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Abstract

Research in procedural content generation (PCG) has re-
cently heralded two major methodologies: machine learning
(PCGML) and declarative programming. The former shows
promise by automating the specification of quality criteria
through latent patterns in data, while the latter offers signif-
icant advantages for authorial control. In this paper, we pro-
pose the use of probabilistic logic as a unifying framework
that combines the benefits of both methodologies. We pro-
pose a Bayesian formalization of content generators as prob-
ability distributions and show how common PCG tasks map
naturally to operations on the distribution. Further, through a
series of experiments with maze generation, we demonstrate
how probabilistic logic semantics allows us to leverage the
authorial control of declarative programming and the flexibil-
ity of learning from data.

Introduction
Over the past two decades of procedural content generation
(PCG) research, two key authorship problems have emerged:
on the one hand, when the author of a generative system has
only a vague notion of their general intent, but a plethora
of examples (e.g., level data for existing game levels, whose
properties they want to replicate in the generator), a data-
driven approach (cf. PCGML (Summerville et al. 2017)) can
lighten the authorial burden of describing criteria for gen-
eration in formal terms. On the other hand, if the author’s
goal is to generate content for which few examples exist
(or that deviates from existing example data), but the au-
thor has a clear sense of constraints and generation criteria,
they may reach for a tool that is based on logic programming
or rewrite grammars. The latter emphasizes human authorial
control over specifying criteria for generated content, and
the former, automatic inference of those criteria via statis-
tical patterns in data. Across this spectrum, there are many
formulations of PCG in the literature (Yannakakis and To-
gelius 2018). Each formulation stipulates the content gen-
eration process based on the needs of the underlying com-
putational framework, e.g., “PCG as search” in the case of
evolutionary algorithms (Togelius et al. 2011).

In practice, however, PCG developers face both of these
authorship needs—direct modeling and inference—in tan-
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dem, though potentially at different points in the develop-
ment process. In this paper, we propose using Probabilistic
Logic as a general framework for PCG in game design that
unifies these two needs.

Our central contributions are (1) a formal notion of con-
tent generators as probability distributions, and (2) an
analysis of an existing probabilistic logic programming lan-
guage, Problog, in terms of its suitability for PCG authoring
tasks. Our analysis entails a small benchmark suite we de-
vised based on maze generation, over which we run several
experiments corresponding to common tasks in an iterative
PCG development workflow. We conclude with a discussion
of how well Problog fits the needs of PCG and what can be
improved in this context.

Why Probabilistic Logic?
To be able to allow designers to come up with complex gen-
erators that remain controllable and understandable, we ar-
gue that we need a solid framework for dealing with random-
ness. In every formulation of PCG, we define a possibility
space and draw instances from it with some level of ran-
domness. The degree to which this randomness is specified
is often implicit in the techniques themselves; e.g., search-
based techniques search stochastically and prune based on
some fitness criteria. The effect of doing so is obfuscation of
the way randomness is controlled to other aspects of the gen-
erator specification, which in turn makes it difficult to reason
about the generator. One must have a solid understanding of
the underlying generator to aptly control its randomness, and
even then the association is frequently only implicit. Diver-
sity is an important component of many PCG systems, and
though there are many means by which one can enforce di-
versity, they all entail a form of selecting an artifact with
some form of uncertainty. Otherwise, the same artifacts will
be generated repeatedly. In our view, randomness is impor-
tant in understanding and specifying content generators that
strive for diverse content. A main challenge in developing
tools for PCG is empowering designers to define and con-
trol this randomness.

Bayesian reasoning affords us with mechanisms we re-
quire to do accomplish our goal. It lies at the bedrock of
techniques that formally reason about uncertainty (Murphy
2012). In PCG via machine learning, researchers formalize
content generation in terms of a latent distribution over the
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content and assume that one can learn it from data (Sum-
merville et al. 2017). Some formalize it in Bayesian terms
and doing so explicitly captures their uncertainty, and per-
mits us to reason about and control their distributions via
Bayesian conditioning. However, the lack of high-quality
data makes learning the generative design space purely from
data challenging (Liu et al. 2020). This constitutes the need
for the specification of priors that restrict the learning space
by incorporating domain expertise in either the structure of
the model or its parameters. Defining this structure via prob-
abilistic graphical models does not directly capture the nu-
ances of game design and requires a great deal of domain
expertise in both game design and Bayesian modeling (Sum-
merville and Mateas 2015). Thus, there is a need for a sys-
tem that provides authorial control to designers that is more
expressive than graphical models.

Approach
We adopt a programming-language perspective; that is, we
view the specification of this system as a language design
problem. Therefore, we leverage existing work on proba-
bilistic programming languages (PPLs), a tractable means
by which non-AI experts can model complex phenomena.
PPLs have explicit Bayesian semantics and thus allow for
sophisticated Bayesian modeling. One can leverage ideas
and formalizations common to analyzing programming lan-
guages to define a language that allows the separation of
modeling the domain from reasoning about it(inference).
Thus, designers need not worry about how Bayesian reason-
ing takes place and just focus on modeling the game design
domain. PPLs provide a rich expressive language that can
specify a wide range of probabilistic models that previous
approaches, such as probabilistic graphical models, cannot.
Though young, the field has garnered interest in many do-
mains, especially those that require transparent and explain-
able AI models. As far as we are aware, we are the first to
explore PPLs’ use in game design.

