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Abstract

One of the most compelling features of probabilistic pro-
gramming languages (PPLs) is their ability to manipulate
probability distributions as first-class objects. First-class rep-
resentations of distributions empower PPLs to model impor-
tant examples from psychology, game-playing, and model-
based diagnosis; however, this expressivity comes at a cost:
nested reasoning about distributions is often intractable even
for very small models. In this paper we propose a new PPL
that is designed around supporting an efficient implementa-
tion of a first-class marginal-MAP operator. Our core contri-
bution is an amortized approach to exactly solving multiple
(possibly nested and interacting) marginal-MAP queries on
a single discrete-valued probabilistic program. Our approach
is based on a branch-and-bound search that leverages compi-
lation to probabilistic circuits in order to efficiently compute
bounds. We show experimentally that our method can scale to
very large programs with thousands of random variables and
multiply-nested marginal-MAP queries.

1 Introduction
Many important applications of reasoning under probabilis-
tic uncertainty involve meta-reasoning: modeling sequen-
tial decision-making processes where agents make deci-
sions based on the probability of events according to the
model, sometimes referred to as nested reasoning. Prob-
abilistic programming languages (PPLs) elegantly enable
meta-reasoning by representing queries as first-class ob-
jects within the probabilistic model (Stuhlmüller and Good-
man 2014; Mantadelis and Janssens 2011). This capabil-
ity is illustrated in the example medical diagnosis program
given in Figure 1, written in a new imperative PPL we call
PineaPPL. This program models a doctor making a diag-
nosis about the patient’s underlying set of diseases given ob-
servations of some subset of symptoms. Lines 1–8 define a
simple probabilistic relationship between symptoms and dis-
eases: the diseases (cancer and cold) each cause one of
two symptoms (headache and fever) to occur with some
probability. The syntax cancer∼flip 0.001 indicates
that the program variable cancer is a random variable that
is true with probability 0.001.

*This version of the paper is a non-archival draft uploaded on
January 9, 2023.

1 cancer ∼ flip 0.001; cold ∼ flip 0.8;

2 if cancer {

3 headache ∼ flip 0.1; fever ∼ flip 0.02;

4 } else if cold {

5 headache ∼ flip 0.6; fever ∼ flip 0.3;

6 } else {

7 headache ∼ flip 0.01; fever ∼ flip 0.002;

8 }

9 observe(headache);

10 (cancer_diag, cold_diag) = map(cancer, cold);

11 if !cancer_diag && cancer {

12 complications ∼ flip 0.8;

13 } else {

14 complications ∼ flip 0.01;

15 }

16 return complications;

Figure 1: A motivating example of first-class Marginal-MAP
in in the PineaPPL probabilistic programming language.

The doctor must make a diagnosis of the most likely
underlying disease and proceed with treating the patient.
This situation is modeled directly in PineaPPL by us-
ing the map (short for marginal maximum a-posteriori,
often simply called “MAP” in the literature) keyword on
Line 10. This line performs meta-reasoning by querying the
model for the most likely joint assignment to the diseases
given observation of evidence (in this case, that the patient
has a headache), and binds these values to the variables
cancer diag and cold diag. The model can continue
by then branching on these values in order to ultimately pro-
duce a distribution on whether the doctor’s diagnosis led to
any medical complications.

While eminently useful, few of today’s PPLs support
the convenient use of first-class meta-reasoning, primarily
due to its fundamental computational intractability. Meta-
reasoning is significantly computationally harder than the
typical inference task for PPLs (Rainforth et al. 2018). As
such, today’s PPLs resort almost exclusively to approxi-
mate techniques to solve first class meta-reasoning tasks
such as simulated annealing, Bayesian hill-climbing, or sam-
pling (Tolpin, Van de Meent, and Wood 2015; Tolpin et al.
2021; Tolpin and Wood 2015; Rainforth et al. 2018). In
the context of meta-reasoning, approximations have two
main downsides. First, errors in approximations are com-



pounded by nesting, leading to important issues in correct-
ness (Rainforth et al. 2018). Second, approximations strug-
gle to converge on problems with high-dimensional combi-
natorial constraints, which we will demonstrate in our ex-
periments in Section 4. Ultimately, these constraints mean
that today’s PPLs are only capable of handling very small
instances of meta-reasoning.

