CS/7480: Topics in Programming Languages:
Probabilistic Programming

Lecture 5: Exact Inference

Instructor: Steven Holtzen
Place: Northeastern University
Term: Fall 2021

Course webpage:
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

Course Update

* Soon we will be switching to a paper-reading style
course

* Check course webpage for updated calendar

| will be picking the papers initially and we will
likely spend a week or so on them to continue
ramping up

Project Update

* A couple of minor bugs with the spec already
found! Thanks John and Luke

1. Draw 5000 total samples for the sampling problems;
spec was ambiguous

2. A problem with latex formatting for the parser

* I’ll upload a fixed spec tomorrow, let you know on
teams

The PPL Research Landscape

§ Semantics § |

Language |\

Design

CS7480

o — Inference

[

~ | Program
Analysis

Inference Overview

* Automated probabilistic inference was one of the
very first applications of computers

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHorLAs METROPOLIS, ARIANNA W, ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucuUsTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
EpwarDp TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

MANIAC |
Los Alamos, 1953

© Corbis Images
CS7480

Inference Overview

The 10 Algorithms with the Greatest Influence on the Development and Practice of Science and Engineering in the 20th Century

C @& cs.gmu.edu/~henryh/483/top-10.html

- Computing in Science & Engineering

Metropolis Algorithm for Monte Carlo

Simplex Method for Linear Programming

Krylov Subspace Iteration Methods

The Decompositional Approach to Matrix Computations
The Fortran Optimizing Compiler

QR Algorithm for Computing Eigenvalues

Quicksort Algorithm for Sorting

Fast Fourier Transform

Integer Relation Detection

Fast Multipole Method

CS7480

Top 10 Algorithms

Resources on Inference

* Murphy, Kevin P. Machine
learning: a probabilistic
perspective. MIT press,
2012.

e Chapters 20, 21, 22, 23,
24

Machine Learning

A Probabillistic Perspective

Kevin P. Murphy

CS7480 7

Resources on Inference

* Darwiche, Adnan. Modeling
and reasoning with
Bayesian networks.
Cambridge university press,

MODELING AND REASONING 20009.
with

Adnan Darwiche

BAYESIAN NETWORKS

* Majority of the book is on
inference

 Especially good reference
for discrete inference

CS7480 8

Resources on Inference

PROBABILISTIC GRAPHICAL MODELS

PRINCIPLES AND TECHNIQUES

DAPHNE KOLLER AND NIR FRIEDMAN

* Koller, Daphne, and Nir
Friedman. Probabilistic
graphical models:

principles and techniques.
MIT press, 2009.

* Basically the whole book

CS7480

400

Physics

Application

Ising model

10

//upload.wikimedia.org/wikipedia/commons/e/e6/Ising_quench_b10.gif
CS7480

https:

Source

Application: State Localization

truth pf, error rate 0.440

ropf, error rate 0.340 PF

[Murphy 2021, pg. 835]

X1 ‘l|y1 :l)

T 10

Figure 23.8 Belief states corresponding to Figure 23.7. (a) Discrete state. The system starts in state
2 (red x in Figure 23.7), then moves to state 3 (black * in Figure 23.7), returns briefly to state 2, then

switches to state 1 (blue circle in Figure 23.7), etc. (b) Horizontal location (PF estimate). Figure generated
by rbpfManeuverDemo, based on code by Nando de Freitas.

CS7480 11

Application

Qo ?
4 * N\
T, ﬁ)
v
i O
Y
Yil .
A lﬁj
N\ Nj
BO
1Q

. Linguistics

Latent Dirichlet Allocation
[Murphy 2012, pg. 981]

CS7480

12

Application: Biology

communications biology

Explore content v About the journal v Publish with us v

nature > communications biology > articles > article

Article | Open Access | Published: 24 February 2021

Universal probabilistic programming offers a powerful
approach to statistical phylogenetics

Fredrik Ronquist &, Jan Kudlicka, Viktor Senderov, Johannes Borgstrom, Nicolas Lartillot, Daniel

