CS/7480: Topics in Programming Languages:
Probabilistic Programming

Lecture 7: Scaling Discrete Inference

Instructor: Steven Holtzen
Place: Northeastern University
Term: Fall 2021

Course webpage:
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

Course Updates

* Updated project online (dated Oct. 1 now)

Scaling Discrete Inference

* Goal: Scale exact inference to large discrete
probabilistic programs

e Why?
1. Discrete inference has lots of applications
2. Scalability is important: practical systems are large
3. Current existing systems struggle with discreteness

* How?
* Inference via compilation to circuits

Circuits for Probabilistic
Inference

History

e Circuits are a fundamental computing primitive

* Their relationship with complexity was introduced
by Shannon

The Synthesis of Two-Terminal Switching Circuits

By CLAUDE. E. SHANNON

* Proved that almost all Boolean functions
on n variables require circuits of size ©(2"/n), where
n is #variables

e First circuit lower bound

History: P vs NP

* Sipser, Michael. "Borel sets and circuit
complexity." Proceedings of the fifteenth annual
ACM symposium on Theory of computing. 1983.

BOREL SETS AND CIRCUIT COMPLEXITY

Michael Sipser*
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

There are strong relationships be-
tween Turing machine resource based com-
plexity and circuit complexity. In par-
ticular, it has been shown that Turing ma-
chine time, space, and reversal correspond
to (uniform) circuit size, width, and
depth, these relationships even holding
simultaneously [B, P, Sch, H, R]. This
suggests that one way to gain insight into
polynomial time would be to study the ex-
presive power of polynomial sized cir-
cuits. Perhaps the P=?NP cuestion will
be settled by showing that some problem in
NP does not have polynomial sized

circuits. Unfortunately, there are cur-
rently no known techniques for establish-
ing significant lower bounds on circuit
size for NP problems. The strongest re-
sults to date give linear lower bounds
[Pa], and it does not seem likely that
the ideas used there can go much beyond
that.

CS7480

Connection between
conciseness and
P/NP

|dea: Study Restricted Classes of Circuits

JHoxn. Axan. Hayk CCCP Soviet Math. Dokl.
Tom 281 (1985), Ne 4 Vol. 31 (1985), No.?

LOWER BOUNDS FOR THE MONOTONE COMPLEXITY
OF SOME BOOLEAN FUNCTIONS
UDC 519.95

A. A. RAZBOROV

The combinatorial complezity Ly of a Boolean function f(zy,...,Ty) is the least num-
ber of logical elements AND, OR and NOT necessary for its realization in the form of
a functional scheme. It is well known (see, for example, [1]) that there are Boolea
functions whose combinatorial complexity is an exponential function of the number of
variables. In a recent article [2], a natural sequence of Boolean functions

(1) fl(zlv‘"1xn1),f2(zl"~'szn2)1“-7fm(111"'1z’nm)s"'

was constructed, with Ly, > C™m, where C > 1 is a universal constant.

In this note we will restrict ourselves to the consideration of sequences of the form (1)
satisfying the following condition: the language {(¢1---&n,.)Im € N, fm(e1,...,6n,) =
1} in the alphabet {0,1} can be recognized by a nondeterministic Turing machine in
time which is polynomial in the length of the input n,, (i.e. it is an N P-language). Such
sequences will be called constructive.

It is interesting to obtain lower bounds on the combinatorial complexity of functions
from the constructive sequence (1), for example, in connection with the following remark
(derivable from the results of [3]): if there is a constructive sequence of the form (1) such
that

im logLys,,

m—oo logn.,

then P # NP. Apparently the strongest result obtained in this direction is found in [4), !
where an example of a constructive sequence (1) is constructed with Ly, > 2.51,y,.

bl

CS7480

Complexity: Modern Times

e Circuit complexity still hasn’t resolved P vs NP ®
* Proving lower bounds is extremely difficult

* Restricted circuit models easier to prove lower bounds
in, but become too restricted

* Much success in other domains (derandomization,
parallel algorithms, etc.)