In this paper we tackle the challenge of scaling meta-
reasoning for probabilistic programs to large practical pro-
grams. We focus on the important case of exact map in-
ference for discrete-valued finite-domain probabilistic pro-
grams. First, we develop a new PPL called PineaPPL
specifically for representing the class of programs for which
we can perform exact map. Then, we show how to com-
pile PineaPPL programs into a probabilistic circuit that
efficiently represents the joint distribution over program
variables, in a manner similar to Dice (Holtzen, Van den
Broeck, and Millstein 2020), ProbLog (Fierens et al.
2015), and SPPL (Saad, Rinard, and Mansinghka 2021).
We leverage this probabilistic circuit to solve multiple map
queries on PineaPPL programs by designing an efficient
branch-and-bound based search in a style similar to the tech-
nique developed by Huang et al. (2006) in the context of
solving map for Bayesian networks. Finally, in Section 4
we show that PineaPPL can perform multiple exact map
queries on programs with thousands of random variables.

2 Background
In this section we review the relevant existing work on
nested inference for PPLs and map. The most com-
mon form of meta-reasoning in today’s PPLs is meta-
inference (often also called “nested inference”), which
queries the program for the marginal probability of some
event holding. Many languages support first-class meta-
inference, including WebPPL (Stuhlmüller and Goodman
2014), Anglican (Tolpin, Van de Meent, and Wood 2015),
and Omega (Tavares et al. 2019). Meta-inference is very
computationally hard to realize, especially for programs in-
volving continuous random variables, as it either involves
complex interleavings of sampling processes or nested inte-
grals (Rainforth et al. 2018). While nested inference remains
computationally daunting for PPLs, there is an even harder
nested reasoning query that is currently firmly out of reach
for today’s languages: marginal-MAP.

Definition 1 Let Pr(M,V,E) be a joint probability distri-
bution on sets of random variables M , V , and E. We call
M the MAP-variables, V the marginal variables, and E the
evidence variables. Then, the marginal-MAP query on Pr is
defined for some fixed evidence e ∈ E:

argmax
m∈M

∑
v∈V

Pr(M = m,V = v | E = e). (1)

Marginal-MAP is provably harder than nested inference be-
cause the sequential max and marginalization cannot be
commuted, placing burdens on the order in which terms can
be eliminated: variables must be summed before they can
be maxed. Park and Darwiche (2003) showed the conse-
quences of this: for the case of discrete Bayesian networks,

the marginal-MAP query is exponential in a constrained
tree-width of the network, which is significantly harder than
the usual worst-case inference complexity of tree-width.

Algorithm 1: map: Marginal-MAP branch/bound
Data: Distribution Pr(M,V | E = e); lower-bound

l; upper-bound function ub
Result: A marginal-MAP assignment

1 if M is empty then
2 return max(

∑
v∈V Pr(V = v | E = e), l)

3 else
4 [h :: M ′]←M ;
5 for v ∈ {T,F} do
6 Label Pr(M ′, V | E = e, h = v) as Pr′;
7 u← ub(Pr′);
8 if u > l then
9 l← max

(
map

(
Pr′, l

)
, l

)
;

10 end
11 end
12 return l
13 end

To tackle the complexity of marginal-MAP, Park and Dar-
wiche (2003) introduced a generic branch-and-bound style
search, described in Algorithm 1. This algorithm takes as in-
put (1) a distribution; (2) a lower-bound on the MAP prob-
ability (which can be trivially initialized to 0 or via an in-
complete search); and (3) a function ub that computes an
upper-bound on the MAP probability. The complexity of Al-
gorithm 1 is governed by (1) how efficient ub is to evaluate;
(2) how efficient the marginalization on Line 2 can be per-
formed; and (3) the quality of the upper-bounds, which dic-
tates the degree of pruning that can be exploited on Line 8.

