CS/7480: Topics in Programming Languages:
Probabilistic Programming

Lecture 4: S1mPPL Intro

Instructor: Steven Holtzen
Place: Northeastern University
Term: Fall 2021

Course webpage:
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall?2

1/

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

Overview

e SimPPL is online and final
* This week we’ll be going over it in detail

* Today:
1. Language design
2. Formal SimPPL syntax
3. Formal SimPPL semantics
4. Modeling with SimPPL
5. Comparing languages

The Need for Modeling Languages

e Suppose you are a doctor and you know about the
relationship between symptoms and diseases

There is a 1% chance the average person has a cold, 1%

chance of cough, 4% chance of a temperature, 3% chance of
runny nose

If you have a cold:

10% of the time you have a temperature
50% of the time you cough

70% of the time you have a runny nose

 We want to be able to query: what is the

probability that the patient has the flu given that
they are coughing?

CS7480

The Need for Modeling Languages

* The doctor could write down a joint probability table...

Cold? Fever? | Temp? | Runny Cough? | Pr?
nose?

0.91266912

ok

* ... but this is not a convenient representation

* This is not the way that the doctor understands this
information

CS7480 4

What makes a good modeling
language?

* By no means solved, but some things to consider:

* Expressive power: Is the language capable of concisely
representing the relevant facts about the world?
e Conciseness: How big do programs need to be?
* Completeness: Can we write down any distribution we want?

* Accessibility and interpretability: is the language
accessible to non-expert modelers? Can the model be
interpreted by non-experts?

* Tractability for inference: Once a model is created, how
efficiently can we perform inference?

e These are often in tension!

Modeling with Programs

cold ~ flip 0.01;

if cold {
cough ~ flip 0.5;
temp ~ flip 0.1;

: Answer:
\ ~ fl 0.07
} e{:2n¥ o i 0.335570469799

cough ~ flip 0.01;
temp ~ flip 0.04;
runnyNose ~ flip 0.03

b
observe cough;
return cold

CS7480 6

S1mPPL

* A minimal probabilistic programming language
* Only £1ip and Boolean values
* Imperative: has statements and expressions

* First-class observations: can condition at any point in the
program

* Returns a distribution on a single Boolean value

S1mPPIL Syntax

e ::= // expressions
[// identifiers, which must be a string matching the regular expression [a-zA-Z]+
| (&& e e) // logical conjunction
[(I e e) // logical disjunction
| (! e) // logical negation
| true | false

s ::= // statements
Tz = e // assignment
| ¢ ~ flip 8 // sample
| if e { s } else { s }
| observe e
|l s i s

3 p ::= s; return e // programs

CS7480

S1mPPIL Syntax

* This is a valid SimPPL program

cold ~ flip 0.01;

if cold {
cough ~ flip 0.5;
temp ~ flip 0.1;
runnyNose ~ flip 0.07

} else {

cough ~ flip 0.01;
temp ~ flip 0.04;
runnyNose ~ flip 0.03

b
observe cough;
return cold

CS7480

nmmon
4

SimPPIL Parser

from lark import Lark
Simppl_parser = Lark(r""n

e

S

%
%
%

%

S

NAME

| "(" "&&" e e ll)"
| "(" l|||" e e ")"
| n (" " ! Al e ") "

| "+ rue"

| "false"

NAME "=" e
NAME """ "flip" SIGNED_NUMBER
"if" e "{" S "}" "else" "{" S "}"
"observe" e
S ll,. " S

"; n n returnll e
import common.SIGNED_NUMBER
import common.WS
import common.CNAME -> NAME

ignore WS

tart="p’)

CS7480

10

SimPPL Semantics

* Defined in two parts

1. Expressions: these are like normal non-probabilistic
programs

2. Statements: this is where probabilities come in

S1mPPL Expression Semantics

* Environment p € Env maps variables to Boolean
values

* Example:p={X=T,Y = F}
* Lookup: p(X) =T

* The semantics of expressions have the form

le| : Env — {T, F'}

S1mPPL Expression Semantics

LxJp =
[('edp =

[(9% “, @13]1():

S1imPPL Statement Semantics

* Map environments to unnormalized distributions on
environments

|s] : Env — (Env — |0, 1])

* Interpret it as the unnormalized conditional probability
of an output event given an input event

