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Lecture Outline:

e Review of Sparsest-Cut problem
e Frechet’s-Embedding

e Bourgain’s Theorem

— Construction of Bourgain’s Embedding

— Proof of Bourgain’s Theorem

In this lecture we will first review the sparsest cut problem and its relation with metric embeddings.
Then we will show that for any metric space, there is an isometric Frechet’s embedding. Last, we
will prove the Bourgain’s Theorem with the construction of Frechet’s Embedding, which guarantee
us a O(logn) approximation factor to the optimal solution of the sparsest-cut problem.

1 Sparsest-Cut Review

In the last lecture we’ve defined the sparsest-cut problem. Recall that:

Sparsest-Cut Problem:

Given a graph G = (V, E) and w : E — Z*. Determine cut (S, S) such that ﬁéﬁg) is minimized

where E(S,S) is number of edges crossing S and S.
For any cut (S, S), we defined the distance between two vertices in the graph as follow,

.| 1 (i,j) is cross cut edge
ds(i,j) = { 0 otherwise

We claim that any cut induces a so-called cut metric dg. Also, we have proved that we could relax
any metric cut to [; metric. Then we have,

E(S,S)
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SparsestCut = mgn

Suppose there is a metric d which embeds in [y with distortion D. According to the definition of
distortion,
d(i, j)

D




Then we have,

d(i,j) > dy, (6,5) = Y d(i,5) = > dy, (i, ) (2)
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So by inequalities 2 and 3, for any metric d
Lijer ) 1 Yijerdn(iJ)
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Since we have proved the equality (1), it is easy to see that for any metric d which embeds in [;
Zi,jGE d(lnj)

with distortion D, the optimal solution to minimize ST has approximation factor of D to
2,7 ’

the optimal solution of the sparsest-cut problem.

By Bourgain’s Theorem, we can choose d to have dist(d) = O(logn), thus we could obtain a
O(log n)-approximate solution by solving the linear program below,

min Z di(i,5)
1,j€E
such that Zdl(i,j) =1
2

Vivjv kdl(z7]) + dl(j7 k) > dl(l,k’)

2 Frechet’s-Embedding

Frechet’s Theorem: Let(V,d) be an arbitrary n-point metric space. Then there is an isometric
embedding ®:V — [7_.

Proof: Let’s consider the following Frechet’s embedding. Given a metric (V,d), |V| = n. Define
D v, =< d(vi,v1),d(vi,v2), ..., d(vi,v,) >.

By triangle inequality,
[@(vi) = ®(v))lloc = max|d(v;,ve) —d(vj,v)]

< d(vi7 Uj)

so the embedding is nonexpanding. On the other hand,

forallu e V:
[@(vi) = @(vj) oo > [®(vi) — Pj(v)| = d(vi,vy)

where ®;(v;) denotes the j-th coordinate of v in the new metric space. By the above two inequalities,
it is easy to see that the embedding is isometric.

Generally, it is rare to find isometric embeddings between two spaces of interst, so we relax and
allow the embedding to alter the distances. By Bourgain’s Theorem, any metric embeds in [; with
O(logn) distortion. In the rest of the lecture, we will prove Bourgain’s Theorem with Frechet’s
embedding, which is pretty similar as what we discussed above.



3 Bourgain’s Theorem

Theorem 1. Let (V,d) be a metric space, and let n denote |V|. There exists an embedding ¢
from (V,d) into I}, where h = O(logn), such that the distortion is O(logn). Moreover, ¢ can be
computed in polynomial time by a randomized algorithm.

3.1 Construction of Bourgain’s Embedding

Given a metric (V,d) on n points, we will randomly pick k sets of nodes: Si, ..., Sy C V and define
the embedding as
Py —< d(’UZ', Sl), d(vi, SQ), R d(UZ', Sk) >,

where d(v;, S) = mingeg d(v;,s). Let k = O(log?n). For simplicity, we assume that n is power of
two.

How to pick the subsets:
pick logn random sets of size 1

pick logn random sets of size 2
pick logn random sets of size 4

pick logn random sets of size n/2

for each j =0,1,2,...,logn — 1, we randomly and independently choose logn subsets of V', each of

cardinality n/27, i.e. each of the ) substes of V of cardinality n/27 is equally likely to be

n
n/2
chosen.

