
$$

Theta

Definition:

$f(n)=\Theta(g(n))$ means
$\exists \mathrm{n}_{0}, \mathrm{C}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.
Example:
$\mathrm{n}=\Theta(\mathrm{n}+\log \mathrm{n})$ True
$\mathrm{C}_{1}=?, \mathrm{c}_{2}=? \mathrm{n}_{0}=$? such that $\forall \mathrm{n} \geq \mathrm{n}_{0}$,
$\mathrm{n} \leq \mathrm{c}_{1}(\mathrm{n}+\log \mathrm{n})$ and $\mathrm{n}+\log \mathrm{n} \leq \mathrm{c}_{2} \mathrm{n}$.

Theta

Definition:
$f(n)=\Theta(g(n))$ means
$\exists \mathrm{n}_{0}, \mathrm{C}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.
Example:
$n=\Theta(n+\log n)$ True
$c_{1}=1, c_{2}=2 n_{0}=2$ such that $\forall \mathrm{n} \geq 2$,
$n \leq 1(n+\log n)$ and $n+\log n \leq 2 n$.

Theta

Definition:

$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{n}_{0}, \mathrm{C}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.

Note:

$$
f(n)=\Theta(g(n)) \Leftrightarrow f(n)=\Omega(g(n)) \text { and } f(n)=O(g(n))
$$

$$
f(n)=\Theta(g(n)) \Leftrightarrow g(n)=\Theta(f(n))
$$

Mixing things up

$$
\begin{aligned}
\longrightarrow & n+\ddot{O}(\log n)=\varnothing(n) \\
& \text { Means } \forall c \quad \exists c^{\prime}, n_{0}: \forall n>n_{0} \quad n+c \log n<c^{\prime} n
\end{aligned}
$$

- $n^{3} \log (n)=n^{O}(1)$

Means $\exists \mathrm{c}, \mathrm{n}_{0}: \forall \mathrm{n}>\mathrm{n}_{0} \quad \mathrm{n}^{3} \log (\mathrm{n}) \leqq \mathrm{n}^{c} \quad c=4$

- $2^{n}+\mathrm{n}^{\mathrm{O}}(1)=\Theta\left(2^{\mathrm{n}}\right)$

Means $\overleftarrow{\forall} \mathrm{c} \exists \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}: \forall \mathrm{n}>\mathrm{n}_{0}$

$$
c_{2} 2^{n} \leq 2^{n}+n^{c} \leq c_{1} 2^{n}
$$

Sorting

Sorting problem:

- Input:

A sequence (or array) of n numbers (a[1], a[2], ..., a[n]).

- Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers (in increasing order).

Example:

Input $=(5,17,-9,76,87,-57,0)$.
Output $=$?

Sorting problem:

- Input:

A sequence (or array) of n numbers ($a[1], a[2], \ldots, a[n]$).

- Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers (in increasing order).

Example:

Input $=(5,17,-9,76,87,-57,0)$.
Output $=(-57,-9,0,5,17,76,87)$.

Sorting problem:

- Input:

A sequence (or array) of n numbers ($a[1], a[2], \ldots, a[n]$).

- Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers (in increasing order).

Who cares about sorting?

- Sorting is a basic operation that shows up in countless other algorithms
- Often when you look at data you want it sorted
- It is also used in the theory of NP-hardness!

Bubblesort:

Input (a[1], a[2], ..., a[n]).
for ($\mathrm{i}=\mathrm{n}$; $\mathrm{i}>1 ; \mathrm{i}-$ -)
for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if (a[j] > a[j+1])
swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly

> Bubblesort: Input $(a[1], \mathrm{a}[2], \ldots, \mathrm{a}[\mathrm{n}])$. for $(\mathrm{i}=\mathrm{n} ; \mathrm{i}>1 ; \mathrm{i}--)$ for $(\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++)$ if $(\mathrm{a}[\mathrm{j}]>\mathrm{a}[\mathrm{j}+1])$ swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: $\mathrm{a}^{\prime}[\mathrm{i}]=$?