There are many approaches to probabilistic programming.
In this work, we limit ourselves to ones whose semantics
have emerged from the domain of logic programming. Prob-
abilistic logic programming allows us to define language se-
mantics that can specify these models in a high-level lan-
guage and allow us to learn from examples. They addition-
ally allow us to incorporate constraints that are easier to
express in declarative logic statements. The use of declar-
ative programming in the form of Answer Set Programming
(ASP) is widespread in PCG research and has proven fruitful
as a means by which designers can incorporate their intent
(Smith and Mateas 2011). Its ability to facilitate exploration
of the generative space through observing facts facilitates a
feedback loop that is essential in game design. However, it is
difficult to control its stochasticity and thus the shape of its
generative space. Designers have limited control over how
often each of the possible outputs shows up. In contrast, for-
mulating generators in Bayesian terms allows us to reason
about the probabilities explicitly and control how often each
output is sampled. This in turn gives designers another knob
to control that can be tuned by training, the data for which
can come in the form of samples that pass a certain metric

or through examples selected by the designer. In essence,
this allows us to utilize both domain knowledge and to learn
from data; utilizing authorial intent for the former and ex-
ample artifacts for the latter.

Background
Declarative Generation in Games
Smith and Mateas 2011 first proposed using ASP for de-
signing content generators for games. They argue that ASP
allows designers to formulate design problems in a declar-
ative manner and explore the design space via observation
of facts. Since then, researchers have explored using ASP in
the generation of a variety of different artifacts. Smith and
Bryson 2014 demonstrated how dungeon generators can be
specified in ASP. Inspired by Dormans and Bakkes (2011)’s
work on separating dungeon generation into multiple gener-
ation tasks, Smith, Padget, and Vidler (2018) showed how
ASP can be used for specifying a high-level graphical repre-
sentation of levels. Abuzuraiq, Ferguson, and Pasquier 2019
take this a step further and use a graph partitioning algorithm
implemented in ASP that converts this graph representation
of levels into tile-map levels. Dabral and Martens 2020 pre-
sented a narrative planner using ASP where the ability to ob-
serve certain narrative events allows the exploration of nar-
rative spaces.

All of these systems built on top of ASP do not specify an
explicit parameterization on randomness. This lack of ex-
plicit randomness is a challenge due to the issue of deter-
ministic outcomes: the implicit randomness in ASP is only
dictated by which model the underlying solver selects first.
Although in ASP which stable model gets selected can be
altered through optimization functions, ASP solvers do not
allow for specific alterations to the underlying distribution
and do not curtail the tendency to find the same stable model
repeatedly.

PCG via Machine Learning
Procedural content generation via machine learning
(PCGML) defines the generation process explicitly in
terms of probabilities (Summerville et al. 2017). PCGML
models attempt to learn a generative distribution from
data to explore and generate artifacts from the generative
space. Deep learning models, most commonly a variant of
Generative Adversarial Networks (GANs) or Variational
Autoencoders (VAEs), are often employed to learn this
distribution (Liu et al. 2020). These deep learning models
can then be sampled from to support interesting exploration
of the latent space of the data such as blending levels from
datasets that include levels from multiple games (Snodgrass
and Sarkar 2020). However, these models struggle with
consistently generating playable levels. Playability often
requires hard constraints, e.g., a traversable path must exist
from the beginning of the level to the end, which requires
strict enforcement. Deep learning models struggle with
inference that forces hard constraints to be met (Liu et al.
2020; Xu et al. 2018). Models that attempt to address this
by taking into account some hard constraints only steer
away the learned distribution from invalid artifacts. These
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methods do not guarantee excluding unplayable levels
(Liello et al. 2020). Thus, today’s deep learning for content
generation strategies is dependent on post-generation
checks for playability and hard constraints.

Probabilistic graphical models can encode hard-
constraints (Koller and Friedman 2009), and were also
considered as techniques for PCGML (Summerville et al.
2017; Summerville and Mateas 2015). However, using
probabilistic graphical models tends to result in domain-
specific generators. They required a great deal of modeling
expertise to develop and thus difficult for a non-expert to
design. This is in part due to the limited expressiveness
of graphical models as a modeling language. It is difficult
to encapsulate the nuances of design knowledge in such a
representation. Developing high-quality graphical models
that are true to expert intent and knowledge requires a great
deal of understanding of the underlying mechanisms of
how graphical models capture the distributions. One can
liken developing generators using graphical models to pro-
gramming in machine language: it is possible but requires
a great deal of technical knowledge of the semantics of the
representation. For such models to be more widespread,
a more expressive language that allows for more abstract
descriptions of the problem is required; akin to high-level
programming languages such as Python and Rust.

