CS/7480: Topics in Programming Languages:
Probabilistic Programming

Lecture 8: Approximate Inference

Instructor: Steven Holtzen
Place: Northeastern University
Term: Fall 2021

Course webpage:
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

Course Updates

* Updated project online (dated Oct. 4 now)
e Resolved an issue with the parser (thanks Luke)

e Reading next time: Semantics of Probabilistic
Programming: A Gentle Introduction

* Pick the next paper

Approximate Inference

* By far the most common inference algorithm in
probabilistic programming languages

* Broad families:

* Direct methods
* Direct sampling, importance sampling
* Particle filtering

e Local search methods
* Markov-Chain Monte-Carlo

* Optimization methods
e Variational inference

References

* Chapter 11: Importance
Sampling

* Chapter 12: Markov-
Chain Monte Carlo

* Chapter 10: Variational
inference

CS7480

Why Approximate?

1. More expressive languages

* Only requires the ability to draw a sample or evaluate a
density on a point

* Allows for “universa
complex control flow

|”

languages that permit very

2. "Any-time” inference behavior
* Trade computation time for accuracy of estimate

3. Orthogonal scaling characteristics to exact
inference

Importance Sampling

e Suppose you have a program that’s hard to draw
samples from directly:

x ~ flip 0.00001;
y ~ flip 0.000001;
observe (&& X V);
return X

* |dea of importance sampling: find a new program:
1. Thatis easy to sample from

2. Thatis close (in some measure of distance) to the
original program

Importance Sampling

mm——

—)

* Assume that p(x) is hard to sample from and q(x) is easy to
sample from

* q(x) called proposal distribution
* Must contain p(x) within its support

* Goal: Approximate some expectation Ej, [f]

CS7480 7

Importance Sampling A‘,@

3

* Definitions
* Let () be a sample space
* p(x) and g(x) be distributions on)
* f: Q) = R be arandom variable

S
p(x) 1
=D pl@) () = 3 s) @) = Bolu(e) f@)] = g 3 wlz) ()
xeld EQV x=1
I % w Where xS ~ q(x)
Defn of Introduce q Defn of
Expectation expectation

CS7480 8

Importance Sampling Example

P !

z ~ flip 0.7; z ~ flip 0.5;
y ~ flip 0.4; y ~ flip 0.5;
return z return z

2y | py) lazy) | wey)

1 1 0.7x0.4 0.5x0.5 0.7x0.4

0ExX0C =1.12 Thenl, query prob is

0 0 0.3x0.6 0.5x0.5 (13xa6__072 ~5(1.12+1.68) ~ 0.93
0.5x0.5 '

1 0 0.7x0.6 0.5x0.5 0.7x0.6 _
0.5x0.5

To see that it’s correct asymptotically, note that

1.12 x 0.25 + 1.68 x 0.25 = 0.7 ?

Self-Normalized Importance Sampling

* It is often the case that we only know how to
compute the unnormalized probability of p(x)

x ~ flip 0.00001;
y ~ flip 0.000001;
observe (&& X V);
return X

Pr(z =T,y =T) = 0.00001 x 0.000001

* We can still use importance sampling, but we must
estimate the normalizing constant and the query
simultaneously

Self-Normalized Importance Sampling

+ Let p(x) = %p(@

* Then, for x; ~ q(x),

Estimate of Z,, Regular IS estimator

CS7480

where w(xs) =

11

SNIS Example: Likelihood Weighted
P !

x ~ flip 0.00001; x ~ flip 0.00001;
y ~ f£flip 0.000001; y ~ flip 0.000001;
observe (|| x y); return x
return X
2]y | Pp@y) | axy)
1 1 0.0000 0.0000 0.000000001 ey e
=1 sampling where you
00001 00001 0.00000001 simultaneously
estimate Z and the
query
O O 0 0.999989 0
O 1 0.00001 0.00001 1

Z?f) xs)f where w(xs) = p(%).

CS7480

12

uide Programs

Variational Program Inference

Georges Harik Noam Shazeer
Harik Shazeer Labs Google Research
444 Ramona 1600 Amphitheatre Pkwy.

Mountain View, CA 94043
georges@ gmail.com

Palo Alto, CA 94301
noam@google.com

Abstract

We introduce a framework for representing a variety of
interesting problems as inference over the execution of
probabilistic model programs. We represent a “solution” to
such a problem as a guide program which runs alongside the
model program and influences the model program's random
choices, leading the model program to sample from a
different distribution than from its priors. Ideally the guide
program influences the model program to sample from the
posteriors given the evidence. We show how the KL-
divergence between the true posterior distribution and the
distribution induced by the guided model program can be
efficiently estimated (up to an additive constant) by
sampling multiple executions of the guided model program.
In addition, we show how to use the guide program as a
proposal distribution in importance sampling to statistically
prove lower bounds on the probability of the evidence and
on the probability of a hypothesis and the evidence. We can
use the quotient of these two bounds as an estimate of the
conditional probability of the hypothesis given the evidence.
We thus turn the inference problem into a heuristic search
for better guide programs.

