CS7480: Topics in Programming Languages: Probabilistic Programming

Lecture 4: SimPPL Intro

Instructor: Steven Holtzen

Place: Northeastern University

Term: Fall 2021

Course webpage:

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall2

Overview

- SimPPL is online and final
- This week we'll be going over it in detail
- Today:
 - Language design
 - 2. Formal SimPPL syntax
 - 3. Formal SimPPL semantics
 - 4. Modeling with SimPPL
 - 5. Comparing languages

The Need for Modeling Languages

 Suppose you are a doctor and you know about the relationship between symptoms and diseases

- There is a 1% chance the average person has a cold, 1% chance of cough, 4% chance of a temperature, 3% chance of runny nose
- If you have a cold:
 - 10% of the time you have a temperature
 - 50% of the time you cough
 - 70% of the time you have a runny nose

 We want to be able to query: what is the probability that the patient has the flu given that they are coughing?

CS7480

The Need for Modeling Languages

• The doctor *could* write down a joint probability table...

Cold?	Fever?	Temp?	Runny nose?	Cough?	Pr?
N	N	N	N	N	0.91266912
Υ	Υ	Υ	Υ	N	

- ... but this is not a convenient representation
 - This is not the way that the doctor understands this information

CS7480

What makes a *good* modeling language?

- By no means solved, but some things to consider:
 - Expressive power: Is the language capable of concisely representing the relevant facts about the world?
 - Conciseness: How big do programs need to be?
 - Completeness: Can we write down any distribution we want?
 - Accessibility and interpretability: is the language accessible to non-expert modelers? Can the model be interpreted by non-experts?
 - **Tractability for inference**: Once a model is created, how efficiently can we perform inference?
- These are often in tension!

CS7480

Modeling with Programs


```
cold ~ flip 0.01;
if cold {
   cough ~ flip 0.5;
   temp ~ flip 0.1;
   runnyNose ~ flip 0.07
} else {
   cough ~ flip 0.01;
   temp ~ flip 0.04;
   runnyNose ~ flip 0.03
};
observe cough;
return cold
```

Answer: 0.335570469799

SimPPL

- A minimal probabilistic programming language
 - Only flip and Boolean values
 - Imperative: has statements and expressions
 - First-class observations: can condition at any point in the program
 - Returns a distribution on a single Boolean value

SimPPL Syntax

```
// expressions
 e ::=
               // identifiers, which must be a string matching the regular expression [a-zA-Z]+
     | (&& e e) // logical conjunction
   | (|| e e) // logical disjunction
     | (! e) // logical negation
     | true | false
                  // statements
   | x = e  // assignment
   | x \sim \text{flip } \theta // \text{ sample}
   | if e { s } else { s }
    | observe e
11
   | s ; s
12
13 p ::= s; return e // programs
```

SimPPL Syntax

• This is a valid SimPPL program

```
cold \sim flip 0.01;
if cold {
   cough \sim flip 0.5;
   temp ~ flip 0.1;
   runnyNose ~ flip 0.07
} else {
    cough \sim flip 0.01;
    temp \sim flip 0.04;
    runnyNose ~ flip 0.03
};
observe cough;
return cold
```

SimPPL Parser

```
1 from lark import Lark
2 simppl_parser = Lark(r"""
     e: NAME
         | "(" "&&" e e ")"
         | "(" "||" e e ")"
5
         | "(" "!" e ")"
         | "true"
          "false"
8
     s: NAME "=" e
10
         NAME "~" "flip" SIGNED_NUMBER
11
        | "if" e "{" s "}" "else" "{" s "}"
12
        | "observe" e
13
        | s "; " s
14
15
    p: s ";" "return" e
16
17
18
       %import common.SIGNED_NUMBER
19
       %import common.WS
20
       %import common.CNAME -> NAME
21
       %ignore WS
23
24 """, start='p')
```

SimPPL Semantics

Defined in two parts

1. Expressions: these are like normal non-probabilistic programs

2. Statements: this is where probabilities come in

SimPPL Expression Semantics

- Environment $\rho \in Env$ maps variables to Boolean values
 - Example: $\rho = \{X = T, Y = F\}$
 - Lookup: $\rho(X) = T$
- The semantics of expressions have the form

$$\llbracket \mathtt{e} \rrbracket : \mathtt{Env} \to \{T, F\}$$

SimPPL Expression Semantics

$$[[x]]_{P} = [(!e)]_{P} = [(98e, e_2)]_{P} = [[98e, e_2)]_{P} = [98e, e_2)]_{P} = [$$

SimPPL Statement Semantics

 Map environments to unnormalized distributions on environments

$$\llbracket \mathtt{s} \rrbracket : \mathtt{Env} \to (\mathtt{Env} \to [0,1])$$

- Interpret it as the unnormalized conditional probability of an output event given an input event
- This is where the probabilities show up
- Sample space: set of all possible environments

Assignment

- Syntax: x = e
- In "normal" languages, updates the variable x to have the value denoted by e
- Here, we assign a distribution that gives probability
 1 to that case

$$[\![\mathbf{x} = \mathbf{e}]\!](\rho)(\rho') = \begin{cases} 1 & \text{if } \rho' = \rho[\mathbf{x} \mapsto [\![\mathbf{e}]\!] \rho] \\ 0 & \text{otherwise} \end{cases}$$