Probabilistic Logic Programming
We can loosely classify systems that combine logic pro-
gramming with probability theory into two categories: those
that follow Sato 1995’s distribution semantics, and those
that follow Knowledge Base Model Construction (KBMC)
(Riguzzi 2018). In systems that follow distribution seman-
tics, probabilistic logic programs define a distribution over
possible worlds in the space of normal logic programs.
KBMC systems on the other hand are means by which a
user can encode a large probabilistic graphical model. We
consider systems that follow the distribution semantics since
they are most amenable to circuit compilation. Circuits are a
powerful data structures that encode Boolean formula (Dar-
wiche and Marquis 2002). Compilation to circuits can amor-
tize the cost of inference and sampling and thus are an at-
tractive representation for PCG. There are probabilistic logic
formulations beyond Problog that can utilize circuits such
as probabilistic answer set programming (PASP) (Cozman
and Mauá 2020). However, their credal semantics are more
expressive than Sato 1995’s semantics, and thus current in-
ference techniques are much slower then the already slow
Problog.

There are various programming features that are needed
for PCG that current PLP systems, specifically Problog al-
low for, including flexible probabilities, stochastic memo-
ization and negation as failure (De Raedt and Kimmig 2015).
However, there are crucial features that no existing system
supports, such as limiting the space of possible worlds of
the programming via a first-order sentence. We will discuss
this issue further in the section where we outline Problog’s
features. We also show how this can be partially emulated
by using Problog’s Bayesian conditioning operator, the evi-
dence primitive.

A Bayesian Framework for PCG
In this section, we will formulate content generation in a
Bayesian framework. We will start with a few background
definitions, present an example to ground the discussion, and
then discuss the details and features of this framework.

Basic Definitions
We mentioned earlier that we formulate content generators
as probability distributions. We start off with a few defini-
tions to clarify this formulation:
Definition 1 (Probability distribution). Let Ω be a set. A
probability distribution on Ω is a function P : Ω → [0, 1]
such that

∑
ω∈Ω P (ω) = 1.

Definition 2 (Events). We call subsets E ⊆ Ω events.
The probability of an event is the sum of the probabili-
ties of each element of the sample space in the event, i.e.,
P (E) =

∑
ω∈E P (ω).

Definition 3 (Random Variable). A random variable is a
function F : Ω → D for some set D. We define the probabil-
ity that a random variable takes on a particular value d ∈ D
as P (F = d) =

∑
{ω|F (ω)=d} P (ω).

Grid Example
To ground the discussion in this section, we will begin with
an example. Suppose that we are trying to write a generator
that creates a level represented by a 2D grid where the player
has to get from the start of the level to the end. The player
can move up, down, left, or right from and to any cell that
is traversable and cannot move to or from any cell that is
an obstacle. For simplicity, let’s assume that the start of the
level is the top left of the grid and the end of the level the
bottom right of the grid. We can represent such a grid as a
binary string where each cell in the grid is either a 1 or a 0;
indicating whether it is traversable. Figure 1 shows all such
2 × 2 grids, where white cells are traversable, black cells
are obstacles, the green cell is the start of the level, and the
red cell is the end of the level. Let’s refer to the set of all
possible artifacts a generator can generate as its “universe”
and denote it by Ω. Thus, in our example:

Ω = {grid0, grid1, grid2, grid3, . . . , grid15}.
Without any prior knowledge of what elements of Ω we
would like to generate, we have no preference for any partic-
ular outcome; thus, for illustration let’s assume that initially
our generator is uniformly distributed over all possible arti-
facts.

Valid Generator
We use the term artifact to refer to an object a designer
wishes to generate. The term is purposely vague as much
of what we discuss here applies to different domains of in-
terest in game design, such as levels, art assets, and music,
that may be generated. In this paper, we limit our scope to
artifacts that require a strong logical constraint to be satis-
fied. For example, for platform game levels to suit their pur-
pose, there must exist a traversable path from the start of the
level to the end. We refer to such hard constraints, ones that
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(a) Grid 0 (b) Grid 1 (c) Grid 2 (d) Grid 3 (e) Grid 4 (f) Grid 5 (g) Grid 6 (h) Grid 7

(i) Grid 8 (j) Grid 9 (k) Grid 10 (l) Grid 11 (m) Grid 12 (n) Grid 13 (o) Grid 14 (p) Grid 15

Figure 1: All possible instances of the example 2× 2 grid generator. The start is colored with green and the end is colored with
red

are required for an artifact to be usable in a game, as valid-
ity constraints. Thus, validity constraints are hard evidence
constraints that require a definite true or false observation.
For a given generation task, we refer to the set of possible
artifacts as the universe or the generative space Ω. The task
of authoring a valid generator is restricting Ω to a subset
whose elements satisfy validity constraints. We refer to this
subset as the valid generative space V. Formally we view a
valid generator as a probability distribution on Ω.
Definition 4 (Valid generator). Let Ω be the set of possible
artifacts, and V ⊆ Ω be the set of valid artifacts. Then a
valid generator is a probability distribution P such that for
all ω /∈ V , P (ω) = 0.

Thus a valid generator meets the minimum requirement of
generating artifacts that a designer can use; it is technically
usable and fulfills the necessary constraints. There may be
multiple ways of generating V from Ω, for example in ASP
we can specify rules in the program that eliminate answer
sets that do not satisfy the rule. A natural way to express this
operation under Bayesian semantics is through conditioning.
To understand that, let us first define conditioning:
Definition 5 (Conditional Probability). Let A,B ∈ Ω be
events in Ω, and P is a distribution over Ω. Then the condi-
tional probability P (A | B) is defined as:

P (A | B) =
P (A ∩B)

P (B)
. (1)

Similarly, let X and Y be random variables, we can define a
conditional distribution on X given Y as:

P (X = x | Y = y) =
P (X = x ∩ Y = y)

P (Y = y)
, (2)

where P (X = x ∩ Y = y) =
∑

ω|X(ω)=x,Y (ω)=y P (ω).