Bubblesort:

Input (a[1], a[2], $\ldots, a[n]$).
for ($\mathrm{i}=\mathrm{n} ; \mathrm{i}>1 ; \mathrm{i}-$ - $)$
for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if $(a[j]>a[j+1])$
swap $a[j]$ and $a[j+1]$;

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: $a^{\prime}[i]=\max _{k \leq i} a^{\prime}[k]$
and the positions $\mathrm{k}>\mathrm{i}$ are

Bubblesort:

Input (a[1], a[2], $\ldots, a[n]$).
for ($\mathrm{i}=\mathrm{n} ; \mathrm{i}>1 ; \mathrm{i}-$ - $)$
for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if $(a[j]>a[j+1])$
swap $a[j]$ and $a[j+1]$;

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: $a^{\prime}[i]=\max _{k \leq i} a^{\prime}[k]$
and the positions $\mathrm{k}>\mathrm{i}$ are not touched.
Since the outer loop is from n down to 1 , the array is sorted.

Analysis of running time

$T(n)=$ number of comparisons
$\mathrm{i}=\mathrm{n}-1 \Leftrightarrow \mathrm{n}-1$ comparisons.
$\mathrm{i}=\mathrm{n}-2 \Rightarrow \mathrm{n}-2$ comparisons.
$i=1 \Rightarrow 1$ comparison.

```
Bubble sort:
Input (a[1], a[2], ..., a[n]).
for (i=n; i > 1; i--)
    for (j=1; j < i; j++)
        if (a[j] > a[j+1])
        swap a[j] and a[j+1];
```

$\mathrm{T}(\mathrm{n})=(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+1<\mathrm{n}^{2}$
Ts this tight? Is also $T(n)=\Omega\left(n^{2}\right)$?

Analysis of running time
$T(n)=$ number of comparisons
$\mathrm{i}=\mathrm{n}-1 \Leftrightarrow \mathrm{n}-1$ comparisons.
$\mathrm{i}=\mathrm{n}-2 \Rightarrow \mathrm{n}-2$ comparisons.
$i=1 \Rightarrow 1$ comparison.

```
Bubble sort:
Input (a[1], a[2], ..., a[n]).
for (i=n; i > 1; i--)
    for (j=1; j < i; j++)
    if (a[j] > a[j+1])
        swap a[j] and a[j+1];
```

$$
T(n)=(n-1)+(n-2)+\ldots+1 \Theta n(n-1) / 2=\Theta\left(n^{2}\right)
$$

Space (also known as Memory)

We need to keep track of i, j

We need an extra element
to swap values of input array a.

Bubble sort:
Input (a[1], a[2], $\ldots, a[n])$.
for $(i=n ; i>1 ; i--)$
for $(j=1 ; j<i ; j++)$
if $(a[j]>a[j+1])$
\quad swap $a[j]$ and $a[j+1] ;$

Space $=$ O(1)

Bubble sort takes quadratic time

Can we sort faster?

We now see two methods that can sort in linear time, under some assumptions

Countingsort:

- Assumption: all elements of the input array are integers in the range 0 to k.
- Idea: determine, for each $A[i]$, the number of elements in the input array that are smaller than $A[i]$.
- This way we can put element $A[i]$ directly into its position.

$$
\text { Example } n=4 \quad A=6 / 3 / 5 / 5
$$

// Sorts A[1..n] into array B
Countingsort (A[1..n]) \{
$k=6$
// Initializes C to 0

- for $(i=0 ; k ; i++) \quad C[i]=0$;

$$
B=3 \mid 51516
$$

for $(i=n ; 1 ; i--)\{$

$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{i}]]]=\mathrm{A}[\mathrm{i}]$; //Place $\mathrm{A}[\mathrm{i}]$ at right location $C[A[i]]=C[A[i]]-1$; //Decrease for equal elements \}

Analysis of running time
$T(n)=$ number of operations

$$
\begin{aligned}
& =\underline{O(k)}+\underline{O(n)}+\underline{O(k)}+\underline{O(n)} \\
& =(n+k) .
\end{aligned}
$$