Lundén, Lawrence Murray, Thomas B. Schon & David Broman

Communications Biology 4, Article number: 244 (2021) | Cite this article

CS7480

13

Application: Player Matchmaking

@ microsoft.com/en-us/research/project/trueskill-ranking-system/ Vi¢ a

=' Microsoft | Research Our research « Programs & events Blogs & podcasts + About + Sign up: Research Newsletter All Microso

TrueSkill™ Ranking System

Established: November 18, 2005

Overview Publications Groups

The TrueSkill ranking system is a skill based ranking system for Xbox Live developed at Microsoft Research. The purpose of a ranking system
is to both identify and track the skills of gamers in a game (mode) in order to be able to match them into competitive matches. TrueSkill has
been used to rank and match players in many different games, from Halo 3 to Forza Motorsport 7.

An improved version of the TrueSkill ranking system, named TrueSkill 2, launched with Gears of War 4 and was later incorporated into Halo
5.

The classic TrueSkill ranking system only uses the final standings of all teams in a match in order to update the skill estimates (ranks) of all
players in the match. The TrueSkill 2 ranking system also uses the individual scores of players in order to weight the contribution of each
player to each team. As a result, TrueSkill 2 is much faster at figuring out the skill of a new player.

CS7480 14

Inference and PPLs

* In many (successfull) cases, inference came before
the associated probabilistic programming language

Stan https://mc-stan.org/

CS7480 15

Bayesian Parameter Estimation

isBiasedCoin ~ flip 0.1;
if isBiasedCoin

flipl

flip2

flip3
} else {

flipl

flip2

flip3
}

o~

o~

o~

flip
flip
flip

flip
flip
flip

{

o O

observe (&& flipl

£1ip3));

0.01;
0.
0.01;

01;

.53
.53
.53

(&& flip2

return isBiasedCoin

Have a prior probability
that the coin is biased

Given three observations,
compute the posterior probability
that the coin is biased

Called Bayesian learning (or parameter
estimation)

Inference and PPLs

* We saw how the PL community discovered PPLs
* Semantics, verifying randomized algorithms

* The Al community discovered PPLs from the
perspective of making inference accessible and
general

» “Separate modeling from reasoning”
* Same motivation as graphical models

Inference Landscape

* Exact inference
* Poly-tree algorithm
* Variable elimination
* Join-tree algorithm
* Inference via compilation

* Approximate Inference (next time)
* Direct sampling
* Importance sampling
* Markov-Chain Monte Carlo (MCMC)
* Inference via Optimization

Exact Inference

Conciseness & Tractability

* The cost of inference is often in tension with the
conciseness of the language

* We say a PPL A is more concise than PPL B if there
is a polynomial space reduction from any program
written in B to a program written in A

* Pretty informal definition, relies on a notion of equality
between probabilistic programs in different languages
that we yet to define

Conciseness Reduction

e Reduction from Tabular to S1imPLL statements

A 1B Pr
1 1 0.2
1 0 0.3
0 1 0.4
0 0 0.1

—

= .

~—

B ~ flip 0.6;
if B {

A ~ flip g
} else {

A ~ flip 0.75
}

* These programs are equal if they have the same

semantics

[s]({A— T,B— F}) = 0.4 x 0.75 = 0.3

CS7480

21

Tables are Less Concise than
S1mPPL Programs

e Consider the follow family of SimPPL programs

A ~ flip 0.1;
B ~ flip 0.2;
C ~ flip 0.3;

* Call this a family of programs Indep,

e Claim: the size of a tabular representation of
Indep, grows exponentially in n

e = SimPPL is more concise than tables

Tractability—Conciseness Tradeoff

SimPPL
* NP-hard inference test
* Programs can be linear in # variables

Conciseness @

Tabular
* Linear time inference
e Size of 2™ for n variables

Inference Tractability
(In the size of the model)

CS7480 23

Inference via Compilation

e Can we find an interesting probabilistic model
somewhere in between SimPPL and Tabular that
strikes a different tradeoff?

