CS/7480: Topics in Programming Languages:
Probabilistic Programming

Lecture 5: SimPPL Inference

Instructor: Steven Holtzen
Place: Northeastern University
Term: Fall 2021

Course webpage:
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

Semantics

* You’ve now seen the semantics for a simple
language... you will see these in some papers!

* Let’s take a historical tour through semantics as a
discipline now that we have an example of our own
semantics

* Place yourself in the broader literature (one of the
course goals)

* See some hard open problems

Program Semantics as a Discipline

6. Formal Language Definition

A high level programming language, such as ALcoL,
ForTrAN, or CoBoL, is usually intended to be implemented
on a variety of computers of differing size, configuration,
and design. It has been found a serious problem to define
these languages with sufficient rigour to ensure compat-
ibility among all implementors. Since the purpose of com-
patibility is to facilitate interchange of programs ex-
pressed in the language, one way to achieve this would be to
insist that all implementations of the language shall “‘sat-
isfy”” the axioms and rules of inference which underlie
proofs of the properties of programs expressed in the
language, so that all predictions based on these proofs will
be fulfilled, except in the event of hardware failure. In
effect, this is equivalent to accepting the axioms and rules
of inference as the ultimately definitive specification of the
meaning of the language.

CS7480

Hoare, Charles Antony Richard.
"An axiomatic basis for computer
programming." Communications
of the ACM 12.10 (1969): 576-
580.

Semantics are a tool to abstract away
details of the implementation

Formally prove programs have
certain behaviors

Given as logical relations between
input and output states

In many cases, the validity of the results of a program
(or part of a program) will depend on the values taken
by the variables before that program is initiated. These
initial preconditions of successful use can be specified by
the same type of general assertion as is used to describe
the results obtained on termination. To state the required
connection between a precondition (P), a program (Q)
and a description of the result of its execution (R), we
introduce a new notation:

P{Q} R.

Tiny Timeline

;I

"An axiomatic basis for
computer programming."

1969

Probabilistic Program Semantics

* Languages are too informal:
meaning given by just what the
program compiler does!

* We can’t implement things
consistently or prove things correct

* Need formal system for reasoning

* Introduced logical relations

E. Dijkstra

CS7480 4

Denotational Semantics

Towarp A MATHEMATICAL SEMANTICS
FOR
CoMPUTER LANGUAGES

0. INTRODUCTION, The idea of a mathematical semantics for a

language is perfectly well illustrated by the contrast between
numerals on the one hand and numbers on the other. The nurerals
are expressions in a certain familiar language; while the numbers
are mathematical objects (abstract objects) which provide the
intended interpretations of the expressions. We need the ex-
pressions to be able to communicate the results of our theorizings
about the numbers, but the symbols themselves should not be con-
fused with the concepts they denote. For one thing, there are
many different languages adequate for conveying the same concepts
(e.g. binary, octal, or decimal numerals) . For another, even in
the same language many different expressions can denote the same
concepts (e.g. 2+2, 4, 1+{1+(1+1)), etc.), The problem of ex-
plaining these equivalences of expressions (whether in the same

or different languages) is one of the tasks of semantics and is
much too important to be left to syntax alone. Besides, the
mathematical concepts are required for the proof that the various

equivalences have been correctly described.

CS7480

D. Scott C. Strachey

Scott, Dana S., and Christopher
Strachey. Toward a mathematical
semantics for computer languages.
Vol. 1. Oxford: Oxford University
Computing Laboratory,

Programming Research Group,
1971.

Denotational Semantics

Semantically speaking each of the numerals is meant to ° Introduced SemantiC bracket.

denote a unique number. Let N be thc set of numbers, (The L. .
elements of Nm]l are expressions; while the elements of N are d|5t|nCt|0n between SyntaX
mathematical objects conceived in abstraction independently of and semantic domain
notation.) The obvious principle of interpretation provides a . . .
function, the evaluattion mapping, which we might call U, and * Semant|CS ShOUId be IndUCtIVE
which has the functional character: on the syntax

U oNml o+ N e Key problem: notion of program
Thus for each v € Nm1, the function value equiva/ence

ATt

7§ the number denoted by v.

How is the evaluation function t} determined? Inasmuch as
it is to be defined on a recursively defined set Nmlt, it is reason-
able that AJ should itself be given a recursive definition. Indeed
by following exactly the four clauses of the recursive definition Nmi,

we are motivated by our understanding of numerals to write:

Vel =0

Ji11 = ¢

Vivol = 2-VIvi
A vil = 2Vlvi+:

CS7480 6

Denotational Semantics

* Why the fuss with functions, semantic domains,

etc.? Dijkstra had a problem: Loops

“while B do S”
defined as that of the call
“whiledo(B, S)”
of the recursive procedure (described in ALGOL 60 syntax):

procedure whiledo (condition, statement);
begin if condition then begin statement;

whiledo (condition, statement) end
end

Although correct, it hurts me, for I don’t like to crack an egg with a
sledgehammer, no matter how effective the sledgehammer is for doing so.
For the generation of theoretical computing scientists that became involved
in the subject during the sixties, the above recursive definition is often not
only “the natural one”, but even “the true one”. In view of the fact that we
cannot even define what a Turing machine is supposed to do without appeal-
ing to the notion of repetition, some redressing of the balance seemed indi-

cated.
CS7480

Prentice-Hall Series in Automatic Computation
I- =] I-

programming
gdsger

W
dijkstra

Tiny Timeline

™y

"An axiomatic basis for
computer programming.” D. Scott C. Strachey

1969 1971

Probabilistic Program Semantics

* Denotational semantics and recursive
decompositions of programs

* Syntactic and semantic domains

* Associate each program term with a
mathematical function

* Gave a way to formalize loops by working in
the semantic domain!

