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Overview

• Last time we learned…
• Syntax, grammars, and parse trees
• Formal semantics for propositional logic
• Search trees, SAT
• Why? These will be important foundations for program 

reasoning

• Today…
• Pick up from the beginning of probability (I will give

simpler definitions this time)
• Work towards probabilistic logic, our first “probabilistic 

programming language”
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I’m following a book

• Chapter 8, “Discrete Probability”

• Many extremely good exercises at 
the end of the chapter (with 
solutions in the back of the book); 
give them a try to brush up!

• If you’re feeling shaky, after 
lecture try exercise 2, 8, 9
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Probability Space

• Written Ω, it is the set of all things that can happen

• Paired with a probability distribution 𝑃𝑟: Ω → 0,1
• Must satisfy unit measure ∑!∈#Pr(𝜔) = 1.
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Probability Space on Assignments

• Let 𝑉 = 𝐴, 𝐵, 𝐶 be a set of propositional variables
• Then we can define a sample space on assignments to 𝑉:

• We can define a probability distribution on this however we 
want
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Events

• An event 𝐸 is a subset of the sample space, 𝐸 ⊆ Ω
• ”Sums to 3”:

• The probability of an event is defined

Pr 𝐸 = .
!∈#

Pr 𝜔 .
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holds by definition



Probability of Satisfaction

• Suppose we have a logical sentence 𝜑; this naturally 
defines an event on the sample space of assignments 
𝐸! = 𝜔 ∈ Ω 𝜔 ⊨ 𝜑

• Then, Pr(𝐸!) is the probability that 𝜑 is satisfied by a 
world drawn according to some distribution on Ω
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Random Variables

• A random variable is a function on the sample
space 𝑋:Ω → ℝ (usually denoted w/ capital letters)
• Example: let 𝑆 be a function that sums dice rolls

• Probability of a random variables:
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Random Variables: Derived Distributions

• We could have defined the “sums” distribution 
directly using a sample space Ω = 2, 3, … , 12

• The “sums” distribution is derived from the “dice 
pairs” distribution
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Pr(2) Pr(3) Pr(4) …

1/36 2/36 3/36
Tabular 

representation



Expectations

• The “average value” of a random variable

𝔼 𝑋 = .
$∈%

Pr(𝑥)×𝑥

• Expectations have many nice algebraic properties
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Joint Distributions

• Why are random variables interesting? Typically, if 
we have more than one derived from the same 
sample space

Pr 𝑋 = 𝑥, 𝑌 = 𝑦
• Ex: On Ω =set of dice rolls
• 𝑆 =sum, 𝑆+ = first dice roll, 𝑆, =second dice roll

• Then Pr 𝑆&, 𝑆' = Pr 𝑆& ×Pr 𝑆'

• Called independent random variables
• On the other hand, Pr 𝑆, 𝑆& ≠ Pr 𝑆 ×Pr(𝑆&)
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Very common shorthand for Pr(𝑆! = 𝑠!)

Called joint probability 
distribution over 𝑋 and 𝑌



Joint Distribution on Dice Rolls
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Joint Distributions on Propositional Worlds

• Let 𝐸( = {𝜔 ∈ Ω ∣ 𝐴 = T in 𝜔} for any variable 𝐴
• Then, Pr 𝐸(, 𝐸) = Pr 𝐸( ×Pr(𝐸)) may not hold 

for arbitrary distributions on Ω

• Exercise: find an example!
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Queries & Inference
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Queries?

• So we have defined this great distribution that 
describes the world

• What do we want to do with it?
• Ask it questions! This is querying
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+ Pr(𝜔)



Query: Probability of Evidence

• Given a distribution…

• Compute the probability of some event 𝐸
• Wait! Isn’t this easy? It’s just the definition…

Pr 𝐸 = .
!∈#

Pr(𝜔)
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Complexity of Querying

• So far we’ve been working under a tabular 
representation of a distribution

• With this representation, computing the probability 
of evidence (for arbitrary queries) requires 
scanning the table and summing each entry
• 𝑂( Ω ) evaluates of Pr(𝜔); this is usually our scaling 

parameter of interest
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Ω = {2, 3, … , 12}



Complexity of Querying 

• The complexity of various queries is intimately 
related to how you represent the probability 
distribution

• For now, we will continue considering tables
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Query: Conditioning

• “Given that I see an even dice roll, what is the 
probability that one of the dice rolls was a 2?”

Pr(𝐷& = 2 ∣ 𝑆 is even)
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Conditioning

• “Given that I see an even dice roll, what is the 
probability that one of the dice rolls was a 2?”

Pr(𝐷& = 2 ∣ 𝑆 is even)
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Pr 𝑋 𝐸 =
Pr 𝑋 ∧ 𝐸
Pr 𝐸

Normalizing 
Constant / 

Probability of 
Evidence

Turned into 2 
evidence probability 

queries



Conditioning

• Pr(first is even | sum is even)?
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Conditioning and Independence

• 𝑋 and 𝑌 are independent if and only if 
Pr 𝑋 𝑌 = Pr 𝑋

Pr 𝑋 𝑌 =
Pr 𝑋 ∧ 𝑌
Pr 𝑌

=
Pr 𝑌 ×Pr 𝑋

Pr 𝑌
= Pr 𝑋 .
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Query: Marginalization

• Given a joint distribution Pr 𝑋, 𝑌 , the marginal 
distribution on 𝑋 is:

Pr 𝑋 =.
*

Pr(𝑋, 𝑌) .
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Query: Optimization

• What is the most likely state (given evidence 𝐸)?
𝑎𝑟𝑔𝑚𝑎𝑥!Pr(𝜔 ∣ 𝐸)?

• Called Most Probable Explanation (MPE)
• Again, requires scanning the whole table
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Conclusion

• Logic gives a syntax for describing a set of worlds
• There is syntax and semantics
• There are analyses (satisfiability)
• Search and decision trees

• Probability describes distributions on those worlds
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