CS7480: Topics in Programming Languages: Probabilistic Programming

Lecture 2: Probability & Logic

Instructor: Steven Holtzen

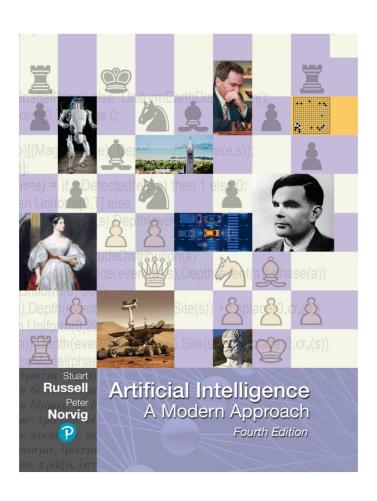
Place: Northeastern University

Term: Fall 2021

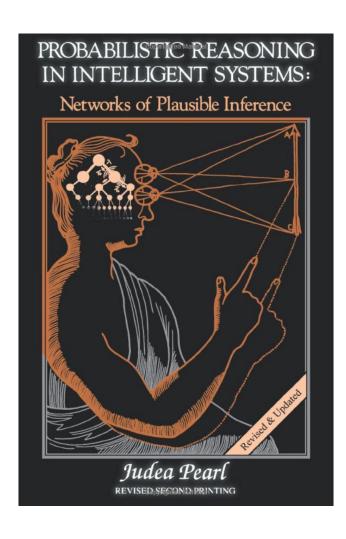
Course webpage:

https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall2

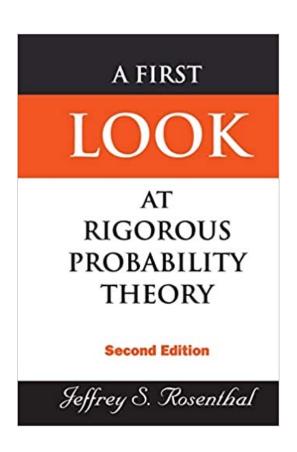
Brief notes

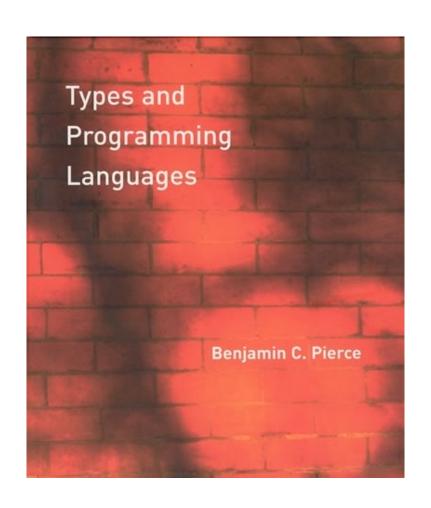

- SimPPL draft still in progress
 - Will be done by end of next week (once we have finished the intro material necessary to do the project)
- We have a Teams chat now

Slides are on canvas


Propositional Logic Goals

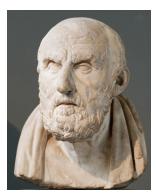
- Get a good foundation in propositional logic
 - Syntax, semantics, connectives
 - Models & Satisfiability
 - Inference rules
- ...Will be essential for understanding probabilistic program semantics and syntax


• It will be our first "programming language"


- A foundational text with many good definitions; covers insane number of topics
- Chapter 12 on probability
- Chapter 7 on logic

- A beautiful philosophical argument for probability in AI
- Chapter 1: Why bother with uncertainty
- Chapter 2: Bayesian inference

 Foundations for continuous probability theory (measure theory)