Assignment

- Syntax: x = e
- In "normal" languages, updates the variable x to have the value denoted by e
- Here, we assign a distribution that gives probability
 1 to that case

Sample

- Syntax: $x \sim flip \theta$
- Semantics: assign a probability of θ to the environment where x is true and $1-\theta$ if it is not true

$$[\![x \sim \mathtt{flip} \; \theta]\!](\rho)(\rho') = \begin{cases} \theta & \text{if } \rho' = \rho[x \mapsto T], \\ 1 - \theta & \text{if } \rho' = \rho[x \mapsto F] \\ 0 & \text{otherwise.} \end{cases}$$

Sequence

- Syntax: s1; s2
- Semantics $\llbracket s_1; s_2 \rrbracket(\rho)(\rho'')$
 - (Unnormalized) probability of beginning in state ρ and ending in state ρ'' after executing s_1 and then s_2

Example:

$$[x \sim \text{flip } 0.1; y \sim \text{flip } 0.4](\emptyset)([x \mapsto T, y \mapsto F]) = 0.1 \times 0.6$$

Sequence

Breaking the example down more

$$[x \sim \text{flip } 0.1; y \sim \text{flip } 0.4](\emptyset)([x \mapsto T, y \mapsto F]) = 0.1 \times 0.6$$

• Look at the first flip:

19

Initial state ρ

$$[\![x \sim \mathtt{flip}\ 0.1]\!](\emptyset)([x \mapsto T]) = 0.1$$

The second flip is independent

$$[\![y \sim \mathtt{flip} \ 0.4]\!] ([x \mapsto T]) ([x \mapsto T, y \mapsto F]) = 0.6$$
 Intermediate state ρ'

Sequence

• Then, the probability of reaching ρ'' from ρ after executing s_1 ; s_2 is given by summing over all intermediate states ρ'

$$[s_1; s_2](\rho)(\rho'') = \sum_{\rho' \in Env} [s_1](\rho)(\rho') \times [s_2](\rho')(\rho'').$$

If-statements

We can simply evaluate the guard

$$[\![\text{if e } \{s_1\} \text{ else } \{s_2\}]\!](\rho)(\rho') = \begin{cases} [\![s_1]\!](\rho)(\rho') & \text{if } [\![e]\!](\rho) = T, \\ [\![s_2]\!](\rho)(\rho') & \text{otherwise.} \end{cases}$$

Semantics of Programs

 The semantics of a program is to map a program to the probability that the program returns true

 (Ignoring observations), this can be computed in a manner following the definition of a random variable:

$$[\![\mathtt{s}; \ \mathtt{return} \ \mathtt{e}]\!] = \sum_{\{\rho \in Env | [\![e]\!] \rho = T\}} [\![s]\!] (\emptyset)(\rho)$$

Observe statements

• Here we go beyond the modeling power of tables...

Cold?	Fever?	Temp?	Runny nose?	Cough?	Pr?
N	N	N	N	N	0.91266912
Υ	Υ	Υ	Υ	N	

- For tables, conditioning is exogenous to the model
 - Happens "out of band"; done after modeling

Observe statements

• The syntax $[observe e](\rho)(\rho')$ means "the unnormalized probability of transitioning to state ρ' from ρ given that e holds"

$$[\![\text{observe e}]\!](\rho)(\rho') = \begin{cases} 1 & \text{if } [\![e]\!](\rho) = T \text{ and } \rho = \rho', \\ 0 & \text{otherwise.} \end{cases}$$

• This is unnormalized! Example...

Observe statements

Note that this is unnormalized!

$$[x \sim flip 0.1; observe $x](\emptyset)([x \mapsto T]) = 0.1$$$

$$[x \sim flip 0.1; observe $x](\emptyset)([x \mapsto F]) = 0$$$

Updating Semantics of Programs

 To give a semantics to programs with observations, we need to renormalize

Unnormalized probability of outputting true

$$[\![\mathbf{x} \sim \mathtt{flip 0.1}; \mathtt{observe x; return x}]\!](T) = \frac{0.1}{0.1}$$

Normalizing constant

Updating Semantics of Programs

 To give a semantics to programs with observations, we need to renormalize

Unnormalized probability of outputting true

$$[\![\mathtt{s}; \ \mathtt{return} \ \mathtt{e}]\!](v) = \frac{\sum_{\{\rho' \in Env \mid [\![e]\!](\rho) = T\}} [\![s]\!](\emptyset)(\rho')}{\sum_{\rho' \in Env} [\![s]\!](\emptyset)(\rho')}$$

Normalizing constant

What makes a *good* modeling language?

- Expressive power
 - Conciseness
 - Completeness
- Accessibility and interpretability

Tractability for inference

Tables Versus Programs

- How do we show one language is complete for another?
- Give a reduction: show that any table has a corresponding SimPPL statement

Α	В	Pr
1	1	0.2
1	0	0.3
0	1	0.4
0	0	0.1

Tables Versus Programs

 How do we show one language is at least as concise as another?

 Give a polynomial-size reduction: show that writing tables as programs does not yield an exponentially large program

 To argue that SimPPL programs are more concise, give a small statement that requires an exponentially large table to represent its distribution

What makes a *good* modeling language?

- Expressive power
- Accessibility and interpretability
 - In the eyes of the beholder ©
- Tractability for inference
 - Next time...

Inference Teaser

• Show that inference for SimPPL is NP-hard