Marginalizing random variables and computing a high-
quality ub is hard for discrete Bayesian networks and proba-
bilistic programs (Darwiche 2009; Holtzen, Van den Broeck,
and Millstein 2020). To address this, Huang et al. (2006) in-
troduced the idea of marginal-MAP via compilation: first,
compile the distribution into a probabilistic circuit that sup-
ports fast (linear-time) marginalization and a high-quality
ub function based on relaxing the marginal-MAP query
to freely commute sums and products. Marginal-MAP via
compilation is still provably computationally hard, even af-
ter disregarding the high cost of compilation itself (De Cam-
pos 2011). Nonetheless, empirically it remains the state-of-
the-art method for solving marginal-MAP exactly for dis-
crete graphical models (Mei, Jiang, and Tu 2018; Choi,
Friedman, and Van den Broeck 2022).

3 MAP-via-Compilation for PPLs
This section introduces our core approach and contribution.
Our goal is to apply the principle of marginal-MAP via com-
pilation to a discrete-valued PPL. To do this, we will first
develop a new PPL called PineaPPL and a compilation
strategy for PineaPPL that enables (1) efficient computa-
tion of marginal probabilities and (2) efficient computation



of high-quality upper-bounds of marginal-MAP queries.

1 e ::= x | !e | e1 && e2 | e1 | | e2

2 s ::= x ∼ flip θ | [id] = e
3 | if e { s1 } else { s2 } | s1; s2

4 | (x1 · · · xi) = map(y1 · · · yi)
5 q ::= Pr(e) | margmap [x1 · · · xi]
6 p ::= s; [observe(e)]∗; return [q1· · ·qn]

Figure 2: Core PineaPPL syntax.

1 category Language = English
2 | French
3 | Dutch ;
4 x ∼ sample Language ;
5 return [x]

(a) A PineaPPL program with extended categorical syntax.
1 x@English ∼ flip 0.3333 ;
2 if x@English {
3 x@French = false ;
4 }
5 else {
6 // Pr(x is French | x is not English)
7 x@French ∼ flip 0.5;
8 }
9 if (x@English||x@French) {

10 x@Dutch = false;
11 }
12 }
13 else {
14 x@Dutch = true;
15 }
16 return [Pr(x@Dutch)]

(b) Desugaring of the previous program

Figure 3: An example of extended categorical syntax in
PineaPPL and its desugaring.

3.1 Syntax
A natural question one might ask here is: why is it necessary
to develop a new language and syntax? We have two main
reasons: (1) none of today’s PPLs have a formal syntax and
semantics for first-class map; and (2) in order to aid in our
eventual compilation strategy we need to careful restrict the
class of programs that can be constructed; this will be dis-
cussed in further detail in Section 3.3.

At its core, PineaPPL is an imperative language for
discrete-valued loop-free probabilistic programs with sup-
port for categorical and Boolean random variables. The core
syntax of PineaPPL is given in Figure 2. A program is
composed of a statement (or sequence of statements) de-
scribing a probabilistic model, a series of expressions ob-
served to be true about the model, and a series of inference
queries about the model. PineaPPL is equipped with a sin-
gle probabilistic statement x ∼ flip θ, where θ is a real
number between 0 and 1, denoting that x is sampled from a
Bernoulli distribution with parameter θ. In addition to bind-
ing variables to probabilistic samples, variables can be as-

signed to Boolean expressions on previously defined vari-
ables. The final binding form in PineaPPL uses the map
keyword applied to a previously defined set of variables to
bind another set of variables to the the marginal-MAP (i.e.,
the most likely assignment) of the scrutinized variables. The
if-else statement allows for the conditional definition of
variables guarded by the value of a Boolean expression; any
variable bound in one branch must be bound in the other. Fi-
nally, while variables can be redefined, it can only be done
at different nesting levels (i.e., one cannot define the same
variable twice in the same branch of an if-else state-
ment, unless guarded by a more deeply-nested if-else
statement).