Circuits in Al

e Circuit lower bounds proved unfruitful in
complexity, but the idea of circuits as a
computation model remained influential

* The Al community transitioned to studying these
objects in the context of knowledge representation
in the early 90s

Tractability vs. Expressiveness

Expressiveness and tractability in knowledge representation and reasoning'

HECTOR J. LEVESQUE’
Department of Compurter Science, University of Toronto, Teronte, Ont., Canada MS5S A4

AND

RONALD J. BRACHMAN
AT&T Bell Laboratories, 600 Mountain Avenue, 3C<439, Murray Hill, NJ 07974, U.S.A.

Received November 3. 1986
Revision accepted April 8, 1987

A fundamental computational limit on automated reasoning and its effect on knowledge representation is examined.
Basically, the problem is that it can be more difficult to reason correctly with one representational language than with another
and. morcover, that this difficulty increases dramatically as the expressive power of the language increases. This leads to a
tradeotf between the expressiveness of a representational language and its computational tractability. Here we show that this
tradeoft can be seen to underlie the differences among a number of existing representational formalisms, in addition to
motivating many of the current research issues in knowledge representation.

Key words: knowledge representation. description subsumption. complexity of reasoning. first-order logic, frames, semantic
nctworks, databases.

Levesque, Hector J., and Ronald J. Brachman. "Expressiveness and
tractability in knowledge representation and reasoning 1."
Computational intelligence 3.1 (1987): 78-93.

CS7480 10

Exploring the Landscape

Knowledge Compilation and Theory Approximation

BART SELMAN AND HENRY KAUTZ

AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. Computational efficiency is a central concern in the design of knowledge representation
systems. In order to obtain efficient systems, it has been suggested that one should limit the form of
the statements in the knowledge base or use an incomplete inference mechanism. The former
approach is often too restrictive for practical applications, whereas the latter leads to uncertainty
about exactly what can and cannot be inferred from the knowledge base. We present a third
alternative, in which knowledge given in a general representation language is translated (compiled)
into a tractable form—allowing for efficient subsequent query answering.

We show how propositional logical theories can be compiled into Horn theories that
approximate the original information. The approximations bound the original theory from below
and above in terms of logical strength. The procedures are extended to other tractable languages
(for example, binary clauses) and to the first-order case. Finally, we demonstrate the generality
of our approach by compiling concept descriptions in a general frame-based fanguage into a
tractable form.

Selman, Bart, and Henry Kautz. "Knowledge compilation and
theory approximation." Journal of the ACM (JACM) 43.2 (1996):
193-224.

CS7480 11

Mapping the Landscape

Journal of Artificial Intelligence Research 17 (2002) 229-264 Submitted 12/01; published 9/02

A Knowledge Compilation Map

Adnan Darwiche DARWICHEQ@CS.UCLA.EDU
Computer Science Department

University of California, Los Angeles

Los Angeles, CA 90095, USA

Pierre Marquis MARQUIS@QCRIL.UNIV-ARTOIS.FR

Université d’Artois
F-62307, Lens Cedex, France

* Introduced a formal notion of conciseness (aka
succinctness)

Definition 3.1 (Succinctness) Let Ly and Lo be two subsets of NNF. Ly is at least as succinct
as Lo, denoted Ly < Lo, iff there exists a polynomial p such that for every sentence a € Lo, there

exists an equivalent sentence 3 € Ly where |3| < p(|a|). Here, |a| and |B| are the sizes of a and (3,
respectively.

CS7480 12

From KR to Probabilistic Inference

A Logical Approach to Factoring Belief Networks

Adnan Darwiche
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095

darwiche@cs.ucla.edu

Darwiche, Adnan. "A logical approach to factoring belief
networks." KR 2 (2002): 409-420.

CS7480 13

From search to circuits

Weighted Model Counting

* Recall the definition of a weighted Boolean
formula, a pair (@, w):
* @ is a Boolean sentence

* w:L — R a weight function that maps literals (variable
assignments) to real values

e Valuation : [(p,w)]v = {(1)_[[@) w(l) ifvEe

otherwise

* The weighted model count of a weighted Boolean
formula is:

WMC(p,w Z[[Py W

Solving WMC: Tables

w={f; »01,f;»09,f, 03 f;~ 0.7}

®=fV
f1 f2 [(p, w)]v
T T 0.1 0.3
T F 0.1 % 0.7
F T 0.9 * 0.3
F F 0

* Then, WMC is sum of the rows

Weighted Boolean Formulae as a
PPL

Sipg Weighted
. Boolean
° Formulae 2ar in # variables

Conciseness

Tabular
* Linear time inference
* Size of 2™ for n variables

How do we show this? Inference Tractability
(In the size of the model)
Give reductions

between them!