* Entire research program of giving
denotational semantics to different kinds of
programs...

CS7480 8

Kozen 19/9

* Kozen, Dexter. "Semantics of probabilistic programs." 20th Annual
Symposium on Foundations of Computer Science (sfcs 1979). IEEE, 1979.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 22, 328-350 (1981)

Semantics of Probabilistic Programs
DEXTER KOZEN

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Revised January 5, 1981

* Gave 4 reasons for studying probabilistic program semantics

CS7480 9

Kozen’s Motivation

1. Clearing up the difference between endogenous vs. exogenous
randomness

2. Match existing ’orogram’s behavior: languages like ALGOL60 (!) have
rand and loops!

* Formalized an incredibly powerful language (but no conditioning or functions)

3. A formal system for verifying randomized algorithms l I
D

4. Connect existing denotational semantics theory with probability
(Loops!)

CS7480

10

Tiny Timeline

F¥ B¢
\ | vt
L b v \v

D. Scott C. Strachey

i

D. Kozen
1969 1971 1979

Probabilistic Program Semantics

* Connected randomized algorithms
and denotational semantics
* Gave a formal basis for reasoning
about both
* Formalized a special language
e Continuous distributions
* Loops
* No observations
* No functions

CS7480 11

Modern Challenges

e Semantics of PPLs is still a vibrant modern research
topic

A Domain Theory for Statistical Probabilistic Programming
MATTHIJS VAKAR, Columbia University, USA DIStI ngu IShed Pa pe r

OHAD KAMMAR, University of Oxford, UK PO P L’ 19
SAM STATON, University of Oxford, UK

Contextual Equivalence for a Probabilistic Language with
Continuous Random Variables and Recursion
2018, some work

MITCHELL WAND, Northeastern University d
one here!

THEOPHILOS GIANNAKOPOULOS, BAE Systems, Burlington MA
ANDREW COBB, Northeastern University

e Peruse POPL and PLDI for many dozens more!

e Questions:

* How rich can we make the language and still find an
interesting/useful semantic domain?

 What can we prove about probabilistic programs?

More on Semantics Basics

* Gunter, Carl A. Semantics of
programming languages:
structures and techniques.
MIT press, 1992.

* Chapter 1 has a fantastic
R overview and whirlwind
e e tour of semantics

Programming . _
Languages ° Enantes Contaln.a nice
history of the topic

* Unfortunately no book on
probabilistic program
semantics (yet)

Semantics vs. Implementation

* Semantics tell you what a program does...

* They don’t tell you how to run the program
efficiently

SimPPL Inference

How Hard Is S1mPPL Inference?

* NP-Hard in the size of the program

* To show this, give a reduction: show that we can
use SimPPL inference to solve a 3SAT problem

A ~ flip 0.5;
B ~ flip 0.5;
(AVBVC)AN(AV-BVD) C ~ flip 0.5;
D ~ flip 0.5;
return (&& (|| (|| A B) C)
(|l ([] a(tB)) D)

Size does not

blow up

CS7480 16

Inference

2
N
x ~ flip 0.3;
if x {
y ~ flip 0.1;
} else {

y ~ flip 0.2;

}
return y; p
%

By Searc

x =T;
if x {
y ~ flip 0.1;
} else {
y ~ flip 0.2;
}

return y;

Called a weighted
trace; a pair (t, w)

y ~ flip 0.2;

)

eturn y;

x =T;
if x {

} else {

}

return y;

~

y = F;

y ~ flip 0.2;

/

* Recursively branch on all possible values to random

variables

* Sum up total probability of outputting true

CS7480

17

@)

Observations
y = T;
//‘\'03*0"&\ 1 ;lfef]{.ip 0.2;
x = T; e :
it x { W \cerarn 2
y ~ flip 0.1;
@) } else {

y ~ flip 0.2;

AN }
Q;f observe y; Ca«\
x ~ flip 0.3; return x;
if x {

y ~ flip 0.1;
} else {

y ~ flip 0.2;
}
observe y;

return x Gfi_

observe y;
return x;

* Discard all paths that violate observation
* Compute normalizing constant by summing probability of all non-discarded paths

CS7480 18

Formalization of Search

* We can give a precise inductive description of how this
search procedure computes probabilities

* Definea map Search: s — [Trace]—= [Trace]

e Given a list of input weighted traces, yields a list of output
weighted traces

Search([{y =T}, 04),{y =F}0.6)])(z~flip 0) =
[({y=T,2z=T}, 0.4%0),
({y=T,z=F}, 0.4*(1-0)),
({y=F,z=T}, 0.6%0),
({y=F,z=F}, 0.6*(1-0))]