Therefore we can define a valid generator through condi-
tioning as:
Definition 6 (Bayesian Valid generator). Let P be a prob-
ability distribution on possible artifacts Ω. Let V ′ : Ω →
{true, false} be a random variable such that for some
ω ∈ Ω, if ω is invalid then V ′(ω) = true otherwise it is
false. Then a valid generator is P (Ω | V ′ = true).

We refer to the conditioning listed above as conditioning
on hard evidence; there is no uncertainty about what is valid.
The effect of such conditioning is giving events that are not
in V zero probability, which matches our initial definition of
a valid generator.

Example In our grid example, a valid constraint would be
the condition that a player must be able to get to the end of
the level; i.e., there must exist a path from the beginning to
the end. Thus, we are left with Grid 11, 13, and 15 as pos-
sible artifacts, i.e., V = {grid11, grid12, grid13}. Without
any other information about how the generator is enforcing
these constraints, we can just assume that the distribution
over V in our example is uniform. Table 1 shows the result
of this operation and removing zero probability outcomes
from Ω.

Grid ID cell(1) cell(2) cell(3) cell(4) P (ω)
11 1 0 1 1 0.333
13 1 1 0 1 0.333
15 1 1 1 1 0.333

Table 1: Valid grid configurations, i.e., valid generative
space V and assuming a uniform distribution over it.

Quality Constraints
Though not all elements of V are desirable, many valid lev-
els are bad levels. There are quality constraints that are dif-
ficult to articulate yet are relevant in generating high-quality
artifacts. Some would argue that this is where the artistic
value of game design comes in; all levels in commercial
games are valid levels but not all of them are considered
to be of high quality. These constraints may come in the
form of hard logical constraints or a function that assesses
the quality of an artifact. In the PCGML literature, one as-
sumes that a model can learn these quality constraints from
data. In our formulation we do not make any assumptions as
to how these constraints are given, thus they can be directly
defined or learned from data. If the constraint is a hard log-
ical constraint we consider it hard evidence against the ar-
tifact, that is, we eliminate the possibility of its generation.
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This will in turn affect the resulting distribution by elimi-
nating more artifacts. If the constraint is not a strong logical
constraint, then we consider it to be virtual evidence, and it
can be used to influence the generator by adjusting the prob-
abilities of valid artifacts to be higher or lower depending on
the strength of the certainty of the evidence. Following the
definition given by Pearl (1986), we formally specify virtual
evidence on a random variable as a distribution over the co-
domain of the random variable:

Definition 7 (Virtual Evidence). Let P be a distribution and
X and D be random variables. Let P (D = d | X = x) be
a conditional probability distribution on values of X . Con-
ditioning P on the event D = d is called virtual evidence of
X .

A common way to think about virtual evidence is to think
about them as noisy sensors; the sensors make observations
with a level of uncertainty. The degree of belief we attribute
to those sensors, the random variable D, is the way we
model the lack of definiteness in quality constraints. Thus,
we can incorporate many possible techniques that can model
noisy readings, such as Bayesian networks and neural net-
works. Virtual evidence can become hard if we collapse
the distribution to 0 or 1, that is, we can assign the evi-
dence a value d, and set P (D = d | X = x) = 1 and
P (D = d′ | X = x′) = 0 for all d′ ̸= d ∈ D.

Constraint Types Readers familiar with constraint pro-
gramming and optimization might be wondering what the
distinction is between quality/validity constraints and soft-
/hard constraints. In that literature hard constraints are de-
fined as constraints that restrict the solution space, i.e., they
have to be satisfied. While soft constraints are defined as
constraints that are optional but preferred; in other words,
they ought to be satisfied but do not have to be. Solutions
are eliminated by using hard constraints and penalized by
using soft constraints.

Validity constraints can be considered as hard constraints;
as they need to eliminate non-playable levels, for example,
to ensure validity. However, quality constraints can be hard
constraints or soft constraints; or an arbitrary combination of
both. We make this distinction for two main reasons: the first
is a focus on the separation of concerns between the validity
of an artifact and an assessment of its quality. That is, we can
separate the concrete constraints for the artifact to be consid-
ered workable (e.g., a level must be completable) and other
attributes of the artifacts whose value may be more subjec-
tive (e.g., how many ways to complete the level). The second
reason is that this formulation allows us to have the same
validity generator to make multiple quality generators de-
pending on different quality constraints, which reduces the
workload needed to adapt content generators for multiple
games.

Ultimately, this is a terminology convention, and one
can make the formulation using hard and soft constraints,
whereby hard quality constraints are folded into validity
constraints.

Quality Generator
We can now formalize the notion of a quality generator that
takes into account a set of quality constraints.