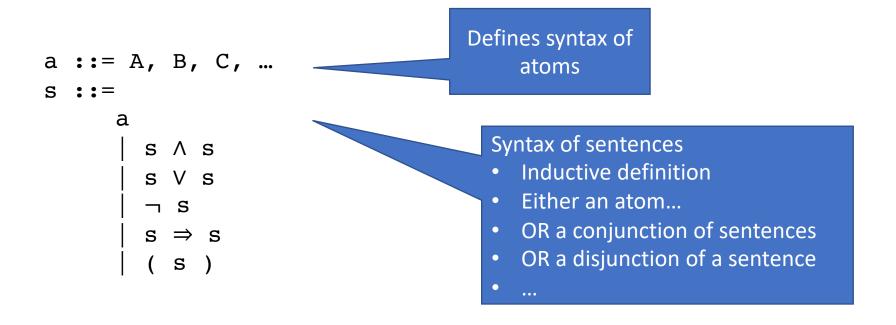


 Classic book on type systems in functional programming

 Lots of good stuff on inductive rules, semantics, etc.

Propositional Logic

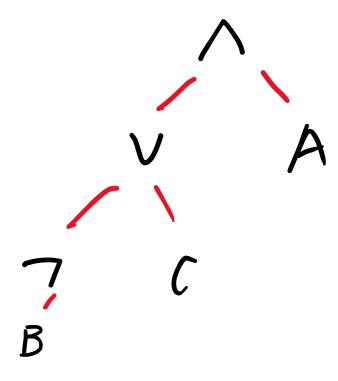
- One of the earliest forms of formal reasoning
 - Stoics believed in *determinism of fate*
 - Developed formal logic "in order to better understand the workings of the universe and role of humanity within it"


Chrysippus of Soli c. 279BCE

- Goal is to study premises and conclusions
 - 1. If it is raining, then it is cloudy
 - 2. It is raining.
 - Conclusion: Therefore it is cloudy.
- Every statement is either true or false
- Early logic was carefully worded natural language

Syntax

- Propositional atoms: written as A, B ...
 - Free symbols ("variables") that take on truth values
 - E.g., encode "It is raining" as R, "It is cloudy" as C
- Logical sentence: a finite inductive combination of:
 - Can be an atom
 - Negation: $\neg \alpha$
 - Conjunction: $\alpha \wedge \beta$
 - Disjunction: $\alpha \vee \beta$
 - Implication: $\alpha \Rightarrow \beta$


Syntax: Backus-Naur Form

Q: is $A \wedge B \wedge C$ syntactically valid?

Syntax Tree (aka Parse Tree)

• $(A \wedge (C \vee \neg B))$

Syntax Tree (aka Parse Tree)

• Q: Give the parse tree for $\neg((A \land A) \lor \neg(A \lor B))$

Semantics: Evaluating a Sentence

- So far we've shown how to construct sentences, but we do not know what they mean!
- Goal of semantics: describe how to evaluate a propositional formula in some context
- An assignment $v: atom \rightarrow \{\top, \bot\}$ associates atoms with truth values
- ullet Denote *evaluating* lpha under assignment v as $[\![lpha]\!] v$

Semantics: Rules

 We can write a system of equations that tells us how to evaluate every term

Truth Tables

- Evaluate a sentence on all valuations
 - Sometimes denoted $[\![\alpha]\!]$
 - Sometimes called simply "the semantics"

Ludwig Wittgenstein 1889 – 1951

A	В	$[A \lor B]v$
Т	Т	Т
Т	Т	Т

- Tells you everything about that formula
 - Valuations v that evaluate to \top are called *models;* often denoted $v \vDash \alpha$

Analysis

- Satisfiability: For a given sentence, find a valuation that evaluates to T
 - "Can I find an input that gives me a desired output"
 - Generating a truth table (exhaustive search) is exponential in #vars; not ideal
 - Well-known NP-complete problem

Model counting

Search Trees

• Search tree for $(A \lor B) \land (\neg C)$

Logic Conclusion

Propositional logic is a mini programming language!

- Syntax and a semantics
 - It has valuations: "We can run it"
 - Possible worlds, truth tables, search procedures
- Analysis problems: "Can we make it output a particular value"