CS7480: Topics in Programming Languages: Probabilistic Programming

Lecture 3: Probability \& Logic Continued

Instructor: Steven Holtzen
Place: Northeastern University
Term: Fall 2021
Course webpage:
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall2

Overview

- Last time we learned...
- Syntax, grammars, and parse trees
- Formal semantics for propositional logic $\int \rho \rrbracket V$
- Search trees, SAT
- Why? These will be important foundations for program reasoning
- Today...
- Pick up from the beginning of probability (I will give simpler definitions this time)
- Work towards probabilistic logic, our first "probabilistic programming language"

I'm following a book

- Chapter 8, "Discrete Probability"
- Many extremely good exercises at the end of the chapter (with solutions in the back of the book); give them a try to brush up!
- If you're feeling shaky, after lecture try exercise 2, 8, 9

Probability Space

- Written Ω, it is the set of all things that can happen

$$
\operatorname{Pr}(\text { 回 })=\frac{1}{36}
$$

- Paired with a probability distribution $\operatorname{Pr}: \Omega \rightarrow[0,1]$
- Must satisfy unit measure $\sum_{\omega \in \Omega} \operatorname{Pr}(\omega)=1$.

Probability Space on Assignments

- Let $V=\{A, B, C\}$ be a set of propositional variables
- Then we can define a sample space on assignments to V :

- We can define a probability distribution on this however we want

Events

- An event E is a subset of the sample space, $E \subseteq \Omega$
- "Sums to 3":

$$
\{\because \square, \square \square
$$

- The probability of an event is defined

$$
\begin{gathered}
\operatorname{Pr}(E)=\sum_{\omega \in E} \operatorname{Pr}(\omega) \\
\operatorname{Pr}(\text { sums to } 3)=\operatorname{Pr}(\square)+\operatorname{Pr}(\square)
\end{gathered}
$$

Probability of Satisfaction

- Suppose we have a logical sentence φ; this naturally defines an event on the sample space of assignments $E_{\varphi}=\{\omega \in \Omega \mid \omega \vDash \varphi\}$

- Then, $\operatorname{Pr}\left(E_{\varphi}\right)$ is the probability that φ is satisfied by a world drawn according to some distribution on Ω

Random Variables

- A random variable is a function on the sample space $X: \Omega \rightarrow \mathbb{R}$ (usually denoted w/ capital letters)
- Example: let S be a function that sums dice rolls

$$
S(\square)=5
$$

- Probability of a random variables:

$$
\operatorname{Pr}(S=4)=\operatorname{Pr}(\{0, \square, \square \square)
$$

Random Variables: Derived Distributions

- We could have defined the "sums" distribution directly using a sample space $\Omega=\{2,3, \ldots, 12\}$

$\operatorname{Pr}(2)$	$\operatorname{Pr}(3)$	$\operatorname{Pr}(4)$	\cdots
$1 / 36$	$2 / 36$	$3 / 36$	

- The "sums" distribution is derived from the "dice pairs" distribution

Expectations

- The "average value" of a random variable

$$
\mathbb{E}[X]=\sum_{(x \in X)} \operatorname{Pr}(x) \times x
$$

- Expectations have many nice algebraic properties

Joint Distributions

- Why are random variables interesting? Typically, if we have more than one derived from the same sample space

$$
\operatorname{Pr}(X=x, Y=y)
$$

- Ex: On $\Omega=$ set of dice rolls
- S =sum, $S_{1}=$ first dice roll, $S_{2}=$ second dice roll
- Then $\operatorname{Pr}\left(S_{1}, S_{2}\right)=\operatorname{Pr}\left(S_{1}\right) \times \operatorname{Pr}\left(S_{2}\right)$

$$
\text { Very common shorthand for } \operatorname{Pr}\left(S_{1}=s_{1}\right)
$$

- Called independent random variables
- On the other hand, $\operatorname{Pr}\left(S, S_{1}\right) \neq \operatorname{Pr}(S) \times \operatorname{Pr}\left(S_{1}\right)$

Joint Distribution on Dice Rolls

Joint Distributions on Propositional Worlds

- Let $E_{A}=\{\omega \in \Omega \mid A=\mathrm{T}$ in $\omega\}$ for any variable A
- Then, $\operatorname{Pr}\left(E_{A}, E_{B}\right)=\operatorname{Pr}\left(E_{A}\right) \times \operatorname{Pr}\left(E_{B}\right)$ may not hold for arbitrary distributions on Ω
- Exercise: find an example!