 Why is this this useful? We can potentially compile
SimPPL into this representation for inference

Compiler Magic Language
SimPPL (this step might be expensive * Fast inference ©
Slow inference :(because the target language * More concise than
Very concise © will be less concise) tables

CS7480 24

Circults

* An expression tree that describes a sequence of
arithmetic computations

* A well-known primitive in complexity theory

@ * Syntax:
* Internal nodes: Add (+) and
/ \ multiply (x)
@ GB * Leaf nodes: Real values or variables
/ N / \ * Semantics:

 Compute bottom-up, substituting
0\ 0.\ P(0 7 variables for values

Encoding Tables to Polynomials

* We can write a probability distribution as a multi-linear
polynomial

1 1 0.2
1 0 0.3
0 1 0.4
0 0 0.1

FO4, 28,24, A8) = 0.224A5 + 0.3XM 4 A5 + 0.4X s A5 + 0.1A 4\

* Semantically equivalent: to lookuparow 4 =1,B =0,
set A g =1, A4 =0,A =0, \g =1

CS7480 26

Representing Polynomials as Circuits

FOa, A8, A4, AB) = 0.224AB + 0.3A4 5 + 0.4X 425 + 0.1M 4 \p

* This circuit is called the enumeration circuit

Representing Polynomials as Circuits

FO4, 2B, A4, AB) = 0.224AB + 0.3A4 5 + 0.4 425 + 0.1X s \p

This proves circuits
are at least as
concise as tables

Circults

* How hard is inference?

D
)R
®) @ ©
/1N /| \ /\\ VAR

0.1 P >8 03 \A-XE o ‘):A ke O\ e

e For the above circuit, it’s linear time in the size! Do
a single pass bottom-up to compute any probability

e Fast inference ©

 However... this enumeration circuit is large! It’s
exponential in #variables, just like tables

* Not concise ®

Circuits: Conciseness

e Can circuits be smaller than tables? Yes!

* But they have to be different kinds of circuits than
enumeration circuits

* Suppose A and B are independent
* Then, we know Pr(4, B) = Pr(4) XPr(B)

A 1B Pr
1 1

0.04

Looks bigger, but
scales linearly as

number of variables

grows
CS7480 30

Tractability—Conciseness Tradeoff

SimPPL
* NP-hard inference test
* Programs can be linear in # variables

Conciseness

Tabular
* Linear time inference
e Sijze of 2™ for n variables

Inference Tractability
(In the size of the model)

CS7480 31

Inference via Compilation

Compiler Circuit Language
SimPPL (this step might be expensive * Fastinference ©
Slow inference :(because the target language * More concise than
Very concise © will be less concise) tables

* Next time:
* More circuit languages
* How to compile

CS7480 32

Inference via Compilation

* Been applied to do fast inference in a variety of
domains
* Discrete Bayesian networks

* Chavira, Mark, and Adnan Darwiche. "Compiling Bayesian networks with local structure." [JCAI.

Vol. 5. 2005.

Chavira, Mark, Adnan Darwiche, and Manfred Jaeger. "Compiling relational Bayesian networks
for exact inference." International Journal of Approximate Reasoning 42.1-2 (2006): 4-20.

* Probabilistic logic programs

Fierens, Daan, et al. "Inference in probabilistic logic programs using weighted CNF's." arXiv
preprint arXiv:1202.3719 (2012).

* Discrete probabilistic programs

Holtzen, Steven, Guy Van den Broeck, and Todd Millstein. "Scaling exact inference for discrete
probabilistic programs." Proceedings of the ACM on Programming Languages 4.00PSLA (2020):

1-31.

Conclusion

* One of the main jobs of a probabilistic
programming language designer is to strike a useful
balance between tractability and expressivity

e Research direction: exploring the space of
languages with different tractability/conciseness
tradeoffs

More About TPMs

* A growing field

* Not just for discrete models |

Inference via Compilation

e Can we find an interesting probabilistic model
somewhere in between SimPPL and Tabular that
strikes a different tradeoff?

 Why is this this useful? We can potentially compile
SimPPL into this representation for inference

Compiler Magic Language
SimPPL (this step might be expensive * Fast inference ©
Slow inference :(because the target language * More concise than
Very concise © will be less concise) tables

CS7480 36