We extend the core syntax of PineaPPL with syntactic
sugar for sampling from user-defined discrete distributions.
A categorical variable can be sampled from a predefined set
of variants, either uniformly at random or with explicitly de-
fined priors (which must sum to one). We also introduce a
Boolean predicate, is, which tests whether a given vari-
able takes on the value of a particular variant. Desugaring a
sample from a categorical distribution involves introducing
a sequence of indicator variables each representing a variant
the original variable can take on; this is similar to encod-
ing of categoricals in other discrete-valued languages like
Dice (Holtzen, Van den Broeck, and Millstein 2020) and
ProbLog (Fierens et al. 2015). The first indicator variable
in the sequence is represented as a flip with the defined
prior, and each subsequent indicator is conditioned on the
fact that none of the previous indicators are true, otherwise
the indicator is set to false; this is a common encoding of
categorical variables with Boolean variables known as a one-
hot encoding. The is expression is then naturally desugared
into the appropriate indicator for the test. An example of this
desugaring is presented in Figure 3.

3.2 Denotational Semantics
The semantics of PineaPPL are a variant of a standard
measure-transformer with the addition of the map key-
word (Borgström et al. 2011). A program environment ρ ∈
Env is a map from variables to values. Let Dist(Env) de-
note a distribution on all possible environments. Then, the
semantics of a statement is a map between environment dis-
tributions: JsK : Dist(Env) → Dist(Env), and the se-
mantics of expressions are measurable maps JeK : Env →
Env. For example:

Js1;s2K(µ) = Js2K
(
Js1K(µ)

)
(2)

These semantics are standard, except for the new map
statement. For simplicity, consider a map statement that
binds a single value, Jx1 = map(y1)K(µ). These semantics
will (1) query µ for the most likely configuration of the y1;
and (2) output a new state that assigns probability 1 the state
that binds x1 to the map value for y1. Formally, we can write
this in terms of the semantics of assignment:

Jx1 = map(y1)K(µ) = Jx = v⋆K(µ)

where v⋆ = argmax
v∈{T,F}

∑
{ρ∈Env|ρ(y)=v}

µ(ρ). (3)



These semantics generalize straightforwardly to the case
when more than one variable is being optimized over.

e ⇓ φ
[id] = e ⇓ [id⇔ φ]

(C1)
fresh f1

x∼flip θ ⇓ [x⇔ f1]
(C2)

(xi) = map(yi) ⇓ [xi ⇔ yi]
(C3)

s1 ⇓ l1; s2 ⇓ l2
[l1; l2]

(C4)

s1 ⇓ [xi ⇔ φi]; s2 ⇓ [xi ⇔ ψi]; c ⇓ χ
[xi ⇔ (χ ∧ φi) ∨ (¬χ ∧ ψi)]

(C5)

ei ⇓ φi

[observe(ei)] ⇓
∧

i[φi]
(C6)

e ⇓ φ
Pr(e) ⇓ φ (C7)

margmap[x1 . . . xi] ⇓ ⊤ (C8)

s ⇓ [φi]; [observe(ei)] ⇓ φo; [qi] ⇓ φq

s; [observe(ei)]; return[qi] ⇓ (
∧

i φi) ∧ φo ∧ φq
(C9)

Figure 4: Complete PineaPPL operational semantics.

1 x ∼ flip1 0.1;
2 if x {
3 y ∼ flip2 0.2;
4 } else {
5 y ∼ flip3 0.3;
6 }
7 if y {
8 z ∼ flip4 0.4;
9 } else {

10 z ∼ flip5 0.6;
11 }
12 return margmap(y);

(a) Simple PineaPPL program.

Figure 5: Example PineaPPL program.