Definition 8 (Quality Generator). Let Q be the set of ar-
tifacts consistent with a set of quality constraints F , P (Q)
be the probability that a generator P generates Q, where Q
contains assignments to the virtual evidence defined by F ,
V be a set of valid artifacts that P can generate and P (V )
the probability that P generates V . Then a quality generator
P (V |Q), is defined:

P (V |Q) =
P (Q|V )P (V )

P (Q)
, (3)

where P (Q|V ) is the probability of generating quality arti-
facts given that the generator generated valid artifacts V .

Readers may have already noticed that this is an example
of Bayes’ rule. In Bayesian statistics, we refer to P (V |Q)
as the posterior, P (Q|V ) the likelihood, P (V ) the prior,
and P (Q) as the marginal probability of evidence. Thus, the
quality generator is the posterior and the valid generator is
the prior. The likelihood captures how likely the generator
is to generate quality artifacts given that it has generated a
set of valid artifacts V . The probability of evidence is the
probability over quality artifacts, and in many applications
of Bayesian statistics is often just used as a normalizing con-
stant.

The main mechanism that designers have to control the
quality of the generator is specifying the likelihood. In ma-
chine learning, this likelihood is learned from data. This can
happen under many forms including parameterized model
(Summerville and Mateas 2015) or deep learning (Liu et al.
2020). But as we mentioned earlier, this likelihood can also
be specified by the designers directly in the form of hard or
virtual evidence.

Example For illustration purposes we will consider two
different quality constraints; to show how the same valid
generator can be used to construct multiple quality gener-
ators and how we can use both logical and non-logical con-
straints. Our grid example is small, and thus our quality gen-
erators will have some overlap, but that need not be the case.
First, let’s consider the case of the hard constraint that there
must be exactly one path from the start to the end. Thus, our
F will only output 1 or 0; 1 when there is one path from
the start cell to the end cell and 0 otherwise. A quality gen-
erator consistent with this constraint would have non-zero
probabilities for Grid 13 and Grid 11 and zero for all other
cases in V , which is just Grid 15 in this example. Without
any other information regarding how to weigh the remain-
ing grids, we will assume a normal distribution. The table
for this generator is in Table 2.

Grid ID cell(1) cell(2) cell(3) cell(4) P (ω)
11 1 0 1 1 0.5
13 1 1 0 1 0.5

Table 2: Grid configurations for the first quality generator
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Suppose we have another generator that does allow for
multiple paths and, in fact, weighs grids that allow for mul-
tiple paths more. Concretely, we can define F to return the
number of traversable paths multiplied by the prior proba-
bility of the grid; then, we have to normalize to get a valid
distribution by dividing each output of F to the sum of all of
its outputs. This quality generator will have non-zero proba-
bility for all of our V , and only adjust the distribution, which
can be seen in Table 3:

Grid ID cell(1) cell(2) cell(3) cell(4) P (ω)
11 1 0 1 1 0.25
13 1 1 0 1 0.25
15 1 1 1 1 0.5

Table 3: Grid configurations for the second quality generator

Iterative Conditioning
The definition given for quality generators obscures, for sim-
plicity, one fact that proves to be a great advantage of this
approach; the prior here is itself a posterior. If we consider
the Bayesian way of obtaining P (V ), then it is a posterior
on a P (Ω), i.e., P (Ω|V ′ = true). Herein lies the power of
Bayesian modeling as an underlying formalism for PCG; we
can allow for iterative conditioning that is non-monotonic.
We can have more than one validity constraint or quality
constraint, observe their results, and still have a valid distri-
bution. Therefore, the iterative nature of designing content
generators is handled naturally by Bayesian conditioning.

Problog as a Language
How do we model quality and validity constraints in a way
that is understandable and controllable whilst keeping the
computational process of conditioning, also known as infer-
ence, tractable? In this section, we discuss how Probabilis-
tic Logic Programming can address this challenge and de-
scribe a specific language, Problog, and its features. Problog
is a probabilistic extension of Prolog, where in addition
to rules and deterministic facts, a user can specify a fact
with an associated probability (Dries et al. 2015). Its se-
mantics are based on Sato (1995)’s distribution semantics
and thus Problog programs define a distribution over pos-
sible worlds in the program. Problog converts the program
into a weighted boolean formula which is then compiled
to circuits, on which inference amounts to a well-known
problem in the knowledge-compilation literature, weighted
model counting (Dries et al. 2015). Thus, Problog programs
can be compiled and then sampled from efficiently.

Example Program
We demonstrate Problog’s conditioning ability by writing a
simple program to generate mazes. A more complicated ver-
sion of this program will also be used in the next section. A
maze can be modeled by a graph where each node models a
cell in a grid. Each node is connected to its adjacent cells in
the grid. We can then remove edges from the node to get a
maze representation where if an edge exists from one node

to another, then one can traverse from that cell in the grid
to that adjacent cell. We can model this by starting off with
initializing a 2× 2 grid, in the form of a probabilistic graph:
0.5::edge(1,2,0);0.5::edge(1,2,1).
...
0.5::edge(3,4,0); 0.5::edge(3,4,1).

where edge(X,Y,0) indicates that an edge between grid
cell X and grid cell Y is not connected, and edge(X,Y,1)
indicates that it is. Each of the two possibilities has a proba-
bility of 0.5.

For a maze to be valid, we must ensure that a path exists
from the start to the end. Here we assume that the start is cell
1 and the end is cell 4. To do so we tell Problog to observe
the fact that path(1,4) is true. We do this by using the
evidence primitive:
evidence(path(1,4)).

