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Lecture Outline:

• Shannon Capacity

– Pentagon

• Shannon’s Upper Bound

• Lovasz’s Tight Bound

1 Shannon Capacity of a Graph

Given a graph G = (V, E), where

• Vertices represent symbols.

• Edges exist between two symbols when they can’t be confused with each other.

Shannon capacity of a graph G is defined as:

SC(G) = sup
n

log2
n
√

ω(Gn) = lim
n→∞ log2

n
√

ω(Gn)

where ω computes the number of cliques in a graph.

There’s an upper bound on SC(G). However, we don’t know how to compute it in general graphs.

To make it simpler, Shannon Capacity of a channel is also defined as:

SC(G) = sup
n

n
√

ω(Gn) = lim
n→∞

n
√

ω(Gn)

Suppose χ(G) denotes the chromatic number of a graph G. It’s easy to see that:

ω(G) ≤ SC(G) ≤ χ(G)

The reason why ω(G) ≤ SC(G) is that sup
n

n
√

ω(Gn) ≥ 1
√

ω(G1) = ω(G) and ω(G) is the base

case. Since the chromatic number of a graph is no less than the clique number of it, we have
ω(G) ≤ χ(G).

To get the upper bound on Shannon Capacity, we claim that:

ω(G) ≤ lim
n→∞

n
√

ω(Gn) ≤ lim
n→∞

n
√

χ(Gn) ≤ χ(G)



In figure 1, the line above the horizontal line represents n
√

χ(Gn) and the line below the horizontal
line represents n

√
ω(Gn). Finally they converge.

We denote by χf (G) the fractional chromatic number of G, which is the infimum of all fractions
a/b such that, to each vertex of G, one can assign a b-element subset of {1, 2, 3, . . . , a} in such a
way that adjacent vertices are assigned disjoint subsets.

A fractional clique is a map f : V (G) → [0, 1] such that, if S is any independent set of vertices in
V (G),

∑
v∈S f(v) ≤ 1. The fractional clique number ωf (G) is equal to sup{∑v∈V (G) f(v)}, where

the supremum is taken over all fractional cliques f . This is just a combinatorial description of
the parameter calculated by the real relaxation of the integer program that calculates ω(G), so
ωf (G) = χf (G) by the duality theorem of linear programming.

The primal and the dual are given:

χf = min 1T x
Ax ≥ 1
x ≥ 0

ωf = max yT 1
yT A ≤ 1

y ≥ 0

So, we have the following theorem.

Theorem 1. χf (G) = ωf (G)

We now consider the fractional chromatic number of products of graphs.

Theorem 2. χf (G×H) = χf (G)× χf (H)

Proof:

ωf (G) is super-multiplicative, i.e.,

ωf (G×H) ≥ ωf (G)× ωf (H)

χf (G) is sub-multiplicative, i.e.,

χf (G×H) ≤ χf (G)× χf (H)
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According to the previous theorem, we also know that:

χf (G×H) = ωf (G×H)

χf (G) = ωf (G)

χf (H) = ωf (H)

Combining them will lead to the conclusion that χf (G×H) = χf (G)× χf (H)

Theorem 3. SC(G) ≤ χf (G)

Proof: Based on the previous theorem, it’s not hard to show that:

SC(G) = sup n
√

ω(Gn) ≤ sup n

√
ωf (Gn) = sup n

√
χf (Gn) = n

√
[χf (G)]n = χf (G)

Suppose graph G is a pentagon, then we know that χf (G) = 2.5 and
√

ω(G2) =
√

5. Based on
these two results, we know further that

√
5 ≤ SC(G) ≤ 2.5.

Lovasz proved that Shannon Capacity of a pentagon is actually
√

5, strictly.

Theorem 4. Suppose graph G is a pentagon. Then SC(G) =
√

5.

Proof: An orthogonal representation of a graph G is defined by associating a vector vi for each
vertex vi such that vT

i vj = 0 if (i, j) ∈ E(G).

In figure 2, the angle is θ. Without loss of generality, we can assume that ||vi|| = 1. Since the
vectors associated with a clique form an orthonormal basis we have

∑

vi∈clique
(e · vi)2 ≤ 1

We say that an orthonormal representation is nice if ∀vi ∈ V (G), vi · e = cos θ.
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Thus the clique size of a graph G, ω(G) ≤ 1
cos2 θ

, where θ is the angle of this nice orthonormal rep-
resentation, i.e., with smallest θ, is computable in polynomial time by semi-definite programming.

For a pentagon G, we will create a nice orthogonal representation in which cos θ = 5
−1
4 .

If we have nice orthonormal representations for graph G and H, we can also construct a nice
orthonormal representation for graph G×H.

(vg1 ◦ vh1) · (vg2 ◦ vh2) = vg1 · vg2 ◦ vh1 · vh2

We can see that the orthogonality is preserved.

Suppose graph G is a pentagon, we can construct a nice representation of graph Gn for which
cos θ = 5

−n
4 . Thus, n

√
ω(Gn) ≤ √

5, ∀n, which imply SC(G) ≤ √
5.

We already know that SC(G) ≤ √
5, so SC(G) =

√
5.
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