3.3 Compiling PineaPPL to Boolean Formulae
While the semantics in the previous section give us a de-
scription of how PineaPPL programs are associated with
particular probability distributions, these rules themselves
are not efficiently implementable. We now describe how
to compile PineaPPL into a representation that affords
(1) efficient marginal inference; and (2) efficient compu-
tation of high-quality upper-bounds on map queries. We
adopt an approach that is similar to other recently devel-
oped languages that work via compilation to probabilistic
circuits like Dice (Holtzen, Van den Broeck, and Millstein
2020), SPPL (Saad, Rinard, and Mansinghka 2021), and
ProbLog (Fierens et al. 2015). However, unlike these ex-
isting languages, PineaPPL is an imperative language with
support for first-class map, necessitating a novel compila-
tion strategy.

Similar to existing compiled PPLs, PineaPPL programs
are compiled to weighted Boolean formulae (WBF), which
are then translated to probabilistic circuits, such as binary
decision diagrams (BDDs); this enables fast inference via
the well-known inference via weighted model counting ap-
proach (Chavira and Darwiche 2008; Sang, Beame, and

Kautz 2005). Formally, let φ be a Boolean formula and
w : L → R be a weight function that assigns real-valued
weights to each literal (assignment to Boolean variable). The
tuple (φ,w) is called a weighted Boolean formula (WBF),
and it is often interpreted as a distribution via a weighted
model count (WMC):

Definition 2 Let (φ,w) be a Boolean formula. Then the
weighted model count, denoted WMC(φ,w) is defined:

WMC(φ,w) =
∑
m|=φ

∏
l∈m

w(l). (4)

As in Dice and ProbLog, our goal now is to establish
that the WMC of a compiled PineaPPL program corresponds
with the PineaPPL measure-transformer semantics. To ac-
complish this we define a compilation relation s ⇓ φ that
relates a PineaPPL syntactic statement s with a Boolean
formula φ. Similarly, we will need a relation that associates
program environments ρ with logical expressions, also de-
fined ρ ⇓ α. The complete set of rules is given in Figure 4.
Ultimately, these rules must satisfy a correctness criteria that
relates the semantics and WMC:

Theorem 1 Let s be a PineaPPL statement and assume
p ⇓ [φi], and let w be the weight function. Then, for any
pair of environments ρ and ρ′ such that ρ ⇓ α and ρ′ ⇓ α′,
we have that WMC(

∧
i φi ∧ α ∧ α′, w) = JsK(ρ)(ρ′).

This theorem is best illustrated via an example. Consider
the simple program in Figure 5. Compiling the flip state-
ment on line 1 according to rule (C2) yields the single bi-
implication [x ⇔ f1]. The logical variable x is an indica-
tor variable: it is true if and only if the parameter variable
f1 is true. The weight function w gives a weight of 1 to
both assignments of all indicator variables, and the weight
of parameter variables follows from the program: w(f1 =
0.1), w(f1) = 0.9 (note that we use the overline notation
to denote a logically negated variable). To check Theorem 1
on this example, let’s consider the empty input environment
ρ = ∅ and the output environment ρ′ = [x 7→ F]. Then,
ρ ⇓ T and ρ′ ⇓ x. Then, WMC(x⇔ f1 ∧ T ∧ x,w) = 0.9, as
expected.

Continuing to compile the entire program, we consider
the interesting case of compiling the if-else statement on
lines 2–6. This first requires applying rule (C2) again to the
flip statements on lines 3 and 5 to get the bimplications
y ⇔ f2 and y ⇔ f3. We then apply rule (C5) to get the
single formula y⇔ ((x∧f2)∨ (¬x∧f3)). We compile the
if-else on lines 7–11 in exactly the same way to get the
formula z⇔ ((y∧f4)∨ (¬y∧f5)). Rule (C8) implies that
compiling marginal-MAP queries does not add any variables
to the compiled formula. Finally, we apply rule (C9) to get
the final formula:

(x⇔ f1) ∧ y⇔ ((x ∧ f2) ∨ (¬x ∧ f3))

∧ z⇔ ((y ∧ f4) ∨ (¬y ∧ f5))
(5)