* This is where the probabilities show up

* Sample space: set of all possible environments

Assignment

* Syntax: x = e

* In "normal” languages, updates the variable x to
have the value denoted by e

* Here, we assign a distribution that gives probability
1 to that case

=] (p)(p) = 4 - 1P =Pz el

‘ | 0 otherwise

CS7480 15

Assignment

* Syntax: x = e

* In "normal” languages, updates the variable x to
have the value denoted by e

* Here, we assign a distribution that gives probability
1 to that case

[x=e](p)(p") =

Could have used the probability
notation

Sample

*Syntax:x ~ flip 0

e Semantics: assign a probability of 8 to the
environment where x is trueand 1 — @ if it is not
true

0 if ' = plz — T,
[z ~ £1ip O](p)(p) = ¢ 1 -0 if p' = p[x > F]

0 otherwise.

Seguence

* Syntax: sl1; s2
* Semantics [[31; 82]](,0) (,0”)

* (Unnormalized) probability of beginning in state p and
ending in state p'’ after executing s; and then s,

* Example:

[x ~ £1ip 0.1;y ~ £1ip 0.4](0)([z — T,y — F]) = 0.1 x 0.6

Sequence

* Breaking the example down more

[x ~ £1ip 0.1;y ~ £1ip 0.4](D)([z — T,y — F]) = 0.1 x 0.6

* Look at the first flip: initial state p

o T

[~ £1ip 0.1](D)([x — T]) = 0.1

ne second flip is independent

[y ~ £1ip 0.4]([z — T))([z s T,y — F]) = 0.6

Intermedllate Final state p"
state p
CS7480

19

Seguence

* Then, the probability of reaching p'’ from p after
executing s¢; s, is given by summing over all
intermediate states p’

[s15520(p) (") = > [s1](p)(p") x [s20(0")(p").

p' € Env

If-statements

* We can simply evaluate the guard

[s1](p)(p") if [e](p) =T,

[s2](p)(p") otherwise.

[if e {s1} else {s2}](p)(p") —{

Semantics of Programs

* The semantics of a program is to map a program to
the probability that the program returns true

[s; return e] : |0, 1]

* (Ignoring observations), this can be computed in a
manner following the definition of a random
variable:

[s; return e = > [s](0)(p)

{pcEnv|[e]p=T}

Observe statements

* Here we go beyond the modeling power of tables...

Cold? Fever? | Temp? | Runny Cough? | Pr?
nose?

0.91266912
Y Y

ok

—

* For tables, conditioning is exogenous to the model
* Happens “out of band”; done after modeling

CS7480 23

Observe statements

* The syntax [observe e](p)(p’) means “the
unnormalized probability of transitioning to state p’
from p given that e holds”

1 if [e](p) =T and p = p',

0 otherwise.

[observe o](p)(p) —{

* This is unnormalized! Example...

Observe statements

* Note that this is unnormalized!

[x ~ flip 0.1; observe x[(0)([z — T]) = 0.1

[x ~ flip 0.1; observe x[(0)([x +— F]) =0

Updating Semantics of Programs

* To give a semantics to programs with observations,
we need to renormalize

Unnormalized probability of

outputting true

[x ~ flip 0.1; observe x; return x|(T) = —

Normalizing constant

CS7480 26

Updating Semantics of Programs

* To give a semantics to programs with observations,
we need to renormalize

Unnormalized probability of

outputting true

_ Z{p’EEan[e]](p):T} [s](D)(p")

|s; return e(v)

Zp’EEnv [s](D)(p")

Normalizing constant

CS7480 27

What makes a good modeling
language?

* Expressive power

e Conciseness

e Completeness

* Accessibility and interpretability

* Tractability for inference

Tables Versus Programs

* How do we show one language is complete for
another?

* Give a reduction: show that any table has a
corresponding SimPPL statement

1 1 0.2
1 0 0.3
0 1 0.4
0 0 0.1

CS7480

29

Tables Versus Programs

* How do we show one language is at least as concise as
another?

* Give a polynomial-size reduction: show that writing

tables as programs does not yield an exponentially
large program

* To argue that SimPPL programs are more concise, give
a small statement that requires an exponentially large
table to represent its distribution

What makes a good modeling
language?

* Expressive power

* Accessibility and interpretability
* In the eyes of the beholder ©

* Tractability for inference
* Next time...

Inference Teaser

 Show that inference for S1imPPL is NP-hard