Queries \& Inference

Queries?

- So we have defined this great distribution that describes the world

- What do we want to do with it?
- Ask it questions! This is querying

Query: Probability of Evidence

- Given a distribution...

- Compute the probability of some event E
- Wait! Isn't this easy? It's just the definition...

$$
\operatorname{Pr}(E)=\sum_{\omega \in E} \operatorname{Pr}(\omega)
$$

Complexity of Querying

- So far we've been working under a tabular representation of a distribution

$$
\Omega=\{2,3, \ldots, 12\}
$$

$\operatorname{Pr}(2)$	$\operatorname{Pr}(3)$	$\operatorname{Pr}(4)$	$\operatorname{Pr}(5)$	$\operatorname{Pr}(6)$	$\operatorname{Pr}(7)$	$\operatorname{Pr}(8)$	$\operatorname{Pr}(9)$	$\operatorname{Pr}(10)$	$\operatorname{Pr}(11)$	$\operatorname{Pr}(12)$
$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

- With this representation, computing the probability of evidence (for arbitrary queries) requires scanning the table and summing each entry
- $O(|\Omega|)$ evaluates of $\operatorname{Pr}(\omega)$; this is usually our scaling parameter of interest

Complexity of Querying

- The complexity of various queries is intimately related to how you represent the probability distribution
- For now, we will continue considering tables

Query: Conditioning

- "Given that I see an even dice roll, what is the probability that one of the dice rolls was a 2?"
$\operatorname{Pr}\left(D_{1}=2 \mid S\right.$ is even $)$

Conditioning

- "Given that I see an even dice roll, what is the probability that one of the dice rolls was a 2?"
$\operatorname{Pr}\left(D_{1}=2 \mid S\right.$ is even $)$

$$
\operatorname{Pr}(X \mid E)=\frac{\operatorname{Pr}(X \wedge E)}{\operatorname{Pr}(E)}
$$

Turned into 2

evidence probability
Normalizing
Constant /
Probability of
Evidence

Conditioning

- $\operatorname{Pr}($ first is even \mid sum is even)?

$\operatorname{Pr}(2)$	$\operatorname{Pr}(3)$	$\operatorname{Pr}(4)$	$\operatorname{Pr}(5)$	$\operatorname{Pr}(6)$	$\operatorname{Pr}(7)$	$\operatorname{Pr}(8)$	$\operatorname{Pr}(9)$	$\operatorname{Pr}(10)$	$\operatorname{Pr}(11)$	$\operatorname{Pr}(12)$
$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

Conditioning and Independence

- X and Y are independent if and only if $\operatorname{Pr}(X \mid Y)=\operatorname{Pr}(X)$

$$
\operatorname{Pr}(X \mid Y)=\frac{\operatorname{Pr}(X \wedge Y)}{\operatorname{Pr}(Y)}=\frac{\operatorname{Pr}(Y) \times \operatorname{Pr}(X)}{\operatorname{Pr}(Y)}=\operatorname{Pr}(X)
$$

Query: Marginalization

- Given a joint distribution $\operatorname{Pr}(X, Y)$, the marginal distribution on X is:

$$
\operatorname{Pr}(X)=\sum_{y} \operatorname{Pr}(X, Y)
$$

Query: Optimization

- What is the most likely state (given evidence E)?

$$
\operatorname{argmax}_{\omega} \operatorname{Pr}(\omega \mid E) ?
$$

- Called Most Probable Explanation (MPE)
- Again, requires scanning the whole table

$\operatorname{Pr}(2)$	$\operatorname{Pr}(3)$	$\operatorname{Pr}(4)$	$\operatorname{Pr}(5)$	$\operatorname{Pr}(6)$	$\operatorname{Pr}(7)$	$\operatorname{Pr}(8)$	$\operatorname{Pr}(9)$	$\operatorname{Pr}(10)$	$\operatorname{Pr}(11)$	$\operatorname{Pr}(12)$
$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

Conclusion

- Logic gives a syntax for describing a set of worlds
- There is syntax and semantics
- There are analyses (satisfiability)
- Search and decision trees
- Probability describes distributions on those worlds