If $k=O(n)$ then $T(n)=\Theta(n)$

```
Countingsort (A[1..n])
    for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{k} ; \mathrm{i}++\) )
    \(\mathrm{C}[\mathrm{i}]=0\);
    for ( \(\mathrm{i}=1\); \(\mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
        \(C[A[i]]=C[A[i]]+1\);
for ( \(\mathrm{i}=1 ; \mathrm{i}<\mathrm{k} ; \mathrm{i}++\) )
    \(\mathrm{C}[\mathrm{i}]=\mathrm{C}[\mathrm{i}]+\mathrm{C}[i-1]\);
for ( \(\mathrm{i}=\mathrm{n}\); \(\mathrm{i}>1\); \(\mathrm{i}-\mathrm{-}\) ) \(\{\)
    \(B[C[A[i]]]=A[i] ;\)
    \(C[A[i]]=C[A[i]]-1\);
\}
```

Space
O(k) for C
Recall numbers in 0..k.
$\mathrm{O}(\mathrm{n})$ for B , where output is

Total space: $O(n+k)$
If $\mathrm{k}=\mathrm{O}(\mathrm{n})$ then $\Theta(\mathrm{n})$

Countingsort (A[1..n])
for (i =0; i<k ; i++

$$
C[i]=0 ;
$$

$$
\text { for }(i=1 ; i<n ; i++)
$$

$$
\mathrm{C}[\mathrm{~A}[i]]=\mathrm{C}[\mathrm{~A}[i]]+1 ;
$$

for (i =1; i<k ; i++)

$$
C[i]=C[i]+C[i-1] ;
$$

for (i=n; i>1 ; i--) \{

$$
\mathrm{B}[\mathrm{C}[\mathrm{~A}[\mathrm{i}]]]=\mathrm{A}[\mathrm{i}] ;
$$

$$
C[A[i]]=C[A[i]]-1 ;
$$

$$
\}
$$

Radix sort

Assumption: all elements of the input array are d-digit integers.

- Idea: first sort by least significant digit, then according to the next digit, and finally according to the most significant digit.
- It is essential to use a digit sorting algorithm that is stable: elements with the same digit appear in the output array in the same order as in the input array.
- Fact: Counting sort is stable.

```
Radixsort(A[1..n]) {
    for i that goes from least significant digit to most {
    use counting sort algorithm to sort array A on digit i
    }
}
```


Example:

Sort in ascending order (3,2,1,0) (two binary digits).

Radixsort(A[1..n]) \{
for i that goes from least significant digit to most \{
use counting sort algorithm to sort array A on digit i
\}
\}

\downarrow			
0	d	a	b
1	c	a	b
2	f	a	d
3	b	a	d
4	d	a	d
5	e	b	b
6	a	c	e
7	a	d	d
8	f	e	d
9	b	e	d
10	f	e	e
11	b	e	e

\downarrow			
0	a	c	e
1	a	d	d
2	b	a	d
3	b	e	d
4	b	e	e
5	C	a	b
6	d	a	b
7	d	a	d
8	e	b	b
9	f	a	d
10	f	e	d
11	f	e	e

sort must be stable (arrows do not cross)

Analysis of running time

- $T(n)=$ number of operations

Radixsort(A[1..n]) \{
for i from least significant
digit to most \{
use counting sort to
sort array A on digiti
$\}$
$\}$

$$
=\Theta(\mathrm{d} \bullet(\mathrm{n}+\mathrm{k}))
$$

Example: To sort numbers in range $0 . . \mathrm{n}^{10}$

$$
T(n)=?
$$

(hint: think numbers in base(n)

Analysis of running time
$T(n)=$ number of operations

```
Radixsort(A[1..n]) {
for i from least significant
    digit to most {
    use counting sort to
    sort array A on digiti
    }
}
```

$T(n)=d \cdot(r u n n i n g$ time of Counting sort on n elements) $=\Theta(d \cdot(n+k))$

Example: To sort numbers in range $0 . . \mathrm{n}^{10}$

$$
T(n)=\Theta(10 n)=\Theta(n)
$$

While counting sort would take $\mathrm{T}(\mathrm{n})=$?