Each compilation rule also creates a mapping from a vari-
able and it’s negation to a probability. Simple assignment, x
= e, maps both x and it’s negation to 1.0. Sampling from
a Bernoulli distribution, x ∼ flip θ again maps x and



it’s negation to 1.0, while maping the generated variable f
to θ and it’s negation to 1 − θ. The weight of the variables
bound by a map statement are contingent on the result of the
most likely assignment of their corresponding scrutinized
variable. If the most likely assignment is true, then the
bound variable is given a weight of 1.0 and its negation is
given a weight of 0.0; otherwise, if the most likely assign-
ment is false, the bound variable is given a weight of 0.0
and its negation 1.0.

The set of observations compile to the conjunction of the
compiled formulae for each expression observed. Programs
compile to a list of formulae with an entry for each query.
If the query is for the marginal probability of an expres-
sion, then the formula is the conjunction of the compiled
statements, compiled observations, and the queried expres-
sion; if the query is for the marginal-MAP over some num-
ber of variables in the program, then the formula is just the
conjunction of the statements and observations. Note that
we can reuse the compiled statements and observations for
every query, we will empirically show the benefits of this
amortization in Figure 8.

3.4 Efficient Computation of map Upper-Bounds
The previous section described how to associate PineaPPL
programs with equivalent weighted Boolean formulae, but
this in itself is not a helpful reduction: we still need to lever-
age this translation to perform efficient marginalization and
map upper-bound computation. To do this, we compile the
logical formula into a probabilistic circuit that enables ef-
ficient weighted model counting computation (Chavira and
Darwiche 2008). There are a variety of ways of accom-
plishing this compilation step and a variety of compilation
targets such as binary decision diagrams (BDDs) (Brace,
Rudell, and Bryant 1990), SDDs (Darwiche 2011), and d-
DNNF (Chavira and Darwiche 2008). In this paper we com-
pile to BDDs, but in principle any of these other compilation
targets can be used instead.

Figure 6a shows a logical circuit that encodes the logical
formula in Equation 5. The circuit is read top-down. Each
leaf of the circuit is a literal, and the internal nodes are con-
nectives denoting logical disjunction and conjunction. The
internal nodes of this circuit have particular properties that
enable fast WMC. First, every disjunction is called a decision:
each branch fixes variables to particular values, and hence
every branch is logically mutually exclusive with every other
branch. For instance, the left branch of the root node de-
cides x and f1 are both T. Each conjunction is decompos-
able, meaning that any two branches of a conjunction refer
to distinct sets of variables. Together, the decision property
and decomposability enable efficient WMC computation in a
single bottom-up pass over the circuit. See Darwiche and
Marquis (2002) for further details on circuit properties.

Compiling an arbitrary PineaPPL program to a struc-
tured logical circuit that supports linear-time WMC is #P-hard
in the size of the program (Roth 1996). Hence, this compi-
lation step can be expensive, and the resulting circuit can be
exponentially large in the program size. However, this com-
pilation step is nonetheless extremely profitable, since (1)
it is possible to compile interesting PineaPPL encodings;

and (2) the map search procedure in Algorithm 1 amortizes
the expensive compilation by performing many (linear-time)
marginalization and upper-bound queries.

∨
∧ ∧

x f1 x f1

∨
∧ ∧

y f2 y f2

∨
∧ ∧

y f3 y f3

∨
∧ ∧

z f4 z f4

∨
∧ ∧

z f5 z f5

(a) PineaPPL logical circuit compilation.

+

× ×
1 0.9 1 0.1

max

× ×
1 0.8 1 0.2

max

× ×
1 0.3 1 0.7

+

× ×
1 0.4 1 0.6

+

× ×
1 0.6 1 0.4

(b) Circuit that computes an upper-bound on the MAP.

Figure 6: Compilations of the program in Figure 5.