CS7480 17

Reducing WMC to SimPPL
nference

Assume w(4) = 1 — w(4)

£1 ~ flip w(f1);
WMC(f1 A f2,w) £2 ~ flip w(fy);
return (&& f1 £2)

CS7480 18

Reducing SImPPL Inference to WMC

fl1 ~ flip 0.1;
f2 ~ flip 0.3;
return (|| £f1 £2)

WMC(fiV fo,{fi » 0.1, f; » 09,f, » 03,5 - 0.7})

CS7480 19

Handling Observations

fl1 ~ flip 0.1;

£2 ~ flip 0.3;
observe (|| f1 £2)
return f1l

WMC(f1,w)
WMC(fLV fo,w)’

w={fy» 0.1, ~09,f+~03,f; - 0.7]

* What did this buy us so far ? Nothing!
* Inference for arbitrary WBF is still hard

CS7480 20

Popping Up

* So, WMC and SimPPL are basically the same probabilistic programming
language
 Why do this translation?

e SimPPL is very simple; this reduction may not hold for programming
languages with more features

* We can design inference algorithms on this “assembly language” (similar to
motivation of theorists)

Advanced
PPL \\
SimPPL/WBF
N
Conciseness Circuit
Tabular

Inference Tractability
(In the size of the model) 21

Decomposing WMC

* We can decompose a big WMC problem into two
smaller ones (for any variable A)

WMC(p,w) =WMC(p | A,w) x w(A) + WMC (¢ | A, w) x w(A)

f1 f2 [(p, w)]v
T T 0.1+0.3
; T 0.9 % 0.3

CS7480 22

Solving WMC: Search

Solving WMC: Search Circuit

* To compute WMC, plug in weights for
/ AN f1 and f2 to evaluate

* Inference complexity: size of circuit

@ ®
/N 7N
[s [©
/N /N
oL o

&’(m\« L'\w

Not All Circuits Compute WMC

* Consider the following circuit for f; V f, V f3

©
A RN

L &

* What’s wrong? It’s over counting

Requirements for WMC Circuits

1. Sum nodes must respect:

W (a\/@@ X: WW@* WM ()

2. Product nodes must respect:

NS gd\@\\@\: wm e Q) x W ()

Popping Up

Advanced
PPL \\
SimPPL/WBF

Conciseness

Inference Tractability
(In the size of the model)

N
WMC Circuit

Tabular

27

Sufficient Conditions for Product
Decomposition

* Todecompose (» require that @ and 5 do not
/ \
* ©

reference the same variables
* called decomposability

Sufficient Conditions for Sum
Decomposition

* To decompose WM ((éD\\

o F

require that a A f E F (no overlapping worlds)

* Called determinism
* Not a great name; much better name is unambiguous

WMC Circult

RN
@ ®
/N N
oo b ®
/N /N

* Check Determinism
* Check decomposability

Sharing Structure

e Suppose we have a search circuit with redundant
sub-circuits

ﬂ—\ xor B Xbr L

Conclusion

* Inference via compilation is a powerful framework
for PPL inference

Advanced
PPL \\
SimPPL/WBF
N
Conciseness WMC Circuit
Tabular

Inference Tractability
(In the size of the model)

CS7480

32

Extra slides

Applications of Discrete Inference

* Systems reliability and diagnosis
* Networks
 Hardware
* Supply chains
* Etc...

e Text models
* Hybrid models

* Many programs contain discrete sub-programs

Hardware Diagnosis

Scalability Challenge in Hardware

Network Reliability & Verification
with PPLs

* Smolka, Steffen, et al. "Scalable verification of
probabilistic networks." Proceedings of the 40th
ACM SIGPLAN Conference on Programming

Language Design and Implementation. 2019.

e Gehr, Timon, et al. "Bayonet: probabilistic inference
for networks." ACM SIGPLAN Notices 53.4 (2018):
586-602.

Discreteness is Hard

* Many advanced approximate inference methods
rely on program differentiability