This statement allows us to condition any predicate we
defined earlier in the program and adjust the distribution ac-
cordingly.

Finally, we query for the active edges in the grid that re-
main to get our maze.
query(edge(_,_,1)).

From this sample we can construct a graph of the level, re-
moving nodes that do not appear in any edge.

Declarative System
Problog’s declarative nature positions it as a good starting
point for a generalized probabilistic framework for PCG.
A non-technical end user would require some form of GUI
component, but as a first step, it is fruitful to consider what
features the underlying system needs to support.

Specifying generators is difficult in part due to the diffi-
culty of specifying authorial intent through construction. As
we mentioned earlier it takes a lot of expertise and effort
to come up with a generator that is both suited to the de-
sign task and has diverse output. Though not all constraints
are easily specifiable, Problog’s is expressive enough to en-
compass at least Definite Clause Grammars, which are more
expressive than context-free grammars and we can show that
they can express context-sensitive grammars (Pereira and
Warren 1980).

It remains to be shown, however, if this is a means of
generator specification that makes sense to designers. As
a first step, it would be useful to run a study with techni-
cally minded designers and ask them about their experience
with Problog. Through that, we may encounter other desir-
able language features we have not considered.

Problog Ecosystem
The Problog system is composed of a modular pipeline;
each function is relatively self-contained. The system first
grounds the program with respect to the given query, it then
converts the ground program to a conjunctive normal form
formula which is then compiled to a circuit, an efficient data
structure for Boolean formula. One benefit of this pipeline
is the access to the circuit used for inference. This allows
Problog to save models and sample from them efficiently.
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Additionally, extensions to Problog exist for continuous
distributions (Dries 2015), and deep learning (Manhaeve
et al. 2018). Thus, Problog supports many kinds of quality
constraints beyond the evidence primitive.

Shortcomings
Though Problog shows promise as a possible modeling lan-
guage for PCG, given how useful Bayesian semantics can
be for specifying distributions over artifacts, it leaves a lot
to be desired in terms of usability. Compared to AnsProlog
and popular implementations of Prolog (e.g., SWI-Prolog),
it lacks sufficient syntactic sugar. Writing plain Problog is a
chore as many useful shorthands, such as generating a list of
integers of a certain range, do not exist.

Problog’s implementation has some inconsistent behav-
iors when it comes to well-formedness checking. For exam-
ple, erroneous Problog programs often result in null pointer
errors, stack overflow, and non-termination, where the se-
mantics of Prolog would otherwise present an error message.
These can be triggered by semantic errors such as terms that
were unexpectedly not grounded, annotated disjunctions that
do not sum to one, and impossible worlds. As a result, it is
much easier to use an alternative Prolog implementation first
and then port it to Problog, which is far from ideal from a us-
ability standpoint.

Furthermore, Problog’s Bayesian conditioning language
construct, the evidence primitive, only allows for literals.
Thus, any first-order observations that one might want to
ensure have to be enumerated manually before grounding;
otherwise, Problog has inconsistent behavior.

Finally, Problog inherits Prolog’s lack of strong or log-
ical negation, and only supports negation by failure. This
makes removing undesirable features from our generators
much more difficult. ASP allows for the use of such nega-
tion.

Maze Generation in Problog
To show some of the benefits of utilizing a Bayesian frame-
work, we conduct some experiments with both ASP and
Problog in maze generation. For ASP we use the popular
implementation Clingo (Gebser et al. 2019), and for Problog
we use the most recent public revision. For these experi-
ments, we are considering the task of generating a 5 × 5
maze. We arrived at this size as it was large enough to see
interesting maze patterns but compact enough for both ASP
and Problog to generate mazes in a reasonable time frame.
Note that long computation times are to be expected as gen-
erating mazes in this manner is NP-Hard. Problog’s perfor-
mance is much slower than ASP and does not scale beyond
5×5 mazes. However, the current Problog implementation is
implemented in Python, as opposed to the C++ based clingo,
and does not leverage performance optimizations, such as
TP-compilation (Vlasselaer et al. 2016). Thus it is difficult
to accurately make performance claims on the Probabilistic
Logic approach without implementing at least some of these
optimizations. We leave that assessment to future work. To
generate our mazes, we reason about a 5 × 5 graph in the
shape of a grid and find a set of edges that make a maze with

#const size = 5.
cell(1..size*size).
adjacent(X,Y) :- cell(X), cell(Y),

X-1 = Y, Y \ size > 0.
adjacent(X,Y) :- cell(X), cell(Y),

X+size = Y.
adjacent(X,Y):- adjacent(Y,X).
1 {edge(X,Y):adjacent(X,Y)} 2*size*size.
edge(X,Y) :- edge(Y,X).
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), Y!=Z, path(Z,Y).
:- not path(1,size*size).
:- not path(1,Y),cell(Y).
#show edge/2.
#minimize{
edge(X,Y) : cell(X), cell(Y)
}.

Figure 2: AnsProlog code for 5× 5 maze generation.