Be careful
about

overlapping
hames! CS7480 19

Inference Correctness

* Formally, an inference algorithm is correct if it
agrees with the semantics, i.e. it satisfies that for
any program s; return e:

Slightly
1 informal
7 % Z w = [s ; return e

{(t,w)|(t,w)€esearch(D)(s),t}=[e]}

e / is the normalizing constant (sum over all traces)

* Read: the sum of the weights of all traces that
satisfy the return expression is equal to the
semantics of the program

CS7480 20

Inference Correctness Tiny
Example

e First build the set of traces:

Search(())(x ~ flip 0.1; return x) = [{x =T},0.1),({z = F},0.9)]

* Now we can compare the semantics and search-
based inference:

[x ~ flip 0.1; return x]| =0.1 = Z w
{(t,w)€[({z=T1},0.1),({z=F},0.9)]}Atl=[=])

When Inference by Search Fails

e Size of search tree is exponential in number of
random variables

a ~ flip 0.1;
if a {

b ~ flip 0.3
} else {

b ~ flip 0.4
}
if b {

c ~ flip 0.3
} else {

c ~ flip 0.4
}

Approximate Inference

 What if we are willing to relax our notion of
inference correctness to approximate correctness

|s; return e| ~ Inference(s; return e)

Direct Sampling

* Run the program many times and build a set of
(unweighted!) traces

if x {
y ~ flip 0.1; T T T
} else {
y ~ flip 0.2; T F F
}
return y; F F F
T T T

* Then, the probability of the query is given by the
fraction of traces that satisfies the query (here, %)

CS7480

24

Direct Sampling with Observations

* Run the program many times and build a set of
(unweighted!) traces

if x {

y ~ flip 0.1;
} else {

y ~ flip 0.2;
}
observe y;
return y;

T T T
T T T

* Then, the probability of the query is given by the
fraction of accepted traces that satisfies the query
(here, 2/2)

CS7480

25

Direct Sampling Correctness

* Denote by Samplen(s ; return e) the
fraction of traces that satisfies the query

* Then, it is possible to show that:

lim Sample, (s; return e) = [s; return e
n—oo

* In practice, we can’t run forever, so we choose
some finite n to get an approximation
* How big should n be?!

When Direct Sampling Works

* Hoeffding’s inequality lets us bound n nicely if
there are no observations

As n grows, this probability
of error gets smaller

* Let € > 0, n be # samples. Then: exponentially quickly!

o

e For instance, to be within t = 0.001 of the true
answer with probability @ = 0.99 requires ~16k
samples

e Logarithmic in a, quadraticin t

[s; return e] — Sample, (s; return e)

Zt)SQe

CS7480 27

When Direct Sampling Fails

 When the probability of accepting a sample is low

x ~ flip 0.000001;

y ~ £lip 0.000000000001;

z ~ flip 0.00000000000000001;
observe (&& X (&& yV 2));
return X

Conclusion

* You're now ready to do the SimPPL project!

Extra slides

Semantics of IBAL

 Pfeffer, Avi. 2005. The Design and Implementation
of IBAL: A General-Purpose Probabilistic Language.
Harvard Computer Science Group Technical Report
TR-12-05.

1.4 Semantics

In specifying the semantics of the language, it is sufficient to provide semantics
for the core expressions, since the syntactic sugar is naturally induced from them.
The semantics is distributional: the meaning of a program is specified in terms of
a probability distribution over values.

1.4.1 Distributional Semantics

We use the notation MJe] to denote the meaning of expression e, under the
distributional semantics. The meaning function takes as argument a probability
distribution over environments. The function returns a probability distribution over
values. We write M[e] A v to denote the probability of v under the meaning of e
when the distribution over environments is A. We also use the notation Mle] € v to
denote the probability of v under the meaning of e when the probability distribution
over environments assigns positive probability only to e.

We now define the meaning function for different types of expressions. The meaning
of a constant expression is given by

/\/l['u] A = { Lifvi=v

0 otherwise

CS7480

Probability Monad

 Ramsey, Norman, and Avi Pfeffer. "Stochastic lambda calculus and monads of
probability distributions." Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 2002.

ex=z|v|Are|eex|letz=¢"ine
| choose p e; e

| (e1,e2) | el]|e2

|

Le; |Rez|casecee e,

* Gave a distributional semantics to a stochastic A-calculus w/ tuples (no
observations)

M{return v](z) =

M{choose pdy d2](x) = p

CS7480

32

Al and Programming Languages

Artificial
Intelligence

Programming
Languages

* Problems:
 The world is complex and yet
somehow agents navigate it
 How can we represent the world
to a computer?
* Tools and Techniques
* Probabilistic reasoning
* Logic
* Probabilistic modeling

* Problems:
 Compilers are incompatible
* Programs have bugs
* Languages are complex

* Tools and Techniques

» Separate syntax from semantics

* Compositional reasoning

* Logical relations

CS7480 33

conciseness