3.2 Proof of Bourgain’s Theorem

Proof: Based on the embedding construction above, we claim that
Qlogn) * d(vi,v;) < [|¢(vi), ¢(vy)ll1 <k * d(vi, v;) (4)

Lemma 1. For any S C V,|d(v;, S) — d(vj, S)| < d(vs,vj) .

As shown in Figure 1, for any S C V, assume d(v;, S) = d(v;, vm), d(v;, S) = d(v;,vy), where n and
m could be the same,

|d(v, S) = d(v;, S)| = [d(vi,vm) — d(vj,vn)
< Jd(vi, vm) — d(vj, v (5)
< d(vi,vj) (6)

It is clear to see that the inequality 5 holds due to the definition of the d(v,S), and the inequality
6 holds due to the triangle inequality.



Figure 1: |d(v;, S) — d(v;, S)| < d(vi, vj)

Upper Bound:
¢, (o)l = > ld(vs, Sp) — d(vj, St

t=1..1og%n
< log®n * d(v;, vj) (7)

Since we have proved the Lemma 1, it is clear to see that the inequality 7 holds. Then we have
proved the upper bound for our claim of inequality 4.

Lower Bound:

! O
u \

Figure 2: d(u, A) = d(v, A)

First we consider a simple example shown in Figure 2. Let A;; denotes the jth set selected with
cardinality 271, As shown in Figure 2, if the distance between u and set A;; is the same as the
one between v and A;;, that means |d(u, A;;) — d(v, A;j)| = 0, which doesn’t contributes to new
metric distance ||¢(u), ¢(v)]]1. In order to fine the lower bound, we are more interested in the case
that how the selected sets could contribute to ||¢(u), ¢p(v)||1.

Definition 1. B(z,r) = {y € Vl|d(z,y) < r}. The ball includes all nodes the distance between
which and z is no greater than r.

Definition 2. for fixed u and v, Ry = min{r: |B(u,r)| > 2'&|B(v,r)| > 2'}. Further, R; is defined
if and only if Ry < d(u,v)/2, i.e. we don’t consider the case that B(u,r) and B(v,r) intersects, but
they could touch.

Now we consider the case shown in Figure 3. The set A of cardinality 2° intersects the ball
B(u, R;—1) and B(v, R;), then it is easy to see that d(u,A) < R;—; and d(v,A) > R;. Thus,
|d(u, A) — d(U,A)| > Ri — Rz;l.



Figure 3: good ball example

Claim 1. When we select set A of cardinality 201, for any i, the probability that we chose a set
that intersects B(u, R;—1) and disjoints from B(v, R;) is constant.

Proof: By Definition 2, |B(u, Ri—1)| < 2¢ and |B(v, R;)| > 2°. So the probability of choosing a
set A which intersects |B(u, R;—1)| but misses |B(v, R;)| is

PrlANB(u, Ri—1) # 0&A N B(v,R;)) =0] = Prl[ANB(u,R;—1) # 0] x Pr[A N B(v, R;) = 0]
1 9i-1
> (11— ) )
Loy, g l 2
> (1= (- ) (- 5)
> (1 —6_1/2) *i
O
Therefore, for a set of subsets A;; of cardinality 2i—1,
E[ ) ld(u, Ay) —d(v, Ay)|] > lognQ(1)(R; — Ri1)
j=1l..logn
Z Q(log n)(Rz - Rz‘—l)
Ell¢(w), 6] > E[ ) Y ld(u, Ay) — d(v, Aij)]
R; is defined j=1..logn
> > Qogn)(R; — R — 1) (8)
R; is defined
> Q(logn) * (Rm — Ro) (9)
> Qlogn)d(u,v) (10)

It is easy to see that the inequality 8 is of telescope style, and the inequality 9 is the result of
reducing 8. By the definition of R,,, we know that the inequality 10 holds for certain.



Now we have proved Q(logn) * d(vi,vj) < ||¢(vi), d(vj)||1 < k * d(v;,v;). Then according to the
Linearity of a norm under scalar multiplication, i.e.||\7|| = |\|||¥]|, we have

d(vi, Uj)

Q(logn) < 16" (vi), &' (vy) [l < d(wi, vy),

where ¢/ (v;) = ¢(v;)/log?n. Thus, this embedding has distortion of O(logn) on O(log?n) dimension.
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