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Lecture Outline:

e Shannon Capacity
— Pentagon
e Shannon’s Upper Bound

e Lovasz’s Tight Bound

1 Shannon Capacity of a Graph
Given a graph G = (V, E), where

e Vertices represent symbols.

e Edges exist between two symbols when they can’t be confused with each other.

Shannon capacity of a graph G is defined as:

SC(G) = suplog, VVw(G™) = lim logy v/w(G™)

where w computes the number of cliques in a graph.
There’s an upper bound on SC(G). However, we don’t know how to compute it in general graphs.

To make it simpler, Shannon Capacity of a channel is also defined as:

SC(G) = sup y/w(G") = lim {/w(G")

n—oo

Suppose x(G) denotes the chromatic number of a graph G. It’s easy to see that:

w(G) < SC(G) < x(G)

The reason why w(G) < SC(G) is that sup {/w(G™) > {/w(G!) = w(G) and w(G) is the base

n
case. Since the chromatic number of a graph is no less than the clique number of it, we have

w(G) < x(G).

To get the upper bound on Shannon Capacity, we claim that:

w(G) < lim yw(G") < lim /x(G") < x(G)
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Figure 1

In figure 1, the line above the horizontal line represents {/x(G") and the line below the horizontal
line represents {/w(G™"). Finally they converge.

We denote by x¢(G) the fractional chromatic number of G, which is the infimum of all fractions
a/b such that, to each vertex of G, one can assign a b-element subset of {1,2,3,...,a} in such a
way that adjacent vertices are assigned disjoint subsets.

A fractional clique is a map f : V(G) — [0, 1] such that, if S is any independent set of vertices in
V(G), > s f(v) < 1. The fractional clique number wy(G) is equal to sup{}_,cy/(q) f(v)}, where
the supremum is taken over all fractional cliques f. This is just a combinatorial description of
the parameter calculated by the real relaxation of the integer program that calculates w(G), so
w¢(G) = xf(G) by the duality theorem of linear programming.

The primal and the dual are given:

X = min 17z wp = max y’'1
Ax >1 yTA<1
z>0 y>0

So, we have the following theorem.

Theorem 1. x;(G) = ws(G)

We now consider the fractional chromatic number of products of graphs.

Theorem 2. x (G x H) = x7(G) x xs(H)

Proof:
wy(G) is super-multiplicative, i.e.,

wi(G x H) > wp(G) x wy(H)
x¢(G) is sub-multiplicative, i.e.,

Xf(G x H) < xf(G) x x5(H)



According to the previous theorem, we also know that:

Xf(Gx H) =ws(Gx H)

Combining them will lead to the conclusion that x¢(G x H) = x#(G) x x¢(H) O
Theorem 3. SC(G) < xf(G)

Proof: Based on the previous theorem, it’s not hard to show that:

SC(G) = sup Y/w(G) < sup {fws(G) = sup {/x4(G") = /x4 (@) = x4(G)

O

Suppose graph G is a pentagon, then we know that x;(G) = 2.5 and \/w(G?) = V5. Based on
these two results, we know further that v/5 < SC(G) < 2.5.

Lovasz proved that Shannon Capacity of a pentagon is actually /5, strictly.

Theorem 4. Suppose graph G is a pentagon. Then SC(G) = /5.

Proof: An orthogonal representation of a graph G is defined by associating a vector v; for each
vertex v; such that vl v; = 0 if (4,7) € E(G).

Vi Vi
e
Figure 2
In figure 2, the angle is §. Without loss of generality, we can assume that ||v;|| = 1. Since the

vectors associated with a clique form an orthonormal basis we have

Z (e-v)? <1

vieclique

We say that an orthonormal representation is nice if Yv; € V(G),v; - e = cos 6.



Thus the clique size of a graph G, w(G) < ﬁ, where 0 is the angle of this nice orthonormal rep-
resentation, i.e., with smallest 6, is computable in polynomial time by semi-definite programming.

For a pentagon GG, we will create a nice orthogonal representation in which cosf = 57

If we have nice orthonormal representations for graph G and H, we can also construct a nice
orthonormal representation for graph G x H.

(Ufh o Q}h1) : (U92 o vhz) = Vg * Ugy ©Upy * Uhy
We can see that the orthogonality is preserved.

Suppose graph G is a pentagon, we can construct a nice representation of graph G™ for which

cos@ =57 . Thus, /w(G") < v/5,Vn, which imply SC(G) < /5.
We already know that SC(G) < /5, so SC(G) = V/5.



