CS7480: Topics in Programming Languages: Probabilistic Programming

Lecture 3: Probability & Logic Continued

Instructor: Steven Holtzen

Place: Northeastern University

Term: Fall 2021

Course webpage:

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall2

1/

Overview

- Last time we learned...
 - Syntax, grammars, and parse trees
 - Formal semantics for propositional logic $\iint P] \mathcal{V}$
 - Search trees, SAT
 - Why? These will be important foundations for *program reasoning*
- Today...
 - Pick up from the beginning of probability (I will give simpler definitions this time)
 - Work towards probabilistic logic, our first "probabilistic programming language"

I'm following a book

- Chapter 8, "Discrete Probability"
- Many extremely good exercises at the end of the chapter (with solutions in the back of the book); give them a try to brush up!
- If you're feeling shaky, after lecture try exercise 2, 8, 9

Probability Space

• Written Ω , it is the set of all things that can happen

- Paired with a probability distribution $Pr: \Omega \rightarrow [0,1]$
 - Must satisfy *unit measure* $\sum_{\omega \in \Omega} \Pr(\omega) = 1$.

Probability Space on Assignments

- Let $V = \{A, B, C\}$ be a set of propositional variables
- Then we can define a sample space on assignments to V:

We can define a probability distribution on this however we want

Events

- An event *E* is a subset of the sample space, $E \subseteq \Omega$
- The probability of an event is defined

$$\Pr(E) = \sum_{\omega \in E} \Pr(\omega).$$

$$P_r(Shms + 3) = P_r(\Box) + P_r(\Box)$$

Finite additivity holds by definition

Probability of Satisfaction

• Suppose we have a logical sentence φ ; this naturally defines an *event* on the sample space of assignments $E_{\varphi} = \{ \omega \in \Omega \mid \omega \vDash \varphi \}$

• Then, $\Pr(E_{\varphi})$ is the probability that φ is satisfied by a world drawn according to some distribution on Ω

Random Variables

- A random variable is a function on the sample space $X: \Omega \to \mathbb{R}$ (usually denoted w/ capital letters)
 - Example: let *S* be a function that sums dice rolls

• Probability of a random variables:

Random Variables: Derived Distributions

• We could have defined the "sums" distribution directly using a sample space $\Omega = \{2, 3, ..., 12\}$

• The "sums" distribution is *derived* from the "dice pairs" distribution

Expectations

- The "average value" of a random variable $\mathbb{E}[X] = \sum_{(x \in X)} \Pr(x) \times x$
- Expectations have many nice algebraic properties

Joint Distributions

 Why are random variables interesting? Typically, if we have more than one derived from the same sample space

$$\Pr(X = x, Y = y)$$

Called *joint probability distribution over* X and Y

- Ex: On Ω =set of dice rolls
 - $S = \text{sum}, S_1 = \text{first dice roll}, S_2 = \text{second dice roll}$
- Then $\Pr(S_1, S_2) = \Pr(S_1) \times \Pr(S_2)$

Very common shorthand for $Pr(S_1 = s_1)$

- Called *independent random variables*
- On the other hand, $Pr(S, S_1) \neq Pr(S) \times Pr(S_1)$

Joint Distribution on Dice Rolls

Joint Distributions on Propositional Worlds

- Let $E_A = \{ \omega \in \Omega \mid A = T \text{ in } \omega \}$ for any variable A
- Then, $Pr(E_A, E_B) = Pr(E_A) \times Pr(E_B)$ may not hold for arbitrary distributions on Ω
 - Exercise: find an example!

Queries & Inference

Queries?

 So we have defined this great distribution that describes the world

- What do we want to do with it?
 - Ask it questions! This is *querying*

Query: Probability of Evidence

Given a distribution...

- Compute the probability of some event *E*
- Wait! Isn't this easy? It's just the definition...

$$\Pr(E) = \sum_{\omega \in E} \Pr(\omega)$$

Complexity of Querying

• So far we've been working under a *tabular representation* of a distribution

 $\Omega=\{2,3,\ldots,12\}$

Pr(2)	Pr(3)	Pr(4)	Pr(5)	Pr(6)	Pr(7)	Pr(8)	Pr(9)	Pr(10)	Pr(11)	Pr(12)
1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

- With this representation, computing the probability of evidence (for arbitrary queries) requires scanning the table and summing each entry
 - $O(|\Omega|)$ evaluates of $Pr(\omega)$; this is usually our scaling parameter of interest

Complexity of Querying

- The complexity of various queries is intimately related to how you represent the probability distribution
- For now, we will continue considering tables

Query: Conditioning

• "Given that I see an even dice roll, what is the probability that one of the dice rolls was a 2?" $Pr(D_1 = 2 \mid S \text{ is even})$

Conditioning

• "Given that I see an even dice roll, what is the probability that one of the dice rolls was a 2?" $Pr(D_1 = 2 \mid S \text{ is even})$

Conditioning

• Pr(first is even | sum is even)?

Pr(2)	Pr(3)	Pr(4)	Pr(5)	Pr(6)	Pr(7)	Pr(8)	Pr(9)	Pr(10)	Pr(11)	Pr(12)
1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Conditioning and Independence

X and Y are independent if and only if
Pr(X | Y) = Pr(X)

$$\Pr(X \mid Y) = \frac{\Pr(X \land Y)}{\Pr(Y)} = \frac{\Pr(Y) \times \Pr(X)}{\Pr(Y)} = \Pr(X).$$

Query: Marginalization

• Given a joint distribution Pr(X, Y), the marginal distribution on X is:

$$\Pr(X) = \sum_{y} \Pr(X, Y).$$

Query: Optimization

- What is the most likely state (given evidence E)? $argmax_{\omega} Pr(\omega \mid E)$?
 - Called Most Probable Explanation (MPE)
 - Again, requires scanning the whole table

Pr(2)	Pr(3)	Pr(4)	Pr(5)	Pr(6)	Pr(7)	Pr(8)	Pr(9)	Pr(10)	Pr(11)	Pr(12)
1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Conclusion

- Logic gives a syntax for describing a set of worlds
 - There is syntax and semantics
 - There are analyses (satisfiability)
 - Search and decision trees
- Probability describes distributions on those worlds