Efficient marginal computation The compiled logical
circuit can be used to compute any arbitrary marginal of
the circuit in linear time in a manner similar to that de-
scribed by Chavira and Darwiche (2008). In particular, we
will use the circuit structure and an appropriate instantiation
of each variable to describe the necessary sequence of sums
and products for computing this marginal. As an example,
consider computing the marginal probability that x=T using
the circuit in Figure 6a. First, we replace every leaf with a
numerical value: (1) replace each parameter variable fi by
its appropriate weight in the program; (2) replace every lit-
eral except x with the constant 1; (3) replace x with 1 and x
with 0. Then, each ∨ node performs a sum over its children,
and each ∧ node performs a product. Any (joint) marginal
can be computed in linear time via an appropriate leaf sub-
stitution in this manner.

Efficient map upper-bound computation Now we wish
to use this compiled circuit to compute the upper bound of a
map state. First, we observe that if the map variables occur



first in the decision order (i.e., near the root of the circuit),
then we can compute the exact map state by simply applying
the bottom-up pass described above and replace the relevant
sums with products. Bellodi et al. (2020) observed that, by
suitably restricting the compilation order for ProbLog to
place all map variables at the front of the decision order, one
can use this principle to design a (non-first-class) map infer-
ence procedure on the order-constrained circuit. However,
this order-constrained approach has two downsides. First,
if one wishes to perform multiple map queries (as in our
setting), then one would be forced to compile the program
many times with different orders for each map query; we
show in Section 4 that this has performance implications.
Second, as observed by Park and Darwiche (2003), order
constraints have negative implications on the initial compi-
lation performance.

Hence, we adopt a similar approach to Huang et al.
(2006): we compile a single circuit with a good ordering
(chosen heuristically based on the program order, falling
back on lexicographic order when program order is incon-
sistent across if-else branches) without regard for the
eventual map variables: this optimizes for fast initial com-
pilation. Then, rather than computing the exact map state on
the circuit, we use the circuit to compute an efficient upper-
bound by commuting the order of sums and maxes and ap-
plying Jensen’s inequality, as in Huang et al. (2006). This is
visualized in Figure 6b, which is computing an upper-bound
on the probability of the map state for variables x and f1. In
general, to compute an upper-bound on the map state for a
set of variables, an (∨) node that decides any map variable is
interpreted as a max node; otherwise, the (∨) node is inter-
preted as a + node. Therefore, the same compiled circuit can
be used for solving many different map queries by interpret-
ing it in different ways – this is our key observation, which
is what makes this approach to map uniquely well-suited for
PPLs that support a first-class map keyword.

4 Empirical Evaluation & Case Studies

Our goal in this section is to empirically evaluate the scal-
ability of the map procedure outlined in the previous sec-
tion, and compare against existing map implementations for
PPLs. We implemented PineaPPL as described by the op-
erational semantics in Section 3.3 and instantiated Algo-
rithm 1 with the upper-bound and marginal computation de-
scribed in Section 3.4. We compiled PineaPPL to BDDs
using a variable order described previously. To the best of
our knowledge there is only one existing PPL that supports
map inference: ProbLog (Bellodi et al. 2020).1

1Notes on reproducibility: All benchmarks were conducted on
the same server with 512GB of RAM and two AMD EPYC 7543
CPUs. PineaPPL was entirely implemented in the Rust program-
ming language. Each experiment was allocated a single core. We
will release all source code necessary for fully reproducing our ex-
perimental results upon publication. The source code for all exper-
iments is provided in the supplement.

4.1 Comparison with ProbLog
First, we compared PineaPPL against ProbLog. Like
PineaPPL, ProbLog compiles to a logical circuit in or-
der to perform map inference. However, ProbLog has the
following key differences: (1) map in ProbLog is not first-
class and can only be performed once every program run;
(2) ProbLog is a logic-based rather than imperative PPL
with a very different compilation encoding and strategy; and
(3) ProbLog reduces map inference to utility maximiza-
tion using DT-ProbLog (Van den Broeck et al. 2010) rather
than branch and bound search.