0.5::edge(1,2,0);0.5::edge(1,2,1).
...
38 more lines
...
0.5::edge(24,25,0); 0.5::edge(24,25,1).
edge(X,Y,V) :- edge(Y,X,V).
path(X,Y) :- edge(X,Y,1).
path(X,Y) :- edge(X,Z,1), Y\=Z, path(Z,Y).
evidence(path(1,2)).
...
21 more lines
...
evidence(path(1,25)).
query(edge(_,_,1)).
}.

Figure 3: Problog code for 5× 5 maze generation.

desirable qualities, namely, a path exists between the en-
trance and exit. We consider only mazes where each node in
the graph is reachable from every other node, i.e., the graph
is strongly connected. To achieve this, however, we had to
enforce that all the nodes in the original 5× 5 graph grid are
in the final maze. This is due to the difficulty we found in
enforcing strong connectivity without strong negation.

The code for both ASP and Problog was relatively small,
as the compactness of expressing graph reachability in
Prolog-like syntax makes the task of specifying our maze-
structure straightforward. However, ASP was much more
pleasant and compact to use due to the ease by which one
can specify constants and primitives with ranges of value.
Compare the code for maze generation in AnsProlog (Fig-
ure 2) against the code for Problog (Figure 2).

In Problog we used annotated disjunction, a rule of mutu-
ally exclusive outcomes with annotated probability, for the
edges as opposed to using choice rules in ASP. Also, we
had to write out each edge. We could have used a first-order
variable, but we would then have to link it to some other
primitives that would need to be enumerated. Similarly, we
needed to enumerate all the evidence statements to ensure
there is a path from node 1 to all other nodes. This led us
to use Python 1 to generate the Problog program, as the lack
of syntactic sugar to express enumeration made writing the
program by hand a chore. In contrast, with ASP it was much
easier to express the set of edges. We used the listed pro-
grams to generate 1000 5 × 5 mazes. In Problog, we sim-
ply used the sample feature, which samples a world accord-

1https://github.com/a3madkour/plp-mazes
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ing to its probability in the program. For ASP we asked it
to generate a single answer set with a random seed each
time. Since the randomness is implementation specific, the
diversity is highly sensitive to the input parameters (the pa-
rameters tested and more empirical results are in the linked
Github repository). With enough ASP knowledge, an expert
gets more diverse output from ASP, however, specifying that
diversity is much more difficult. For these experiments, we
consider the scenario where we only adjust the available in-
put parameters that are in the Clingo documentation.

Evaluation
Diversity For our evaluation, we considered the diversity
of the output for both ASP and Problog. To do this we took
the generated mazes from each technique and ran the We-
isfeiler Lehman graph hashing on them. Weisfeiler Lehman
is guaranteed to give a unique hash for isomorphic graphs
(Shervashidze et al. 2011). Out of the 1000 graphs we sam-
pled using ASP, there were only 99 unique hashes, while all
(1000) Problog graphs had a unique hash. Though this may
seem like a surprising result, given that Problog did not gen-
erate a single isomorphic graph, it is worth considering that
the space of possible graphs is very large. Thus, the prob-
ability of sampling the same graph is very unlikely, whilst
ASP is likely to arrive at similar Answer Sets that the solver
finds first. We conducted further analysis on the diversity of
the mazes according to the metrics proposed by Kim et al.
(2019b); see Figure 5 for the node types used in the metrics.
Our findings from this analysis show that Problog’s distribu-
tion over the metrics was less tightly peaked and more even
as seen in Figure 4.

Adjusting via learning We also conducted a small exper-
iment to test Problog capabilities for learning parameters.
To do so we add the t() to each annotated probability in the
Problog program, which corresponds to the edge probabil-
ities. The annotation t stands for tuneable, and this is what
lets Problog know that these are parameters to learn. Note
that since our program indicates that edge weights are inde-
pendent we do not expect to learn parameters that massively
impact the metrics we collect. The metrics we collected rely
on relationships between multiple edges, and, therefore, our
independence assumption severely limits Problog’s ability to
learn how to maximize the metrics. Nevertheless, we sought
to see how well it fares despite this limitation.

We generated a set of graphs from the 1000 that the orig-
inal Problog program generated, and picked out all graphs
that have less than 4 decision nodes in the solution path. The
solution path is the shortest path from the beginning to the
end of the maze, and decision nodes are either T-junction
or Cross-Junction nodes, see Figure 5. We ended up with a
total of 195 graphs as our training data. This condition is
arbitrary but serves as a possible design scenario a designer
might wish to adjust the generator towards. We generated a
new Problog program with learned parameters and used it
to generate 1000 more mazes. Out of these mazes 246 had
less than 4 decision nodes in the solution path. Moreover,
the learned Problog program maintains the hash diversity of
the original Problog program, as each of its graphs also has

a unique hash and as seen in Figure 4, the learned program
still maintains good diversity across the other metrics. Thus
even with this ability to learn simple parameters we are able
to move the generator towards a design scenario via learning
and maintain a diverse set of outcomes.

PCG Tasks with PLP
In this section, we discuss common PCG tasks, analyze their
mapping into our formulation and identify opportunities for
future work. Further, we discuss how they can be formulated
under Probabilistic Logic semantics and use the Problog sys-
tem to demonstrate how they can be employed.