Harik, Georges, and Noam Shazeer.
"Variational program inference." arXiv
preprint arXiv:1006.0991 (2010).

CS7480

Deep Amortized Inference for Probabilistic Programs

Daniel Ritchie
Stanford University

Paul Horsfall
Stanford University

Noah D. Goodman
Stanford University

Abstract

Probabilistic programming languages (PPLs) are a powerful modeling tool, able
to represent any computable probability distribution. Unfortunately, probabilistic
program inference is often intractable, and existing PPLs mostly rely on expensive,
approximate sampling-based methods. To alleviate this problem, one could try
to learn from past inferences, so that future inferences run faster. This strategy
is known as amortized inference; it has recently been applied to Bayesian net-
works [28, 22] and deep generative models [20, 15, 24]. This paper proposes a
system for amortized inference in PPLs. In our system, amortization comes in the
form of a parameterized guide program. Guide programs have similar structure
to the original program, but can have richer data flow, including neural network
components. These networks can be optimized so that the guide approximately
samples from the posterior distribution defined by the original program. We present
a flexible interface for defining guide programs and a stochastic gradient-based
scheme for optimizing guide parameters, as well as some preliminary results on
automatically deriving guide programs. We explore in detail the common machine
learning pattern in which a ‘local’ model is specified by ‘global’ random values
and used to generate independent observed data points; this gives rise to amortized
local inference supporting global model learning.

Ritchie, Daniel, Paul Horsfall, and
Noah D. Goodman. "Deep amortized
inference for probabilistic programs."
arXiv preprint arXiv:1610.05735
(2016).
13

Guide Programs

Sound Probabilistic Inference via Guide Types
Technical Report

Di Wang Jan Hoffmann Thomas Reps
Carnegie Mellon University Carnegie Mellon University University of Wisconsin
USA USA USA
Abstract

Probabilistic programming languages aim to describe and
automate Bayesian modeling and inference. Modern lan-
guages support programmable inference, which allows users
to customize inference algorithms by incorporating guide
programs to improve inference performance. For Bayesian
inference to be sound, guide programs must be compatible
with model programs. One pervasive but challenging con-
dition for model-guide compatibility is absolute continuity,
which requires that the model and guide programs define
probability distributions with the same support.

This paper presents a new probabilistic programming
language that guarantees absolute continuity, and features
general programming constructs, such as branching and
recursion. Model and guide programs are implemented as
coroutines that communicate with each other to synchronize
the set of random variables they sample during their execu-
tion. Novel guide types describe and enforce communication
protocols between coroutines. If the model and guide are
well-typed using the same protocol, then they are guaranteed
to enjoy absolute continuity. An efficient algorithm infers
guide types from code so that users do not have to specify the

Wang, Di, Jan Hoffmann, and Thomas Reps. types. The new programming language is evaluated with an

" e e s . . implementation that includes the type-inference algorithm
Sound prObabIIIStIC inference via gUIde and a prototype compiler that targets Pyro. Experiments

types_" Proceedings of the 42nd ACM show that our language is capable of expressing a variety
SIGPLAN International Conference on of probabilistic models with nontrivial control flow and re-

cursion, and that the coroutine-based computation does not
P rogramm i ng La nguage Des |gn and introduce significant overhead in actual Bayesian inference.

Implementation. 2021. CS7480

Guide Programs

Learning Proposals for Probabilistic Programs with Inference Combinators

Sam Stites™! Heiko Zimmermann™! Hao Wu' Eli Sennesh' Jan-Willem van de Meent'

lKhoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA
1{stites .s, zimmermann.h, wu.haol@, e.sennesh, j .vandemeent}@northeastern.edu

Abstract

We develop operators for construction of propos-
als in probabilistic programs, which we refer to
as inference combinators. Inference combinators
define a grammar over importance samplers that
compose primitive operations such as application
of a transition kernel and importance resampling.
Proposals in these samplers can be parameterized
using neural networks, which in turn can be trained
by optimizing variational objectives. The result is
a framework for user-programmable variational
methods that are correct by construction and can
be tailored to specific models. We demonstrate the
flexibility of this framework by implementing ad-
vanced variational methods based on amortized
Gibbs sampling and annealing.

Stites, Sam, et al. "Learning Proposals for
Probabilistic Programs with Inference
Combinators." Uncertainty in Artificial
Intelligence, 2021.

Importance Sampling Summary

e When does it work well?