One challenge with evaluation is that there is no stan-
dard set of map benchmarks for comparing the perfor-
mance across PPLs. We developed a new selection of bench-
marks based on discrete Bayesian networks and compiled
these networks into equivalent PineaPPL and ProbLog
programs.2 The “Cancer” and “Sachs” networks are small
enough to run map queries over the entire powerset of pos-
sible variables. For the “Alarm” and “Insurance” networks,
we selected 5 variables uniformly at random, and ran the
powerset of possible queries over those 5 variables. Figure 7
gives a cactus plot showing the relative performance of these
two map inference algorithms on four selected Bayesian net-
works. These Bayesian networks are very challenging: the
“Alarm” network is the largest, and it has several thousand
random variables. To our knowledge, these are by far the
largest probabilistic programs that exact map inference has
been performed on. On two of the examples (Insurance and
Alarm), ProbLog failed to complete a single map query
within the time limit.

As mentioned in Section 3.3, PineaPPL can perform
multiple map queries on a single program, reusing the com-
piled model and compiled observations for each query. To
give the fairest comparison with ProbLog, which does not
have this capability, for the experiments depicted in Figure 7
we had PineaPPL compile a new program for every single
query. To demonstrate the effect that this model amortization
has on the performance of PineaPPL, we ran a subsequent
experiment where we included every query we tested at the
end of a single program. Figure 8 shows percent speedup of
running the single the single amortized program compared
to the time it takes to run each query individually for a se-
quence of programs.

5 Related Work
Meta-inference Many PPLs today contain some sup-
port for forms of meta-inference: the ability to evaluate a
marginal query while running a program. Examples include
Church (Goodman et al. 2008), Anglican (Tolpin, Van de
Meent, and Wood 2015), Gen (Cusumano-Towner et al.
2019), meta-ProbLog (Mantadelis and Janssens 2011),
Venture (Mansinghka, Selsam, and Perov 2014), and
Omega (Tavares et al. 2019). It is possible to use meta-
inference to solve map by querying for the sub-distribution

2See the supplementary material for the source programs.
Bayesian networks were selected from https://www.bnlearn.com/
bnrepository/.
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over all variables one wishes to marginalize over and enu-
merating that distribution to select the maximum value.
However, this runs into a clear state-space explosion chal-
lenge: exhaustively enumerating the space of possible as-
signments during meta-inference is infeasible for many of
the examples we showed in our experiments (for instance,
the examples in our Bayesian network benchmarks query the
map state of over 100 variables in some instances). Hence,
for scalability reasons, we argue that a map query is an in-
valuable first-class citizen in addition to meta-inference.

Probabilistic soft logic (PSL) PSL is a probabilistic pro-
gramming language purpose-built for computing the map
state of a configuration of variables (Bach et al. 2017). PSL
relaxes the probabilistic semantics in order to transform map
estimation into a convex-optimization problem, allowing it
to scale to extremely large problem instances. However, PSL
does not support first-class map or observations, and further-
more does not have a precise probabilistic semantics, so it is
not directly comparable to our approach in PineaPPL.

6 Conclusion
We introduced PineaPPL, an imperative PPL that com-
piles to probabilistic circuits and supports first-class map
inference. By developing a suitable logical encoding for
PineaPPL, we are able to leverage existing methods for
exact map inference that were developed for Bayesian net-
works in order to do compositional map inference on proba-
bilistic programs. We compared PineaPPL against exist-
ing map inference algorithms for ProbLog and showed
PineaPPL can scale to orders-of-magnitude larger exam-
ples than are currently supported by the search-based map
inference in ProbLog. For future work, we aim to (1) fur-
ther specialize map by exploiting the repeated structure of

similar map queries; (2) combine map inference with other
more common forms of meta-reasoning like meta-inference;
and (3) combine our exact discrete solver with continuous
approximate methods to scale hybrid examples; and (4) ex-
plore circuit-transformation based approaches for possibly
gaining more amortization benefits (Choi, Friedman, and
Van den Broeck 2022).
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