Specifying the Valid Space
In our formulation, this amounts to specifying the set V .
Under Probabilistic Logic, this would require the user to
write down the logic program that specifies the valid space.
Probabilistic logic allows us to do this via Bayesian condi-
tioning, which could reduce the authoring burden of such a
task. However, this is largely a human authorial task, which
makes it a fruitful avenue for future work.

Computing the Valid Space
If the logic program encodes the validity constraints by con-
struction, that is, we leverage the closed world assumption
and assume that any world that is not implied by our pro-
gram is false, then computing the valid space is simply sam-
pling from the ground program. Therefore, in this instance
we do not require any explicit Bayesian inference. However,
if the program requires some form of observation, e.g., us-
ing the Problog evidence primitive, then computing the valid
space becomes more computationally taxing. Specifically,
we require the system to compute the posterior distributions
over the queried variables; in our example whether the edge
is in the graph or not. In general, we can categorize this task
as the probabilistic query as MAR, or compute the marginal
distribution which corresponds to the well-known MAJ-SAT
problem (Darwiche 2020). Thus, in general this task is PP-
complete, however, compilation amortizes this cost and al-
lows us to compute this query in polynomial time in the size
of the compiled circuit (Darwiche and Marquis 2002). Do-
ing so also guarantees an encoded distribution that the author
can easily specify as part of the program.

Adjusting the Valid Space
Designers often need to adjust the validity constraints as
they go about specifying their intent in an iterative manner.
A naive way to accommodate this is to re-compile the pro-
gram with each alteration. As far as we are aware, the cur-
rent Problog system does this when adjustments are made
to the program, however, this need not be the case. Circuits
allow efficient transformations, and so it is tenable to ad-
just the valid generator without needing a full re-compilation
(Darwiche and Marquis 2002). Therefore, future work can
consider how to efficiently and minimally adjust a compiled
Problog program without needing to go through the entire
pipeline again.
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Figure 4: Solution Path metrics proposed by (Kim et al. 2019a) for ASP, Problog and Learned Problog generated mazes

Figure 5: Node types used in the metrics proposed by Kim
et al. (2019b). (a) shows Turn nodes, (b) shows Straight
nodes, (c) shows T-junction nodes, (d) shows a Cross-
Junction node and (e) shows Terminal nodes. Image from
Kim et al. (2019b).

Generating a Valid Artifact
Once a Problog program is compiled, generating an artifact
amounts to sampling from the compiled circuit. A major
benefit of this approach is how efficient this task ends up be-
ing. Sampling requires a linear pass through the circuit and
thus generation becomes a linear time operation. However,
the circuit can increase in size significantly if the program
is complex. This can be ameliorated with approximate cir-
cuits that are smaller but closely resemble the distribution of
the program (Jiang et al. 2020). This approximation effort
is best guided when a distribution is explicitly given, which
Probabilistic Logic allows us to do.

Specifying Quality Constraints
If a quality constraint is considered to be hard evidence, then
the process of its specification and computation is the same
as the validity constraint. If it is virtual evidence, then we can
tackle adjusting it in multiple ways. The first is to model it
as part of the program and tell Problog to learn it from data,
the details of which are outlined in the section where we
discuss our experiments in maze generation. Another is to
leverage the extensions of Problog to specify this evidence,
for example, Deep Problog (Manhaeve et al. 2018).

Analyzing the Generative Space
A designer may wish to analyze the distribution of the arti-
facts as they are developing the program to specify it. If the
program is sufficiently small then one simply needs to query
for the variable of interest and Problog will compute the rele-
vant posterior probabilities. Again this amounts to the MAR
probabilistic query. If, however, the space of artifacts is too
large for exact inference to be tractable then this becomes

no longer possible. One way to deal with this is to limit
the query to specific elements of the generator, for exam-
ple, observe the distribution over a certain edge in our maze.
Another is to sample a set of artifacts and use Expressive
Range Analysis to visualize the generative space (Smith and
Whitehead 2010).Though not currently attempted, one can
imagine leveraging the compiled circuit for analysis of the
underlying distribution directly, though the details of how to
do so remain an open question.

Summary
In summary, PCG tasks map quite naturally to common
queries in PLP. Due to the explicitly Bayesian nature of PLP
it is more tenable for a non-system expert to glean out desir-
able statistical features. Moreover, since we encode the dis-
tribution of the generator in a compact data-structure, there
are many avenues for future work on generalized operations
for analysis and specification of PCG.

Conclusion
In this paper, we argued for the formulation of PCG as
probability distributions in Bayesian terms and for the use
of Probabilistic Logic as a language for the specification
and control of these distributions. We showed how this can
be employed in the existing Probabilistic Logic language
Problog and through some experiments in maze generation
showed some of the benefits of this approach over ASP. Fi-
nally, we discussed some of the limitations of Problog as a
modeling language for PCG; namely, lack of quality-of-life
features and support for strong negation. There are many av-
enues for future work, namely, tackling the issue with strong
negation in Problog, visualizing the distribution that is repre-
sented by the underlying circuit, and incorporating quality-
of-life features for game development, such as debugging
tools and integration with existing game engines. Such ef-
forts would get us closer to addressing the authorial needs
of PCG practitioners in terms of specifying hard constraints
and statistical patterns and making the dream of designer-
friendly general-purpose tools for specifying content gener-
ators a reality.
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