* If you have a good proposal (close to the posterior
around the function over which you are computing the
expectation)

* When does it fail?
* If your proposal is “far away” from your true distribution

Local-Search Methods

Markov-Chain Monte Carlo

Direct vs. Local

* The approximate inference methods we’ve been
looking at so far are “direct” methods: each sample
is independent from the previous

* Local methods relax this assumption by allowing
samples to be dependent on one another

Markov-Chain Monte Carlo

. e

X

* |dea: sample the state space by picking a point and
making local moves

* If we make moves in the right way, we can ensure that

eventually this point will be distributed the same as p(x)

CS7480

19

Local Search Intuition

* Why might local search be a good idea? If we know
where to start!

x ~ flip 0.000000000001;

y ~ £flip 0.000000000000001;
observe (|| x y);

return X

e Start at the state {x=T, y=T} and make local moves
around this state

* For instance, changing one variable at a time

Markov Chains

(|7 e |nitial distribution on states
6.1 R e LetT(x' | x) denote
- @ probability of transitioning
from state x to x’
0
0.3

q * Describes a distribution over
states ({0 = {4, B, C}) attime t,
0. denoted Pr;(x)

@ * A steady state is defined:
P =) T 0P @)
X

Q .~

» Steady state does not always
exist, is not always unique

* Inthiscaseit’'sPr(X =B) =1

Markov-Chain Monte Carlo

* |Idea: Design a Markov chain whose stationary distribution is
equal to the distribution from which you want to sample

* To approximately draw a sample, run the chain for some finite
amount of time

X = true; 0s | X = true;
. y = true; —s |y = false;
x ~ tlip 0.5; return (&& X y) | e return (&& X Vy)
~ flip 0.5; 0.5

Y p ’

return (&& X y) (H\L ?05 i“SS 0.5
X = true; = | x = false;
y = false; y = false;

return (&& X Vy) 0.5 return (&& X Vy)

CS7480 22

Markov-Chain Monte Carlo

|

CCCCCC

Detailed Balance

* Suppose we want p(x) to be the stationary distribution

* We can choose T(x | x") so that the following detailed balance
condition holds:

pOT(x | x") =px)T(x" | x)
* We can prove that any transition matrix that satisfies
this has p(x) as its stationary dist:
imxmx') = ipoc'mx x')

= P(x')Z T(x1x")=p').

Unigueness of Fixed Points

* Detailed balance is enough to ensure that p(x) is a
stationary dist, but not strong enough to ensure it’s
the only one

* For uniqgueness and existence, chain must be:

* Irreducible: No disconnected states 6\ 8 N
LS

A
o O
* Aperiodic: no alternation between modes

O
3

Metropolis Algorithm

* How do we build a transition T that satisfies
detailed balance, aperiodicity, and irreducibility?

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHorLAs METROPOLIS, ARIANNA W, ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucuUsTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
EpwarDp TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

MANIAC |
Los Alamos, 1953

© Corbis Images
CS7480 26

Metropolis Algorithm

Very common

choice of g (‘| x)
Gaussian w/
mean at x

* Provide a transition g(x' | x)
e Symmetric:q(x' | x) =q(x1x")
* Full support: Foranyx,x' € Q,q(x" | x) >0

* “Fix it up” so that it’s guaranteed to be a valid Markov chain
for sampling from p(x)
e Starting from an initial state x € ()
1. Propose asample x’ ~ q(:] x)

2. Accept x’ with probability min (1 —2

* This chain is guaranteed to be aperiodic, irreducible, and
have stationary distribution p(x)

CS7480 27

Metropolis Algorithm

 |nitial Point

CCCCCC

Metropolis Algorithm

* Draw a sample from proposal g

CCCCCC

Metropolis Algorithm

 Accept x' with probability min (1,

|

CS7480

p(x)
p(x)

30

Metropolis Algorithm

* Propose new point

CCCCCC

Metropolis Detailed Balance

p(2)T(a' | z) = p(x)g(’ | z) min (1 P<~”’f’>)

p(x)

=mm((Da(e | 2), pa)a(e’ |2)) Because p=
= min (p(a)g(w | 2'), p(a')q(x |2)) Symmetry
:mm((2 q(z | "), p(x)q(|x’)> Reordering

— p(e')a(e |) min (1,)

" p(a’)
= p(x)T (x| 2')

Challenges for MCMC

* Slow mixing (aka. “random walk behavior”)
* Multi-modal distributions
 Distributions with “flat regions”

|

_/_L PGy

8

* Choice of proposal g is extremely important

Ways of Choosing q

* Gibbs sampling (coordinate-wise updates)

* For a joint distribution p({x;}), define q as
* (1) choose a random variable x;
* (2) re-sample from p(x; | xq, ", Xj—1, Xj+1, " » Xp)

* Momentum-based methods (Hamiltonian Monte-
Carlo, NUTS)

* |dea: make ”bigger steps” in boring regions (high
acceptance probability), slow down in trickier regions
(low acceptance probability)

Conclusion

| | . ‘ a;‘_’:sﬂ' . v i T
Rl - TR T B ' |
ki ’;'I”'H k. : Jhamiow:: |nferenCe

»
[F
‘ !'ﬁ ﬁ
o

§ Semantics § | Language |
B i

Design

* | Program
| Analysis

A B
1

“+

CS7480 35