Analysis of running time
$T(n)=$ number of operations

```
Radixsort(A[1..n]) {
for i from least significant
    digit to most {
    use counting sort to
    sort array A on digiti
    }
}
```

$T(n)=d \cdot(r u n n i n g$ time of Counting sort on n elements) $=\Theta(d \cdot(n+k))$

Example: To sort numbers in range $0 . . \mathrm{n}^{10}$

$$
T(n)=\Theta(10 n)=\Theta(n)
$$

While counting sort would take $T(n)=\Theta\left(n^{10}\right)$

Space

We need as much space as we did for Counting sort on each digit
Space = O(d•(n+k))

Radixsort(A[1..n]) \{
for i from least significant digit to most \{
use counting sort to sort array A on digit i \}
\}

Can you improve this?
IDes

$$
\begin{aligned}
& \text { Revs SPACe A } \\
& \text { Span }=O(n+r)
\end{aligned}
$$

Can we sort faster than n^{2} without extra assumptions?
Next we show how to sort with $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons
We introduce a new general paradigm

Deleted scenes

- 3SAT problem: Given a 3CNF formula such as

$$
\varphi:=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
$$

can we set variables True/False to make φ True?
Such φ is called satisfiable.

- Theorem [3SAT is NP-complete]

Let $M:\{0,1\}^{n} \rightarrow\{0,1\}$ be an algorithm running in time T Given $x \in\{0,1\}^{n}$ we can efficiently compute 3CNF φ :

$$
M(x)=1 \Leftrightarrow \quad \varphi \text { satisfiable }
$$

- How efficient?
- Theorem [3SAT is NP-complete]

Let $\mathrm{M}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be an algorithm running in time T Given $x \in\{0,1\}^{n}$ we can efficiently compute 3CNF φ :

$$
M(x)=1 \Leftrightarrow \quad \varphi \text { satisfiable }
$$

- Standard proof: φ has $\Theta\left(T^{2}\right)$ variables (and size), $x_{i, j}$

$x_{1,1}$	$x_{1,2}$	\cdots	$x_{1, T}$
		\cdots	
$x_{i, 1}$	$x_{i, 2}$	\cdots	$x_{i, T}$

φ ensures that memory and state evolve according to M

- Theorem [3SAT is NP-complete]

Let $M:\{0,1\}^{n} \rightarrow\{0,1\}$ be an algorithm running in time T Given $x \in\{0,1\}^{n}$ we can efficiently compute 3CNF φ :

$$
M(x)=1 \Leftrightarrow \quad \varphi \text { satisfiable }
$$

- Better proof: φ has $\mathrm{O}\left(\mathrm{T} \log \mathrm{O}^{(1)} \mathrm{T}\right)$ variables (and size), $C_{i}:=x_{i, 1} x_{i, 2} \cdots \quad x_{i, \log T}=$ state and what algorithm reads, writes at time $\mathrm{i}=1 . . \mathrm{T}$

Note only 1 memory location is represented per time step.

How do you check C_{i} correct? What does φ do?

- Theorem [3SAT is NP-complete]

Let $M:\{0,1\}^{n} \rightarrow\{0,1\}$ be an algorithm running in time T Given $x \in\{0,1\}^{n}$ we can efficiently compute 3CNF φ :

$$
M(x)=1 \Leftrightarrow \varphi \text { satisfiable }
$$

- Better proof: φ has $\mathrm{O}\left(\mathrm{T} \log \mathrm{O}^{(1)} \mathrm{T}\right)$ variables (and size), $C_{i}:=x_{i, 1} x_{i, 2} \cdots \quad x_{i, \log T}=$ state and what algorithm reads, writes at time $\mathrm{i}=1 . . \mathrm{T}$
φ : Check $\mathrm{C}_{\mathrm{i}+1}$ follows from C_{i} assuming read correct Compute $\mathrm{C}_{\mathrm{i}}^{\prime}:=\mathrm{C}_{\mathrm{i}}$ sorted on memory location accessed Check $\mathrm{C}_{\mathrm{i}+1}$ follows from C_{i} assuming state correct
- Theorem [3SAT is NP-comNete]

Let $\mathrm{M}:\{2,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be an algrith ${ }^{\text {n }}$ running in time I Given $x=\{0$, ne we con efficiently compute 3ont φ $M(x)=1 \Leftrightarrow \varphi$ satisfiable

- Better proof: φ has Ot $^{\prime} \mathrm{Tog}^{\prime} \mathrm{S}_{1}$) W/ vatiables (and size),

Lett be C_{i} sghd on memory ocation accessed Chech C_{1+1} follows from C_{i} assuming state

